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Abstract—Interference alignment (IA) is a precoding technique
that aligns interfering signals at receivers. It is known that IA
achieves the maximum degrees of freedom over an interference
channel under ideal assumptions. The real-world performance
of IA depends on a range of practical issues, such as imperfect
synchronization, channel estimation, and feedback. Practical
issues have been studied in simulations and prototypes, but
fully-distributed operation of IA network nodes has not been
considered. In this paper, we present the first investigation of
real-time IA performance on a fully-distributed 2 × 2 multiple-
input and multiple-output (MIMO) prototype system with three
physically independent user pairs. Over-the-air algorithms for
time and frequency synchronization, as well as analog feedback,
are studied and implemented. Sum rates are illustrated as a
function of complexity and accuracy of different alignment,
synchronization, and feedback algorithms. Corresponding trade-
offs are evaluated using an iterative IA method, the injection of
residual frequency offset into synchronization, and analog versus
quantization-based limited feedback approaches. We demonstrate
that, while considering all possible error sources in estimation,
synchronization, and feedback, the theoretical multiplexing gain
of IA can be reached in practical systems with a constant sum
rate loss that remains within 5 bits/Hz/s compared to an ideal
simulation.

Index Terms—Interference alignment, prototyping.

I. INTRODUCTION

Interference management plays a crucial role in current
wireless systems. Interference alignment (IA) is a precoding
technique for efficient interference management. By exploiting
multiple signal dimensions and properly aligning interfering
streams at the receiver, IA allows for a linear increase in the
multiplexing gain as the number of user pairs and dimensions
grows large. The concept of IA was first proposed in [1] and
[2] for a multiple-input multiple-output (MIMO) X-channel
configuration. It was extended to interference channels in [3]
and has become the subject of tremendous research [4], [5],
[6], [7], [8], [9], [10], [11]. Multidimensionality of signals for
IA can be created in time, frequency, or through spatially-
separated antennas. A reliable approach for obtaining the
dimensionality required for IA is through antenna subspaces
available with the use of MIMO communication.
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Theoretical work on IA depends on perfect assumptions
about alignment, synchronization, and feedback. There are
analytical, simulation-based, and prototyping approaches to
study the impact that practical assumptions have on perfor-
mance [12], [13], [14], [15], [16]. None of the existing work,
however, considers the true nature of interference channels,
i.e. distributed operation of transmitters and receivers. In this
paper, we investigate real-time IA performance on a fully-
distributed network for three independent user pairs, each with
a 2×2 MIMO antenna configuration. Using our prototype, we
also explore the design space of trade-offs between achievable
sum rates and accuracy of different alignment, synchroniza-
tion, and feedback algorithms.

Several techniques exist to compute the necessary precoding
matrices for IA: the closed form method in [3] and iterative
methods in [8] and [9]. The closed form solution is simple, but
only works for three users. Iterative methods can work with
any number of users, but suffer from high computational com-
plexity. In [8], assuming channel reciprocity, the iterations are
computed both on the transmitter and receiver sides, and the
resulting precoding data is used for both the feedforward and
feedback channels. Two optimization problems are suggested
for iterative methods: minimizing total interference leakage, or
maximizing the signal to interference and noise ratio (SINR).
The key in [8] is that the algorithms do not need explicit
channel state information (CSI) for all users, and can thus be
done in a fully-distributed manner. In [9], the iterations are
performed at either the transmitter or receiver side. The base
algorithm in [9] is the same as the algorithm that minimizes
total leakage in [8], but there is no assumption about channel
reciprocity. By contrast, the algorithm in [9] requires CSI
feedback and is, therefore, harder to be realized in a truly
distributed fashion.

Synchronization issues in IA networks are studied in [13].
It is known that the phase offset caused by time and frequency
synchronization errors is not an insurmountable problem for
IA. The synchronization error causes not only phase offset,
however, but also inter-symbol interference (ISI) or inter-
carrier interference (ICI). Both interferences can work as addi-
tional error sources, and the synchronization accuracy can be
an issue. Over-the-air master-slave synchronization protocols
are studied for distributed systems with multiple interfering
transmitters and receivers for which no common reference
clock or frequency source is available [17], [18], [19]. Within
such protocols, one of the transmitters works as the master of
the system, while other nodes synchronize to the master. In
[17], a precise sample-level time synchronization protocol for
wireless LAN systems is given. A frequency synchronization
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method based on the same protocol is introduced in [18].
A protocol using orthogonal frequency division multiplexing
(OFDM) training symbols via a dedicated synchronization
channel is presented in [19]. The protocol in [17] and [18] can
be more generally used, but has a higher overhead compared
to the protocol in [19], which is, however, limited to frequency
division duplexing (FDD) and OFDM systems.

There are two approaches to make the CSI available at the
transmitters: to feed CSI back from receivers to transmitters
or to exploit channel reciprocity. Relying on reciprocity can
be problematic because it is only valid when the uplink
and downlink use the same frequency. This is the reason
why CSI feedback is more commonly used in commercial
wireless systems. For CSI measurement and feedback, there
are three major, practical concerns: error caused by additive
noise, error by limited precision of the feedback, and error by
delayed feedback. Additive noise affects feedforward channel
estimation, feedback channel estimation, and feedback CSI
decoding. Errors due to limited precision of feedback occur
because of the quantization of the estimated CSI. Finally,
delays in feedback are caused by a channel’s time variation.
The effects of CSI feedback limitations on IA are studied
using both quanitzed digital [10] and analog feedback [11].
The analysis of analog feedback in [11] is further extended to
a more comprehensive analysis in [12]. A main conclusion in
[11] and [12] is that analog feedback is a good and practical
option for implementing interference alignment.

