
IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, PREPRINT 1

Cross-Layer Approximate Hardware Synthesis for
Runtime Configurable Accuracy

Tanfer Alan, Andreas Gerstlauer, Senior Member, IEEE, Jörg Henkel, Fellow, IEEE

Abstract—Approximate computing trades off computation ac-
curacy against energy efficiency. The extent of approximation
tolerance, however, significantly varies with a change in input
characteristics and applications. We propose a novel cross-layer
approach for the synthesis of runtime accuracy configurable
hardware that minimizes energy consumption at area expense.
To that end, first we explore instantiating multiple hardware
blocks in the architecture with different fixed approximation
levels. These blocks can be selected dynamically and thus allow to
configure the accuracy during runtime. They benefit from having
fewer transistors and also synthesis relaxations in contrast to
state-of-the-art gating mechanisms which only switch off a group
of paths of the circuit. Our cross-layer approach combines instan-
tiating such blocks in the architecture with area-efficient gating
mechanisms that reduce toggling activity, creating a fine-grained
design-time knob on energy vs. area. We present a systematic
methodology to explore this joint design space and find energy-
area optimal solutions as a function of required accuracies, their
utilization in the workload, together with hardware parameters:
dynamic power savings, area of the hardware block, and leakage
of the technology. Examining total energy savings for a range
of circuits under different workloads and accuracy tolerances
show that our method finds Pareto-optimal solutions providing
up to 32% and 60% energy savings compared to state-of-the-art
accuracy-configurable gating mechanism and an exact hardware
block, respectively, at 2x area cost.

Index Terms—Approximate computing, low-power, design
space exploration, variable precision, quality configurable.

I. INTRODUCTION

Approximate computing leverages the application error re-
silience by relaxing exactness in computation towards a primary
design goal: improving energy efficiency [2]. Several modern
and prominent application domains such as machine learning,
gaming, and computer vision are tolerant to varying degrees
of approximations while still meeting their requirements. The
impact of approximations on energy facilitates solving larger
problems at both ends of the computing spectrum [3]. It is an
enabling factor for workloads such as multimedia, gaming, and
object recognition with limited energy budget as in AR/VR
devices [4]. Also, it is a recent and major driver of machine
learning at both embedded edge devices [5–7] and high-
performance servers [8–10] through precision scaling, i.e.,
quantization in machine learning terms.

This work is an extension of [1]. Manuscript received December 1st, 2020;
revised February 14, 2021; accepted March 14, 2021. This work was supported
by the German Research Foundation (DFG) as part of the Transregional
Collaborative Research Centre Invasive Computing (SFB/TR 89).

Tanfer Alan and Jörg Henkel are with the Chair for Embedded Systems
(CES), Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany (e-mail:
alan@kit.edu; henkel@kit.edu).

Andreas Gerstlauer is with the Department of Electrical and Computer
Engineering, The University of Texas at Austin, Austin, TX 78712 USA
(e-mail: gerstl@ece.utexas.edu).

0.2

0.4

0.6

0.8

1

909698100

∆
P

=
3
2
%

Area +=0.79x

Area +=0.59x

Area +=0.45x

N
or

m
al

iz
ed

Po
w

er
to

P
E

x
a
c
t

Accuracy (%)

Gated
Relaxed

(a) Sobel
Filter

0.2

0.4

0.6

0.8

1

909698100

∆
P

=
4
6
%

Area +=0.50x

Area +=0.34x

Area +=0.19x

N
or

m
al

iz
ed

Po
w

er
to

P
E

x
a
c
t

Accuracy (%)

Gated
Relaxed

(b) Euclidian
Distance

Fig. 1: Power vs. accuracy to compare gating an exact circuit against
instantiating relaxed, approximate circuits. Area costs of instantiated
circuits are noted. All values are relative to the exact version of the
corresponding circuit. ∆P is dynamic power savings of instantiating
approach over gating.