There is limited work studying alignment, synchronization,
and feedback issues in practical IA realizations. From an
experimental perspective, IA prototypes are built and the
performance of IA is measured [13], [14], [15], [16]. In
[13], feasible setups for IA in wireless LAN systems are
studied. In [14], the wireless channel is measured, and the
sum rate is calculated to show the gain in sum rate that can
be achieved under real wireless channel conditions. In [15],
the CSI is measured at the receivers, precoding vectors are
obtained offline with the previously measured CSI, and the
sum rate is calculated from over-the-air precoded transmission.
In our previous work [16], we implemented the approach
from [15] in National Instruments (NI) LabVIEW and C++
to study computational complexity on embedded platforms.
Prior work [13], [14], [15], [16], however, still assumes perfect
synchronization and CSI feedback.

The main contribution of this paper is the first real-time
implementation and measurement of a fully-distributed MIMO
IA system. Our IA prototype has three user pairs with a 2× 2
MIMO antenna configuration. Each node works with inde-
pendent time and frequency references, and the CSI feedback
is via wireless channels. Although the system does not work
under a frequency selective channel, we adopt OFDM for
future extension of the implementation. With this prototype,
we study critical issues in distributed IA systems: over-the-
air time and frequency synchronization as well as feedback
mechanisms. For synchronization, we introduce a variation
of existing protocols that ignores phase offsets under the
assumption of a constant air propagation delay for any path
between two nodes. For feedback, we implement and compare
quantization-based limited feedback with analog feedback,
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Fig. 1. Block diagram of three-user, 2× 2 MIMO system.

which has been proposed for achieving high multiplexing gain
with low overhead, but has not been validated in practice.

From our prototype, we observe that IA provides significant
gains even in the presence of practical impairments. There is
a sum rate loss of up to 5 bits/Hz/s compared to simulation
results, but the multiplexing gain of IA is preserved, which
further validates the analysis in [11]. Additional measure-
ments are performed considering the accuracy of the IA
solution, synchronization, and CSI feedback. In the process,
we evaluate trade-offs between computational overhead and
IA performance. To summarize the observations from our
measurements: 1) the number of iterations needed for an
iterative IA to reach achievable sum rates does not depend
on the availability of perfect CSI. Furthermore, 2) the residual
frequency offset that causes ICI in the OFDM system also
introduces a 2 bits/Hz/s loss in the sum rate when assuming a
0.001 % offset with respect to the subcarrier spacing at 30 dB
SNR. This result indicates that the synchronization accuracy
can be important in IA system design. Finally, and most
importantly, 3) a comparison of sum rates for quantization-
based versus analog feedback demonstrates an advantage of
analog feedback in multiplexing gain even when considering
the errors from a realistic implementation of synchronization.

The remainder of this paper is organized as follows: Sec-
tion II briefly describes our system model and the background
of various IA, synchronization, and feedback algorithms em-
ployed. Section III presents our approach for realization of a
distributed IA system. Section IV and Section V show imple-
mentation details and results, respectively. Finally, Section VI
concludes our paper.

II. SYSTEM MODEL AND BACKGROUND

A. Interference Channel

Our system model is based on a K-user interference chan-
nel. We define Nt as the number of antennas at the transmitter,
Nr as the number of antennas at the receiver, and Ns as the
number of desired data streams for each user’s transmitter and
receiver pair. It is assumed to be a pre-defined mapping of
transmitters and receivers, as seen in Fig. 1 with Ns = 1,
Nt = 2, and Nr = 2. Only the data streams from the i-th
transmitter are desired at the i-th receiver, and streams from
other transmitters are considered to be interfering. All nodes
are separated. To provide a simple explanation, we assume
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a narrowband, block-fading channel, which is also valid for
per-subcarrier operation of OFDM systems under frequency
selective channels. The received signal yk at receiver node k
is given by

yk = Hk,kFkdk +
∑
m 6=k

Hk,mFmdm + nk, (1)

where Hk,m is the Nr×Nt channel matrix between the m-th
transmitter and the k-th receiver, Fk is the Nt×Ns precoding
matrix, dk is the Ns×1 data stream for the k-th user pair, and
nk is the additive white Gaussian noise (AWGN) at receiver
k.

B. Interference Alignment

Interference alignment is a technique that aligns multiple
interfering streams in the same subspaces, such that receivers
can cancel the interference using linear techniques. With avail-
ability of antenna subspaces, the degrees of freedom (DOF)
for IA can be achieved with limited number of subspaces. This
depends on the antenna configuration as follows:

min(Nt, Nr)
R

R+ 1
K, (2)

where R = max(Nt,Nr)
min(Nt,Nr)

[6]. For example, a three-user, 2 × 2
MIMO system (K = 3, Nr = 2, and Nt = 2) has a DOF
of 3. Each user has a limited number of subspaces (two in
this example) and can exploit one of the subspaces without
interference, while interfering streams are aligned and received
in the other subspace.

For IA with MIMO and a zero-forcing combining matrix at
the receivers, the received signal becomes

ŷk = WH
k Hk,kFkdk+

∑
m6=k

WH
k Hk,mFmdm+WH

k nk, (3)

where Wk is the Nr×Ns combining matrix at receiver k. The
first term in (3) is the desired signal after decoding, while the
second term is the interference, which becomes zero. The last
term shows the effect of AWGN. The effect of IA can be
summarized as follows:

WH
k Hk,mFm = 0 (4)

rank(WH
k Hk,kFk) = Ns. (5)

The sum rate Rsum of the IA system is defined as the
summation of each user pair’s rates which are derived from the
ratio of the desired signal’s power over the sum of interference
leakage power and noise power as follows:

Rsum =

K∑
k=1

log2

∣∣∣INs + (σ2
kW

H
k Wk + Rk)−1

× (WH
k Hk,kFkF

H
k HH

k,kWk)
∣∣∣, (6)

where
Rk =

∑
m 6=k

WH
k Hk,mFmFH

mHH
k,mWk.