Traditionally, a large class of research explored approximate
computing at the hardware level targeting a single accuracy in
manual [11, 12] and automated design [13–16] of functionally
approximate circuits. The hardware is designed to have
fewer transistors and shorter critical paths, where boolean
functionality deviates from an exact specification to a limited
extent. Instantiating such approximate hardware has a two-
fold effect on energy: fewer transistors cause less toggling
activity and shorter paths allow for voltage scaling or synthesis
relaxations, i.e., circuits can be composed of smaller transistors
that require less power at the same performance. In this way,
the slack in shorter paths can be exploited by the synthesis
tool. The evident disadvantage is that the approximations on
these circuits are fixed and hardwired. It is not possible to
configure their accuracy at runtime.

Accuracy configurability is essential in practice for two
main reasons: (i) Output quality of approximate hardware
strongly depends on its inputs, and (ii) A workload may tolerate
significantly different levels of approximation depending on
its context and environment [17]. Runtime methods have
shown that a fixed accuracy may be too conservative and
accuracy configuration is necessary to maximally exploit the
opportunities of approximate computing for energy efficiency
improvement [17–20]. In particular, an offline profiler in [17]
has shown that there is a significant variation in precision
requirements between different applications and also between
different phases of an application.

Existing accuracy configurable hardware proposals [21–25]
and design methodologies [26–28] primarily utilize circuit-layer
gating mechanisms: They disable a configurable portion of the
paths by not propagating data or inserting control circuitry into
the exact hardware with a small area overhead. Notwithstanding
their potency, such approaches only benefit from reduced
toggling activity. Because they do not structurally simplify



2 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, PREPRINT

Fig. 2: Background of a runtime accuracy configurable system. (a) Synthesis of approximate hardware with multiple circuit instantiations and
a gating mechanism. (b) An application example targeting a quality, while input characteristics change over time. (c) System-level abstraction
of accuracy management, where the hardware can work in tandem with a runtime system.

the circuit, e.g. shorten the critical path, they cannot exploit the
full extent of power savings that static approximate hardware
can achieve with synthesis relaxations.

A potential solution can be instantiating multiple static
accuracy circuits in the architecture and switching between
them despite their area and leakage power costs [7, 29]. In
Figure 1, we compare gating an exact hardware, similar to
existing work [26–28], against static accuracy approximate
hardware by means of precision scaling their inputs, i.e.,
discarding a number of LSBs for Sobel Filter and Euclidian
Distance computation hardware blocks. Additional dynamic
power savings reach up to 46% when leakage is neglected.
Notably, the additional area cost of instantiating a circuit is
reduced significantly as the accuracy is reduced. For instance
in Figure 1b at 90% accuracy, the circuit requires only 0.19×
the area of the exact circuit. This example demonstrates that
instantiating and connecting additional approximate circuits
can be a lower-power and higher-area overhead alternative
to gating. However, instantiating an additional circuit incurs
leakage cost even when this circuit is not used. The dynamic
power benefits of an instantiated logic is proportional to its
utilization whereas its leakage power and area costs are fixed.
At fine granularity, having many instantiations would reduce
the utilization per circuit. Hence, instantiating may not always
result in net energy benefits.

In this paper, we propose a novel, cross-layer approach for
the synthesis of runtime accuracy-energy configurable hardware.
Our approach combines circuit-level gating mechanisms and
instantiating multiple approximate circuits in the architecture,
to exploit both toggling activity and also synthesis relaxations.
It enables fine-grain energy vs. area trade-offs in a design space
that is a superset of two distinct approaches. Finding energy
optimal solutions in this joint design space is a non-trivial
function of required accuracies, their utilization in the workload,
power savings that can be achieved at required accuracies, and
leakage in the used technology. In [1], we introduced the basic
hybrid design approach combining gating and instantiation
applied in a manual fashion. This paper extends our previous
work into a systematic and automated cross-layer methodology
that explores the design space efficiently yet exhaustively
and finds the minimum energy requirement solution given
an RTL block, a workload with specified accuracies and a
maximum area constraint. Additionally, we significantly expand
our evaluations to showcase generality, impact of the integration
overheads, accuracy reconfiguration costs, input dependency of
energy savings, and a detailed analysis of the leakage impact
with 2 different technology libraries. All combined, our work

makes the following key contributions:
• We propose a novel and cross-layer runtime accuracy-

configurable hardware design approach. Our approach
is general, supports several accuracies, and utilizes both
circuit and architectural techniques in significantly reducing
dynamic power consumption.