Here, the noise covariance matrix E[nkn
H
k ] = σ2

kINr
, and IN

is the N×N identity matrix. For simplicity, the transmit power

of dk is assumed to be 1. There are different approaches to
find solutions for the linear IA precoding matrix Hk,m. One
approach that works in the case of three user pairs and a
2× 2 MIMO system is the closed form solution from [3]. In
this approach, two interfering streams at a receiver should be
aligned in one subspace. For example, the interfering streams
from transmitters two and three can be aligned at receiver one
as follows:

H1,2F2 = H1,3F3. (7)

Then F3 can be obtained as

F3 = H−11,3H1,2F2. (8)

Similarly, at receiver three, interfering streams from transmit-
ters one and two should be aligned, and F1 is

F1 = H−13,1H3,2F2. (9)

At receiver two, interfering streams from transmitters one and
three should be aligned. Together with (8) and (9), F2 is any
eigenvector of E, where E is

E = H−13,2H3,1H
−1
2,1H2,3H

−1
1,3H1,2. (10)

In contrast, the iterative methods find an IA solution through
numerical approaches [8], [9]. Using an optimization problem
that minimizes interference leakage, the formulation in [9] is
as follows:

max
FH

mFm=INs

CH
k Ck=INk−Ns

K∑
k=1

∑
m=1
m 6=k

‖Hk,mFm−CkC
H
k Hk,mFm‖2F. (11)

The following procedure is performed to solve the problem in
(11):

1) Choose the set of precoding matrices Fm randomly, ∀m.
2) Choose the columns of Ck to be the Nk−Ns dominant

eigenvectors of
∑
m 6=k

Hk,mFmFH
mHH

k,m ∀k.

3) Choose the columns of Fm to be the Ns least dominant
eigenvectors of

∑
m 6=k

HH
k,m(INk

−CkC
H
k )Hk,m ∀m.

4) Repeat steps 2 and 3 until convergence.
Both the precoding matrix set {Fm} and the combining

matrix set {Wk} = INr
−CkC

H
k are obtained from the above

procedure. In this instance, Nk means the number of antennas
for k-th receiver, where each receiver can have a different
Nk. In this paper, however, we specialize the results to the
case where all receivers have the same number of antennas.
The convergence is guaranteed, but the cost function (11) is
not convex, i.e. the algorithm can fall into local minima. The
iterative method is more flexible than the closed form solution
and applies to any number of users, given IA feasibility
conditions are satisfied [5].

In this paper, we implement both closed form and iterative
IA. Since our system is a three-user, 2×2 MIMO setup, we can
apply the closed form solution, which has lower complexity.
We use the iterative IA method from [9] to show trade-offs
between computational complexity and sum rate performance.
Among the numerical approaches [8], [9], the approach in [9]
is simple and can be used more generally than others that
assume channel reciprocity.
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(a) System with different propagation delays.
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(b) Delay estimation between master and a slave.

Fig. 2. Master-slave protocol in [17].

C. Synchronization

A distributed IA system requires synchronization among
the transmitters and between the transmitter and receiver
sides. Once the former is guaranteed, the latter becomes a
point-to-point synchronization problem that is well-studied in
literature. Thus, most of the effort in our prototype is spent on
synchronization among the transmitters. We propose to use a
master-slave protocol to solve this synchronization problem.

Master-slave synchronization protocols are efficient ways
for synchronizing multiple nodes [17], [18]. Fig. 2(a) shows
an example of a system that has different propagation delays
between any two nodes [17]. One of the transmitters works as
the master transmitter, and the others are slaves. The goal is to
align the transmitters in time and frequency such that signals
from all the transmitters arrive as close together as possible at
the receivers.

To achieve this goal, each transmitter should know the over-
the-air propagation delays between itself and the other nodes.
This happens by broadcasting a probe and receiving responses
that have the internal processing delays of the responding
node. Fig. 2(b) shows the delay estimation procedure between
the master and a node. When a transmitter first sends the probe,
all of the other nodes sense the probe and measure its probe
detection delay (T S

D) as well as the turnaround delay when
switching from receiving to transmitting mode (T S

T). Each
node then sends the sum of those delays (T S

D + T S
T) back to

the transmitter that sent the probe. The transmitter measures
the over-the-air propagation delays (TP), including its internal
detection time (TM

D ) and the received delay information from
the slave. Then the other transmitters perform the same task
to get the propagation delays from them to other nodes.

Once all required delay information is obtained at all nodes,
the system is ready to work in a synchronous manner. The
master transmitter sends its training to the other transmitters,
and each of them adjusts its local time by the previously-
measured delay information. After some time margin, all
transmitters send their packets so all arrive at a receiver
simultaneously. If, however, multiple receivers exist in the
system, it is impossible to align all receivers and transmitters.
Instead, the transmitters adjust their packet transmission time
so the sum timing error at all receivers is minimized, e.g. by
ensuring that all signals are received within the cyclic prefix
of the OFDM system.

For frequency synchronization, slave transmitters measure
the frequency offset using the master’s training in order to
recover the offset before they send their own data packet, as
originally shown in [18]. Along with the frequency offset,
the phase offset between the master and slaves can also
be considered. The phase offset caused by oscillator drift
is inevitable, and it may affect the performance of wireless
systems. To allow the slaves to measure the phase difference
with the master, two identical trainings can be sent by the
master within a fixed time interval. The slaves compare these
two trainings to estimate the phase offset between the two.
The slaves can, therefore, compensate the phase offset before
their data transmission. Details are described in [18].

Our prototype synchronizes transmitters through a similar
master-slave protocol. It is, however, modified under assump-
tion that the propagation delays between any two nodes are
the same across the system. Also, phase synchronization is not
implemented since it does not affect IA’s performance. We
do not implement a master election procedure, and instead
assume that the master is already pre-defined. The method
in [20], which uses the accuracy of local clocks and energy
availability of nodes as decision metrics, can be a candidate
for an election procedure.

D. CSI Feedback

The CSI is a key requirement for IA. We implement two
over-the-air feedback methods: digital and analog. Digital
feedback, which we call quantization-based feedback, is robust
against AWGN, but suffers from quantization error. Analog
feedback, by contrast, does not have quantization error and
can have better estimation performance than the quantization-
based method, especially at high SNR where IA gain in
sum rate is significant. Its feedback estimation performance,
however, is a function of AWGN. Our first choice for over-
the-air CSI feedback is an analog approach that has lower
overhead than quantization-based methods. For comparison
purposes, however, we also implement a quantization-based
feedback method.

For quantization-based feedback, we consider the explicit
beamforming method from the IEEE 802.11n wireless LAN
standard [21]. Each receiver first normalizes the measured CSI
values, and quantizes these normalized values. It then sends
the quantized versions of the amplitude, which is used as the
normalization factor, and the normalized CSI values to the
transmitters. With this method, Ngain bits are used for the
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amplitude of CSI, and Nq bits are used to quantize each of
the real and imaginary values of the measured CSI.

The non-negative integer amplitude index Mi for receiver
i’s CSI feedback (in dB) is

Mi = min

[
2Ngain − 1,

⌊
20 log10

(
Gref

mi

)⌋]
. (12)

Here, Gref is the maximum gain reference, mi is the maximum
absolute value among all the real and imaginary values of
Hi,j , j = 1, 2, 3, and bxc is the largest integer smaller than or
equal to x. The Mi index is sent to the transmitters via the
feedback channel.

The real and imaginary values of Hi,j are normalized
with Mi and quantized to Hq

scaled(i,j), which consists of Nq

bits in two’s compliment fixed-point number representation as
follows:

Re(Hq
scaled(i,j)) = round

(
Re(Hi,j)

M lin
i

(2Nq−1 − 1)

)
(13)

Im(Hq
scaled(i,j)) = round

(
Im(Hi,j)

M lin
i

(2Nq−1 − 1)

)
, (14)

where M lin
i is the normalization factor given as Gref/10Mi/20.

For each receiver, the total number of bits to be transmitted as
CSI feedback is Ngain +2×Nq×K×Nt×Nr. These bits are
mapped to quadrature phase shift keying (QPSK) modulation
and OFDM subcarriers.

The transmitters receive the CSI feedback and decode Mi

and Hreceived(i,j) to find the CSI as

Re(Hreceived(i,j)) =
Re(Hq

i,j)

10Mi/20
(15)

Im(Hreceived(i,j)) =
Im(Hq

i,j)

10Mi/20
, (16)

where Ngain = 3 and Nq = 4, 5, 6 and 8 are used for
our implementation. Gref is chosen to minimize the mean
squared error (MSE) by quantization and is a constant in our
implementation. The quantization noise is not fixed regardless
of SNR. Thus, it needs more resolution and more bits per
coefficient at higher SNR, introducing more overhead into the
system.

An alternative to this quantization-based method is to im-
plement the compressed quantization of IEEE 802.11n, which
reduces the required feedback by parameterizing only the
singular values and right singular vectors of the channel.
This approach results in about a 25 % reduction in feedback
overhead for our three-user, 2 × 2 MIMO setup. Due to the
flexibility offered by scalar quantization, however, we defer
implementation of the compressed quantization mode to future
work.

Analog feedback is an alternative approach for conveying
CSI [11]. With analog feedback, quantization error is traded
off for additional estimation error. Analog feedback gets its
name from the fact that a CSI value is directly mapped
to the I/Q domain instead of being quantized to a binary
representation with a specified number of bits, which is then
mapped to a pre-defined modulation method, such as phase
shift keying. In [11], errors in the feedback channel estimation,
feedback training, and feedback data are considered. It is
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Fig. 3. Operation scenario for the prototype.

shown that the multiplexing gain of IA is preserved with only
a constant sum rate loss when the transmit power of the CSI
feedback linearly relates to the feedforward transmit power.
The upper bound of the constant sum rate loss ∆Rsum is given
as a function of the length of the training for feedback channel
estimation (τp), the length of the CSI feedback (τc), and the
ratio Pf/P between the feedback and feedforward transmit
powers Pf and P :

∆Rsum(τp, τc) ≤∑
i

di log2

(
1 +

P

Pf
c (τp, τc)

(
K − 1

di

))
.

(17)

Here, c(τp, τc) is a value that decreases with increasing τp and
τc, i.e. it indicates that the sum rate loss ∆Rsum decreases with
an increase in overhead in the channel estimation and feedback
data. To maintain the multiplexing gain, Pf needs to linearly
scale with P , i.e. Pf = αP . Otherwise, if Pf scales as Pf =
αP β , there exists a loss in the multiplexing gain according
to β. An extended study that also considers the feedforward
channel estimation error is presented in [12].

III. SYSTEM REALIZATION

We are targeting a three-user, 2 × 2 MIMO IA system as
shown in Fig. 1. In our system, Nt = Nr = 2 for all user pairs,
Ns = 1, and K = 3. We use OFDM for both the feedforward
and feedback channels. With this setup, two antenna subspaces
are available for a user pair. Two interfering streams align in
one subspace at each receiver, while the desired stream exists
in the other subspace.