• Our work demonstrates the existence of a larger design space of
accuracy-configurable hardware, with non-obvious trade-offs
linked to the workload, hardware architecture, and technology.

• We present a systematic methodology to ensure selecting
Pareto-optimal solutions. Our methodology creates a design-
time knob on energy vs. area while matching given dynamic
accuracy requirements.

• Our experiments show significant energy savings can be
achieved despite the increase in area and leakage energy. We
present these results in a technology-independent manner.

In our evaluations, we examine a range of circuits under
different workloads and accuracy requirements. Our experiments
show at 2× area cost and the same performance, up to 60%
energy reduction compared to an exact hardware block and up
to 32% energy reduction compared to state-of-the-art accuracy-
configurable gated hardware while matching the accuracy.

II. BACKGROUND

Figure 2 illustrates the background of a runtime accuracy
configurable system and highlights the position of our work.
At design time (Figure 2a), we aim at synthesizing an energy
optimum hardware that consists of multiple instantiations of
approximate circuits and a gating mechanism. Here, optimality
depends on the accuracy specifications that can be profiled
for the given applications and the quality specifications. In
Figure 2b, we show a handwritten digit recognition example, in
which, the input stream characteristics change in handwriting
style and noise. A monitoring runtime system reacts to maintain
the application quality at a target. It switches our hardware
to a different accuracy at a different power requirement and
minimizes the energy consumption when possible. Runtime
accuracy management is orthogonal to and out of our scope.
We distinguish the quality and accuracy terms as follows:
quality is an application demand, for instance, a classification
error rate of ≤ 1%. Accuracy is the correctness of the
underlying hardware and software, with metrics such as
95% correctness in mean magnitude (5% mean relative error
distance). Hence, quality changes with input characteristics and
also with hardware accuracy. Accuracy can be changed by, e.g.,
changing the precision. In Figure 2c, hardware synthesized by
our methodology offers accuracy controls to work in tandem
with an external runtime system for accuracy management.



ALAN et al.: CROSS-LAYER APPROXIMATE HARDWARE SYNTHESIS FOR RUNTIME CONFIGURABLE ACCURACY 3

III. RELATED WORK

Approximate computing has received significant interest with
research efforts spanning from software to architecture and circuits.
The majority of the hardware research efforts explored targeting
a single accuracy in manual [11, 12] and automated design [13–
16] of functionally approximate circuits. Runtime monitoring
techniques, however, have shown that with temporal variations in
input characteristics, the optimal accuracy to meet an application
quality target also changes [18–20]; the single accuracy circuit
delivers suboptimal benefits or violates the quality targets [17].

To utilize the temporal variations with approximations,
accuracy configurable hardware [21–25], and generic design
methodologies are proposed [26–28]. The de facto method
to configure accuracy is data precision scaling, i.e., not
propagating the LSBs of data. Energy-aware precision scaling
of floating-point data is proposed in [24]. Data packing: using
non-interfering paths of a circuit for simultaneous calculation
is proposed in [34]. At the system level, precision scaling is
applied in the memory controller [25]. A vector coprocessor
with data precision reducing FIFO input buffers is proposed
in [21]. It is extended with an internal PID controller [22] and
later with accuracy aware ISA extensions [23]. All of these
designs apply precision scaling on data, not on the circuit.
Moreover, function-specific ways are proposed for configurable
approximate units [30–33]. But they also only benefit from the
reduced toggling activity, and not from synthesis relaxations.

Generic design methodologies can offer improving perfor-
mance by synthesizing partially faster circuits [34–36] or energy
efficiency by means of disabling low significance logic groups
in hardware [26–28]. Voltage scaling may possibly reduce the
energy in [34–36], but it comes at often ignored system-level
costs of multiple additional voltage supplies, rails, and switches.
Two gating mechanisms are utilized in [26]: (1) Masking logic
groups by inserting control gates to their combinatorial path
and (2) power gating the logic groups to partially switch off
the hardware. To group the gated logic, a genetic programming
based search is proposed in [27]. In [28] clock gating for
approximations, clock overgating, is proposed. By disabling
the clock signal of flip-flops, power savings are achieved in
their fan-out cone. Similar to existing accuracy configurable
hardware designs, gating mechanisms reduce the energy via
reducing the toggling activity only.

Several approaches using the instantiation of distinct circuits
that can benefit from synthesis relaxations have been proposed.
In [37], two instantiations of adders and multipliers are used for
reliability purposes, targeting circuit delay. The results are shown
to even increase the energy, contrary to our primary goal. Multiple
instantiations of floating-point units with different accuracies are
used in [7]. Some of the exact processing elements of a CGRA
are replaced with approximate ones in [29].These architectural
solutions may not always be beneficial when leakage power is
considered and they make a subset of our proposal.

Our work distinguishes from existing methodologies as
it benefits from both gating and synthesis relaxations. It
incorporates the existing design methodologies for accuracy
configuration and existing single accuracy hardware designs
towards creating a design space, that is a superset of these
individual approaches. With a systematic methodology, it
extends the design space of gating approaches for further
energy savings at area expense.

IV. ACCURACY CONFIGURABLE HARDWARE ARCHITECTURE

Dynamic accuracy configuration, as we interpret it in the
scope of this paper, aims to maximally exploit energy efficiency
benefits of approximate hardware while meeting a given quality
target given at runtime. In this section, we first detail gating
mechanisms and present instantiating approximate circuits,
which is a distinct, architecture-layer design approach for
accuracy configurable hardware synthesis. Next, we introduce a
novel hybrid, cross-layer design approach that jointly considers
gating and instantiating and enables a design space with
fine-grain energy vs. area trade-offs. Finally, we explain the
hardware execution of cycle-by-cycle accuracy configuration,
facilitating dynamic runtime adjustments.

A. Gating Groups of Paths in Circuit

We utilize the gating mechanisms discussed in Section III as
low area cost accuracy configuration methods [26–28]. When
the clock gating, power gating, and masking compared; masking
by inserting control gates into the combinatorial paths increases
path delays of the circuit. Thus, either the circuit delay increases
or circuit area and power increase to match the same delay
with more aggressive synthesis optimizations. These effects
are counter-intuitive to our energy optimization design goal.
Power and area overheads are reported as up to 7.6% and
8.7% [26]. Power gating mechanism, used in [26, 27] require
many cycles, prohibiting cycle-by-cycle dynamic adjustments.
In comparison, clock gating for approximations can eliminate
such delay overheads and allow dynamic adjustments. Clock
gating is a mean for disabling configurable partitions of a circuit.
In [28], significance constrained overgating strategy, together
with clock gating candidates algorithm result in configurable
degrees of precision scaling on the input registers.

While our design approach will allow for any gating
mechanism to be employed, we use clock gating as a baseline
in our comparisons to represent the gating approach in the
remainder of the paper.

B. Instantiating Approximate Circuits with Different Accuracies

We employ adding and connecting multiple instantiations
of a circuit for additional energy savings at area expense. As
shown in Figure 1, the approximate instantiations have static
accuracies and they exhibit lower power at the same delay as
the exact instantiation. To design approximate instantiations of
a circuit, we inherit the rich set of existing static approximation,
i.e., single accuracy hardware design methods. By connecting
separate instantiations of a circuit with different accuracies, the
hardware is able to offer dynamic accuracy configuration to
fulfill the varying requirements of the application at runtime.

Energy savings through functional simplification of the
hardware architecture originate from having fewer gates and
shorter paths compared to the exact circuit. When the exact
and the approximate circuits are synthesized for the same
clock delay, the shorter paths allow synthesis relaxations:
Boolean remapping and undoing gate-level delay optimizations
[38]. Boolean remapping converts a large number of parallel
gates into a less number of serial gates while maintaining
the boolean function (e.g., parallel-prefix adder to ripple carry
adder). Undoing gate-level delay optimizations such as inserting



4 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, PREPRINT

Fig. 3: Cross-layer accuracy configurable hardware architecture. The
lower positioned circuit is instantiated and gated.

buffers (load isolation) and splitting the driving gates on the
critical paths (load splitting) reduce the number of gates in
the design. Gate resizing re-composes the circuit with smaller
transistors that require less energy. Hence, synthesis relaxations
generate inherently more energy-efficient circuits.