There are three main phases in IA operation: training,
feedback, and data transmissions. Fig. 3 summarizes the
information that must be transmitted in each of the phases,
and also shows the tasks that should be performed by the
transmitters and receivers.
• Training Phase: This phase is mainly for transmitter

synchronization and CSI measurement at the receivers.
The master transmitter first sends the synchronization
training. The slave transmitters and receivers detect it, and
perform associated time and frequency synchronization.
Then all the transmitters send synchronized CSI training
to the receivers, which perform CSI measurement and
processing.

• Feedback Phase: This phase is for CSI feedback. Each
of the receivers creates a packet that has the synchro-
nization training, CSI training, and CSI feedback data.
Then the receivers send the packet in a time orthogonal
manner. After receiving and decoding these packets, the
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transmitters perform feedback processing to synchronize
with the receivers, calculate IA precoding vectors, and
generate precoded packets to send in the following data
phase.

• Data Phase: This phase is for the precoded training
and data transmission. The system first performs the
same transmitter synchronization as in the training phase.
Then the transmitters send the precoded CSI training
and precoded data in order. The receivers measure the
effective CSI that is the product of precoding vectors
and pure CSI, calculate the combining vectors from the
precoded CSI training, and decode the precoded data with
them. Finally, the receivers calculate the sum rate and the
operation ends or repeats.

Details about synchronization protocols and packet struc-
tures in each phase will be described in the following sections.
We report on the performance of our prototype, including
average processing times and delays in Section V.

A. IA Algorithms
We implement both the closed form solution and iterative

method from [9] in our prototype. For the closed form solution,
we directly realize the formulation shown in the previous
section. For the iterative method, the algorithm requires a
singular value decomposition (SVD) of a 2× 2 matrix. Every
iteration requires this SVD. To reduce complexity and to
be able to efficiently extend our implementation to a more
practical, e.g. embedded form in the future, we use the typical
two-step SVD implementation method from [22]. This method
first decomposes the target matrix into a real bidiagonal matrix
and then finds the SVD of this bidiagonal matrix.

In this paper, we only provide a brief summary of the
algorithm. Further details may be found in [22]. The SVD
of a matrix B can be written as follows:

B = UΣVH, (18)

where U and V are unitary matrices and Σ is a diagonal
matrix with singular values ordered in magnitude. In the first
stage, we transform the target matrix as follows:

B = U1

[
f g
0 h

]
V1 = U1DV1, (19)

where the elements of D, f , g, and h are real values. In the
second stage, the SVD of the real bidiagonal matrix D is found
as

D = U2ΣVT
2 . (20)

Combining (19) and (20), the final eigenvectors U and V
become

U = U1U2 (21)
V = VH

1 V2. (22)

For the combining matrices at the receivers, we use the
well-known minimum mean squared error (MMSE) combining
matrix presented in [9]. The combining matrix Wk is

Wk =

(
K∑
k=1

Hk,mFmFH
mHH

k,m + σ2
kI

)−1
Hk,kFk. (23)

B. Over-the-air Synchronization

There are two differences between the master-slave protocol
used in our prototype and the protocols in [17] and [18],
which are described in Section II. First of all, since it does
not affect IA performance, our prototype does not realize the
phase synchronization in [18]. Also, the simplified version of
time synchronization from [17] is employed. The over-the-air
propagation delays between any two nodes are assumed to
be the same. This assumption is valid in our setup because
the bandwidth is not high enough and the nodes are not far
apart enough to cause a symbol-level timing difference. We
also adopt a multi-user OFDM system, which is robust against
timing differences because of its cyclic prefix. In a real system,
even though the nodes are far enough to cause differences, this
is not a problem if they fall into the cyclic prefix as shown
in [19]. Under this assumption, there is no need to measure air
propagation delays. Furthermore, the processing delays and the
turn-around delays at both the transmitters and receivers do not
matter if the following two additional requirements satisfied:
1) the transmitting antennas can send a sample exactly at the
desired time defined by the transmitters, and 2) the receivers
know the exact time when a sample arrives at the receiving
antennas. Our implementation hardware and software support
these requirements. To validate synchronization performance,
we first confirm the decoding of MIMO QPSK symbols in a
6× 6 MIMO system before moving to the IA system.

As Fig. 4 illustrates, all the nodes in our prototype syn-
chronize to the master. For our distributed system, we assume
that all nodes are physically separated. This means that each
node works with its own, independent time and frequency
references, and others’ references are unknown. In the training
phase, which is the starting point of one iteration of the overall
IA protocol, synchronization is performed in the following
three steps:

1) At time zero, the master transmitter sends its training to
the slave transmitters using its local timer. When a slave
receives and detects the training, it measures the local
time T [n]

TP at which the first sample of training arrives at
its antennas. Here, n is the slave index. The slaves also
measure the frequency offset from this training.

2) All transmitters know TC, which is the waiting time
for synchronized transmission. The master waits until
its local time reaches TC, and the slaves wait until
T

[n]
TP + TC.

3) All transmitters immediately send their training to the
receivers when their waiting time ends. Each of the
slaves recover the measured frequency offset from their
training before it is sent. The training and data are now
synchronous in time and frequency.

Since the time between the training and data phases may
not be short enough for the slaves to maintain their previous
synchronization, the nodes perform the same operation in
the data phase. Only the master knows the starting time
of the data phase, TDP, and it again sends its training to
the slaves. The slaves now detect it at time T

[n]
TP + T

[n]
DP,

and all transmitters send the synchronization training and
data after TC time. In addition to the synchronization among
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Fig. 4. Transmitter synchronization in our prototype.

transmitters, the receivers also synchronize to the transmitters.
Each receiver does this independently, and there is no co-
operative synchronization among the receivers.

C. CSI Feedback

The main feedback method in this paper is analog feedback.
Under the assumption of a flat fading channel, receiver i
measures an estimate

Ĥi,k, k = 1, 2, 3. (24)

Since each Ĥi,j is a 2 × 2 matrix, there are K × Nt × Nr

complex values in the measured CSI matrix at each receiver.
These values are mapped to Nsc subcarriers in an OFDM
symbol by a Nsc × (K × Nt × Nr) mapping matrix. As a
result, each receiver forms one OFDM symbol for analog
feedback. The mapping matrix is a fixed, pseudo-random
matrix whose elements are either −1 or 1. To make the
average transmitting power of the OFDM symbol equal the
other training and data symbols, we normalize the values after
subcarrier mapping with a constant gain. The feedback link
between a receiver and transmitter also uses the 2× 2 MIMO
setup, i.e. the OFDM symbol is transmitted via two antennas.
Each receiver’s feedback transmission is separated in time.
After channel equalization and equal antenna gain combining,
the transmitters that receive the OFDM symbols apply the
pseudo inverse of the mapping matrix to the received symbols
in order to find the CSI values. We provide details about our
feedback structure in Section IV.

IV. PROTOTYPE SETUP

We design our system to operate at 2.4 GHz with a
bandwidth that would ideally be as large as 20 MHz. In
reality, due to hardware constraints in our prototype, it is

TABLE I
OFDM PARAMETERS FOR THE PROTOTYPE.

Fast Fourier transform (FFT) length 128
Cyclic prefix length 32

Number of null subcarriers 23
Number of data subcarriers (Nsc) 105

as low as 250 KHz, resulting in a sample duration of 4
us. Both the feedforward channel and feedback channel use
the same frequency. We use OFDM for the training and
data. By contrast, since our synchronization algorithm can
only exploit time domain auto-correlation of the training,
the synchronization training is a time domain signal. Table I
summarizes the OFDM parameters of our prototype.

A. Packet Structure

Fig. 5 illustrates the packet structures for the training
phase (Fig. 5(a)), feedback phase (Fig. 5(b)), and data phase
(Fig. 5(c)).
• Training packet: This packet starts with a synchroniza-

tion training that has two parts: short training for coarse
time synchronization and long training for fine time
and frequency synchronization. A length 17 Zadoff-Chu
sequence is repeated seven times as the short training, and
a length 29 Zadoff-Chu sequence is repeated eight times
as the long training. The total number of samples is 361,
and it takes about TST = 1.4 ms to send this training. The
training has repeated patterns in the time domain, where
synchronization based on self correlation is employed
[23]. CSI training follows the synchronization training.
CSI training is used by the receivers to measure channel
state. Each CSI training is a single OFDM symbol, which
is composed of 160 samples. The time to send one CSI
training is TCT = 0.64 ms. This training is sent from each
of the transmitting antennas in a time orthogonal manner
as shown in Fig. 5(a). As such, six OFDM symbols are
transmitted for our three user, 2× 2 MIMO system. The
training does not experience precoding or decoding. Thus,
receivers can find the current wireless channel irrespective
of precoding. With this training, each receiver measures
a 2× 6 CSI matrix.

• Feedback packet: Synchronization training and CSI
training in the feedback packet are the same as those
of the training packet. Training is followed by feed-
back data, which contains CSI information for precoding
vector calculation in the transmitters. Depending on the
feedback method, feedback data consists of one or more
OFDM symbols (TFD = 0.64 ms each). As shown in
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Fig. 5. Packet structures.

Fig. 5(b), each receiver sends its feedback packet in a
time orthogonal manner.

• Data packet: Synchronization training in this packet
is also the same as in the previous packets. After the
synchronization training, the transmitters send precoded
training, which is used for the combining vector cal-
culation in the receivers. This training experiences IA
precoding at the transmitters, where each of the three
users has one data stream mapped to two antennas via
the precoding vectors. In addition, since this training is
precoded in the same way as data, the receivers can use
it to equalize the precoded OFDM data symbols that
follow the precoded training. Each training consists of
one OFDM symbol. The two antennas of a transmitter
send the training at the same time (TPT = TPD = 0.64
ms), where each transmitter sends its packet in a time
orthogonal manner (Fig. 5(c)).

To account for hardware delays and synchronization pro-
cessing times in slave transmitters and receivers, we set TC =
250 ms for both training and data packets in our prototype.
There can be multiple precoded OFDM data symbols per data
packet, and the maximum possible number of OFDM symbols
in one packet depends on the coherence time of the channel
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Fig. 6. Software and hardware configuration of the prototype.

environment. We only send one precoded OFDM data symbol
to measure instantaneous sum rates.

B. Hardware and Software Setup

Our prototype uses NI’s USRP-2921 [24] hardware and
LabVIEW software, on two dual-core Intel Xeon 2.67 GHz
workstations as shown in Fig. 6. We use one computer each for
the transmitters and receivers. The USRPs are used as analog
to digital conversion (ADC), digital to analog conversion
(DAC), and radio frequency (RF) front-ends. Each USRP
drives one antenna and each node has two USRPs attached to
it. Accordingly, one computer controls six USRPs. A USRP
can switch between transmitting and receiving mode. For
example, the USRPs of the transmitters work in transmitting
mode for the training and data phases, but in receiving mode
for the feedback phase. Each computer is connected to its
USRPs via a TCP/IP Ethernet link. Even though only one
computer processes the data for all three transmitters and,
similarly, only one computer realizes all three receivers, the
signal processing for each node is completely independent. In
other words, there are three parallel, independent processing
chains in each workstation.