Our approach is agnostic to the design method of the approx-
imate instantiations. Existing work includes tools that param-
eterize precision scaling [13, 14], other automated functional
simplifications [15, 16], and selecting manually implemented
approximate circuits from a library [29]. In this paper, we
apply precision scaling to the primary inputs of the RTL
and let the synthesis tool propagate this approximation using
hardware compiler optimizations such as constant propagation
and eliminating unused gates.

A challenge in instantiation is how to integrate the instances
into the final design. Integration overheads can easily overweigh
the benefits. If the accuracy-configurable hardware block is
a component in a larger final design that includes a intercon-
nection network such as a crossbar or a shared bus system,
new instantiations can be connected as additional system
components [29]. Larger hardware blocks such as systolic
arrays [10, 21–23] share and reduce the integration overheads
as they are connected through a single shared system interface.
In case of multiplexer-based systems [39], this will require
extending slave-to-master multiplexers for each instantiation.
Such an approach also allows instantiating multiple functional
units within the execution stage in a processor [7]. Alternatively,
instantiations can be integrated as separate accelerators with
distinct memory-mapped IO at no multiplexer cost [40]. As a
guideline, in case neither memory-mapped IO nor extending
a multiplexer is possible, adding a new multiplexer to the
same hardware stage should be avoided for delay and power
overhead reasons, as shown by previous work [26, 37].

In this paper, the instantiated circuits are at the level of at
least one complete sequential stage. We call this granularity a
hardware block. Potentially, instantiating at the combinational,
sub-block level can exploit logic sharing opportunities for area
savings across instantiated blocks. We utilize the final syn-
thesis tool to find hardware common subexpressions between
instantiated combinational blocks for sharing logic and thus
exploit opportunities for sharing logic in an automated manner.
To connect new instantiations, we consider two architectural

0.2

0.4

0.6

0.8

1

909698100

N
or

m
al

iz
ed

Po
w

er
to

P
E

x
a
c
t

Accuracy (%)

Ckt100,Area = 1.00x
Ckt98, Area = 0.79x
Ckt96, Area = 0.59x
Ckt90, Area = 0.45x

0.91

0.74

0.57

0.75

0.63

0.49
0.55

0.43
0.39

(a) Sobel
Filter

0.2

0.4

0.6

0.8

1

909698100

N
or

m
al

iz
ed

Po
w

er
to

P
E

x
a
c
t

Accuracy (%)

Ckt100,Area = 1.00x
Ckt98, Area = 0.50x
Ckt96, Area = 0.34x
Ckt90, Area = 0.19x

0.78

0.64

0.48

0.62

0.51
0.420.42

0.32
0.26

(b) Euclidian
Distance

Fig. 4: Power vs. accuracy design space of the cross-layer approach.
Power values are labeled. Area costs of instantiated circuits are given
in the legend. All values are relative to the exact version of the
corresponding circuit.

integration decisions: memory-mapped IO at no multiplexer
cost [40] and extending slave-to-master multiplexers in shared
bus systems [39].

C. Cross-Layer Design Approach

While gating brings some energy benefits at low area
overhead, instantiating can significantly improve the energy
benefits with a higher area overhead. Our proposed cross-layer
approach combines the two: It instantiates distinct approximated
blocks at coarse accuracy levels and selectively gates them.
Consequently, it enables fine-grained intermediate accuracies
and additional energy savings on their computation, without
the area and leakage cost of instantiating each intermediate
accuracy circuit. We take an existing RTL design (hardware
block) as input and apply instantiating at the complete block
level only. Afterwards, we apply a chosen gating method which
can potentially gate instantiations internally, according to its
search algorithm. Figure 3 illustrates the proposed cross-layer
approach. Here, an instance of the original design (top) is
combined with an approximate instantiation of the original
circuit (bottom). The instantiation has a shorter critical path
and fewer gates. It maximizes the power savings of computation
at a particular accuracy. The instantiation is also clock gated to
enable further power savings for a further range of accuracies.

In Figure 4, we extend our motivational example from Fig-
ure 1 with the cross-layer design approach. Starting from exact
versions of the Sobel filter and Euclidian distance circuits, we
synthesize approximate circuits for each accuracy. Afterward,
we gate each synthesized circuit for lower accuracies. The
leftmost value of each line represents power values achieved
with instantiations. The lines towards the right represent power
values achieved with gating each instantiated circuit. Note that
the design space of prior, gating-only approaches is limited
to the Ckt100 line. By contrast, instantiations are limited to
the left-most points on each curve (blue dashed line). The
combined design space of our proposed cross-layer approach
is shown by the shaded area. These examples also indicate a
key insight to minimize dynamic power: We observe that for a
single accuracy level, instantiating a circuit produces the most
power-efficient solution, followed by gating the closest higher
accuracy circuit available. In Section V, we use this insight to
reduce the search space.



ALAN et al.: CROSS-LAYER APPROXIMATE HARDWARE SYNTHESIS FOR RUNTIME CONFIGURABLE ACCURACY 5

Given an area budget, we can instantiate a set of circuits
to address varying accuracy requirements. The energy-optimal
selection of such a circuit set is not a trivial task. It necessitates
answering the following questions: (1) how many circuits
to instantiate and at which accuracies (2) which instantiated
circuits to gate and (3) how to associate different accuracy
requirements of workloads with the hardware in an optimum
manner. The energy optimal solution is a function of hardware
and workload. Within an area budget, the additional area
and associated leakage cost vs. dynamic power savings of
instantiations over gating should be considered. From the
leakage perspective, the impact of power savings through
instantiation is thereby weighted by the utilization of the
corresponding accuracy level in a given workload.

A multi-layer search, i.e., independent decisions in the
architecture and the circuit would lead to first instantiating the
highest utilized circuit (to make it most efficient) and then
gating for other accuracies. For example, following Figure 4,
if a low accuracy is utilized 70% of the time, the best strategy
seems to be instantiating an efficient circuit for this accuracy.
However, if gating a slightly higher accuracy instantiation
results in a very close energy consumption, yet considerably
increases utilization of this efficient circuit, let’s say 90% of the
time, instantiating a higher accuracy circuit and gating it 70%
of the time can become the ideal solution. The inter-dependency
between the layers, i.e., the impact of gating on instantiations
influence the optimal decision. Such decisions can only be
made with a cross-layer search in the joint design space. Note
that the number of solutions increases quadratically with the
number of accuracies as we can see in Figure 4. We need to
consider their combination to address all required accuracies,
which is a power set with the complexity O(2n2

). Therefore, an
automated and systematic exploration methodology is necessary.
We address this challenge in Section V.

D. Runtime Accuracy Management
Our design approach supports dynamic accuracy configu-

ration at cycle-by-cycle granularity. With this, the runtime
accuracy changes can be set by a simple control unit. For each
accuracy, there exists a single, static choice of circuit and gating
configuration, determined at design time. I.e., no dynamic
decisions are taken on circuit selection. Accuracy changes
are orchestrated by an independent runtime system, such as
[17–19], one cycle ahead of the operation. The frequency of
accuracy changes is determined by the runtime system as a
function of dynamic changes in the input stream or environment.
The design of such a runtime system is out of the scope of this
paper. Once an accuracy change is requested, the control unit
sets circuit select and gating signals using a look-up table that
holds the configuration for the selected accuracy. It propagates
requested accuracies to the next stages in multi-stage hardware.

V. EXPLORATION METHODOLOGY

In this section, we introduce our methodology to systemati-
cally and efficiently explore the joint design space. Here, energy
optimality is a non-trivial function of required accuracies, their
utilization in the workload, power savings that can be achieved
at required accuracies, and leakage in the used technology.

Stage2

Stage3

Cross-Layer Energy Optimizer

Runtime Accuracy Configurable Hardware

Power AnalysisOriginal RTL

Target 
Accuracies

Instantiations
(netlist.v)

Weighted 
Dynamic Energy

Table of all 
instantiation and 

gating permutations

Approximate 
Synthesis

Permutate

Leakage Energy of 
Instantiations

Target 
Accuracy

Utilizations

Power Analysis

Database of 
the Design Space

M
axim

u
m

 A
rea

Integration 
cost

R
ep

resen
tative In

p
u

ts

Stage1

Gating 
Configuration

Fig. 5: Cross-layer synthesis flow.