We use NI’s LabVIEW, which is a model-based digital
signal processing implementation environment [25] for our
software defined radio (SDR) implementation. LabVIEW’s
USRP driver is used to control the hardware. To reduce
processing time, we optimize our LabVIEW implementation
by parallelizing the loop processing. With this optimization,
we achieve a 4 times speedup in the signal processing chain.
Besides the signal processing time, the system also spends
time in the communication between USRPs and PCs. This is
a hardware constraint of our prototype, and we do not consider
this communication delay in the average processing times we
report in Section V.

We use GPS disciplined oscillator (GPSDO) modules [26]
to provide a required time (pulse per second (PPS)) and
10 MHz frequency reference to the USRPs. The GPSDO is
originally designed for global synchronization to a GPS signal.
In our setup, however, instead of providing a global GPS-based
time and frequency reference to all the nodes, we only use each
GPSDO to provide a better quality oscillator for one node, i.e.
two USRPs. Hence, six GPSDOs exist in our prototype. Each
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GPSDO generates independent time and frequency references.
This use of GPSDOs is consistent with the fact that our system
is a distributed network in which each node works with its
own oscillator. It also does not rely on GPS signals that are
unavailable in indoor environments, as is the case in our lab
prototype.

Fig. 7 shows the hardware configuration of a node in our
prototype. The MIMO cable between the USRPs in Fig. 7
is only used for the Ethernet connection of two USRPs to
a computer. Fig. 8 shows the schematic of our indoor test
environment. Both the transmitters and receivers are physically
separated in order to verify distributed operation of our system.
Due to power limitations, we do not test our system over a
larger distance. Because OFDM is used with a cyclic prefix
of duration 32 us, however, we anticipate that the prototype
will work over longer distances. This claim is justified by the
plethora of work on network MIMO [27], [28], where similar
arguments are used to justify synchronization among multiple
distant base stations.
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Fig. 9. An example constellation of analog feedback.

V. RESULTS

In this section, we first present the sum rate of distributed
IA with analog feedback, followed by additional measurement
results on the relationship between system performance and
the accuracy of the IA solution, the residual frequency offset,
and CSI feedback. Except for the results in Fig 11, we use the
closed form IA solution for our measurements.

We scale the SNR of the system by changing the RF gain
of the USRPs. To measure SNR, the receivers acquire the
noise power at a time when there is no signal in the air. The
signal power is obtained from CSI training after estimating
the channel and low-pass filtering the result in the frequency
domain. First, the frequency domain channel estimation result
is transformed into the channel’s impulse response using an
inverse FFT. The first few samples in the impulse response
show the actual channel power and the following samples show
noise. By nulling the noise samples and performing another
FFT, the low pass filtered channel estimation result is obtained,
which we use as the signal power. The same transmit power
is used for both the feedforward and feedback transmissions.
As such, the SNR for both channels is the same.

Fig. 9 shows an example of the CSI received by a transmitter
using analog feedback at an SNR of 30 dB. Fig. 9 has 12
constellation groups, and each group is an element of the 2×6
{Ĥi,1, Ĥi,2, Ĥi,3} channel matrix from the i-th receiver. The
four different points in each group are the received CSIs at
transmitters 1, 2, 3, and the perfect reference CSI. A 0.45 %
MSE within each group validates the basic operation of analog
feedback in our prototype.

Fig. 10 shows the sum rate achieved in our system. Each
dot in Fig. 10(a) is the measured instantaneous sum rate in the
SNR range between 15 dB and 35 dB. The solid line shows
their linear fit. We calculate the sum rate using the precoded
training in the data phase. With the effective CSI measured
from the training and σ2

k measured from the null time duration,
the sum rate is obtained using equations (23) and (6). The
measured sum rate is compared against results obtained from
simulations with various error sources in the system. There
are different simulation setups: 1) perfect CSI estimation (CE)
and feedback, 2) only with feedforward CE (FF CE) error, 3)
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Fig. 10. Distributed IA with analog feedback.

with feedforward CE and feedback data (FF CE + FB DATA)
errors, 4) with the errors in 3) and feedback CE (FF CE +
FB DATA + FB CE) error, and 5) with all error sources, i.e.
errors in 4) and feedforward precoded channel estimation error.
The most important observation from Fig. 10(a) is that the
multiplexing gain remains unchanged, with analog feedback
only introducing a constant sum rate degradation. This result
verifies the analysis from [11].

We make some interesting observations from the empirical
cumulative distribution functions (CDFs) of the same mea-
sured and simulated setups under 30 dB SNR (in Fig. 10(b)).
As summarized in Table II, the means of the sum rates get
smaller and the variances get larger when adding more error
sources to the system. Furthermore, the measured mean is
smaller and the variance is larger than those in simulation.
We believe, however, that the difference of 0.1 is within the
measurement error and, as such, is not a meaningful offset.
We also believe that this is due to the fact that the actual
channel is different from the Rayleigh channel model used in
simulation. Note that the decreasing mean and the increasing
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Fig. 11. Complexity vs. performance trade-off of iterative IA method.

variance cause a larger outage probability. For example, in
the prototype, the outage probability for an SINR < 15 dB is
4.4 %, which is 44 times larger than the perfect CSI simulation
and 1.5 times larger than the simulation with all error sources.

Fig. 11(a) shows the sum rate versus the number of iter-
ations for the iterative IA method from [9]. The number of
iterations is an important design parameter that determines
the accuracy of the IA solution. The mean sum rates at SNR
= 30 dB and SNR = 20 dB are measured and compared to
those from a simulation with perfect CSI feedback. Since it is
limited by CSI estimation and feedback, the sum rate in the
prototype is smaller than in simulation. Importantly, however,
the number of iterations to achieve the saturated sum rate does
not decrease. This shows that the leakage from an imperfect
IA solution is independent of other error sources, regardless of
the SNR of the system. In addition, we can observe that with
enough iterations (> 40) and at the same SNR, the iterative
method will approach the performance of the closed form
solution that is shown in Fig. 10.

We profile our LabVIEW implementation to measure com-
putational overhead. The delay between the training and



11

TABLE II
MEANS AND VARIANCES OF SUM RATE UNDER DIFFERENT SIMULATED AND PHYSICAL SETUPS.

Perfect CSI FF CE FF CE+FB DATA FF CE+FB DATA+FB CE All error sources Measures
Mean 27.45 24.9 23.4 23.4 22.4 22.5

Variance 9.3 11.1 12.5 13.3 13.2 15.4
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Fig. 12. IA performance with the residual frequency synchronization error.

feedback phases is determined by the processing times for CSI
measurement and feedback packet generation in the receivers.
The average training processing time is 15.2 ms. Likewise, the
final data processing time in the receivers for synchronization,
effective CSI measurement, and decoding at the end of the
data phase is 28.3 ms.

Considering the computational cost of IA in the transmitters,
there is a trade-off between the number of iterations and sum
rate performance. An increase in the number of iterations
provides a more accurate IA solution, but requires more
processing time, which results in overhead that can lower
time-averaged throughput. Fig. 11(b) describes the portion of
processing time that iterative IA takes in the overall feedback
computation for each user pair. The feedback computation
determines the delay between the feedback and data phases.
It includes the processing time for a transmitter’s time and
frequency synchronization using the method in [23], FFT
computation, feedback channel estimation using a least square
algorithm, and feedback data decoding as well as precoding
vector calculation using the iterative IA method. IA computa-
tion contributes about 13 % to overall processing time, even
with a number of iterations as small as 5. With 100 iterations,
IA computation takes up 72 % of the processing time. An
increase in processing time causes an increase in overhead and
a degradation in throughput. Although it is a strong advantage
of iterative IA methods that they can be used for more than
three users, the portion of IA processing time will be more
dominant if the number of users increases. This analysis gives
us a motivation that, overall, the IA method and the number
of iterations need to be carefully chosen in real systems.

We also study IA performance in the presence of synchro-
nization errors as shown in Fig. 12. In OFDM systems, the

time synchronization error does not affect IA performance as
long as the timing synchronization point is within the cyclic
prefix. This requirement is not new to IA. Frequency synchro-
nization, however, can not be perfect, and there always remains
a small residual offset even after synchronization. This residual
frequency offset causes ICI, which can not be mitigated by IA.
As such, it acts as an additional error source in the system.
Furthermore, the ICI caused by the residual frequency offset
affects all steps in CSI measurement and feedback. Fig. 12
plots the sum rate for different frequency offsets with respect
to the subcarrier spacing. The same frequency offset is added
to all air links between the transmitter and receiver sides.
Measurements are performed for a 30 dB SNR. Results show
that with only 1 % residual frequency offset, the sum rate can
be degraded by a factor of 3.5, loosing a significant IA gain
at high SNR. This means that the training overhead, which
determines the synchronization accuracy, is also an important
design parameter in IA systems.

Finally, we also compare analog to quantization-based feed-
back. As described previously, for quantization-based feed-
back, we adopt the uncompressed explicit scalar quantization
from the 802.11n standard [21]. Possible Nq values used in
our evaluation are 4, 5, 6 and 8. Each dot in Fig. 13 represents
a measured instantaneous sum rate, and the lines are the
linear fitting results. From Fig. 13(a), we can observe that the
slope of the sum rate trend increases as feedback overhead
increases, which implies that more bits are needed as SNR
increases to maintain the multiplexing gain of IA. Fig. 13(b)
plots the sum rate against the MSE of quantization-based
feedback under 30 dB SNR. The dashed line connects the
means of the sum rates with different Nq. We perform the
experiment under 30 dB SNR. We can make some interesting
observations given the results in Fig. 13: 1) Compared to
quantization-based feedback, analog feedback has a higher
sum rate performance in the high SNR region (Fig. 13(a)). This
is because the error of analog feedback reduces with increasing
feedback SNR, while the error of quantization-based feedback
is fixed regardless of SNR. Furthermore, 2) the multiplexing
gain of quantization-based feedback increases with increasing
Nq, which confirms the previous analysis [10] on codebook-
based limited feedback for IA (Fig. 13(a) and Fig. 13(b)).
Assuming 2 × 6 CSI matrices and QPSK modulation for
the transmission of quantized bits in our setup, the number
of QPSK symbols to send for each user’s CSI feedback is
12×Nq +Ngain/2. For example, with Nq = 8 and Ngain = 3
quantization-based feedback requires 98 QPSK symbols. By
contrast, using analog feedback, only 12 symbols are required.
Such low overhead while maintaining high performance is a
strong reason for using analog feedback.
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Fig. 13. IA performance with the quantization-based feedback from 802.11n
wireless LAN standard [21].

VI. CONCLUSIONS AND FUTURE WORK

Our prototype for a three-user, 2 × 2 MIMO IA system
is the first implementation that considers a fully-distributed
network. Using the prototype, we study the performance of
IA in the presence of practical issues with an emphasis on
the feedback quality. The nodes are physically separated and
work independently without co-operation, obeying the basic
assumption of the interference channel. Distributed operation
is achieved by developing and applying various over-the-air
time and frequency synchronization protocols and feedback
methods. Our results show that it is possible to implement
IA in a distributed fashion while achieving predicted sum
rate scaling. Furthermore, they show the efficacy of analog
feedback in a real-world setting. Analog feedback is a viable
approach for achieving good performance as an alternative
to quantization-based approaches. Future work is needed to
design a medium access control (MAC) protocol that allows
a fast setup of distributed IA clusters.
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