Finding the highest energy saving combination that fits into an
area constraint maps to the well studied Knapsack Problem,
and it is known to be NP-complete.

In Figure 5, we present our cross-layer synthesis flow as a
framework. We employ a divide and conquer alike algorithm, in
which we search for the minimum energy solutions in 3 distinct
hierarchical stages. We break down the cross-layer energy
optimization problem to energy optimal instantiation and energy
optimal gating problems. Both are further divided per accuracy.
In stage 3, we combine the prior solutions to answer the
original problem. Combinations of prior solutions, permutated
over target accuracies gives us a complete table where each
entry is a unique 3-tuple (target accuracy, instantiation, gating).
Considering dynamic energy consumption weighted to circuit
utilization, together with leakage and integration costs, we
search for the lowest energy solution fitting into a given
area constraint, by solving a 0/1 Knapsack problem with
dynamic weight dependencies among elements. Hence, we
decouple the cross-layer search and explore the joint meta
design space on top of the separate design spaces of synthesis
and gating. Our approach thereby enables: (1) use of existing,
effective and well-studied tools for approximate synthesis and
gating without modification, (2) modularity in choosing among
approximate synthesis methods and gating mechanisms (such
as clock gating, masking, or power gating). (3) significant
design time savings by running synthesis and gating only one
time to create a database, not recursively. Our search remains
complete following the assumption that the ideal instantiations
will also lead to ideal gated instantiations. This assumption
held true in the extent of our experiments. Typically Knapsack
Problem is solved using a form of greedy search (gradient
descent/ascent, simulated annealing, etc.). With our flow, we
can run an exhaustive search in a feasible time to find optimum
cross-layer solutions. Next, we detail our methodology using
pseudo-code and analyze its computational complexity.

Algorithm 1 describes a 3-stage exploration process, namely
approximate synthesis, gating, and optimizer. The inputs to the
algorithm are an RTL description, the maximum area constraint
(Amax) per hardware block, representative inputs (Inrep), and



6 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, PREPRINT

Algorithm 1 Accuracy configurable hardware synthesis
Input: Exact RTL block, area constraint: Amax, representative input:

Inrep, accuracy and utilization list: < ACC list, U list >
Output: Accuracy configurable circuit: Cktdynamic

Stage 1 – Approximate Synthesis

1: for each ACCi ∈ ACClist do
2: Ckt acci = Synthesize AX (RTL, ACCi)
3: <Pi, Pleak i> = get power(Ckt acci, Inrep)
4: Cktall = Cktall ∪ Ckt acci
5: end for

Stage 2 – Gating

6: for each Ckt acci ∈ Cktall do
7: for each ACCj < ACCi, in ACClist do
8: Ckt acci gj = apply gating (Ckt acci, ACCj)
9: Pi,j = get power(Ckt acci gj, Inrep)

10: end for
11: end for

Stage 3 – Cross-Layer Energy Optimizer

12: CktSetall = ℘Cktall \ ∅
13: CktSetcandidates = {CktSet ∈CktSetall|(get area(CktSet) ≤

Amax) ∧ (Ckt accmax ⊆ CktSet)}
14: for each CktSetk ∈ CktSetcandidates do
15: CktSetk = Synthesize(CktSetk)
16: for each ACCi in ACClist do
17: if Ckt acci ∈ CktSetk then
18: associate(CktSetk.Ckt acci, ACCi)
19: PCktSetk= PCktSetk+ (PMUX+Pi)*U(ACCi) + Pleak i + Pleak MUX
20: else
21: associate(CktSetk.Ckt acci+1 gi, ACCi)
22: PCktSetk = PCktSetk +Pi+1,j *U(ACCi)
23: end if
24: end for
25: end for
26: CktSetminpower = argmin(CktSetcandidates, PCktSet)
27: Cktdynamic = wrap(CktSetminpower)
28: return Cktdynamic

the list of required circuit accuracies with their utilization
(ACC list, U list) in ascending order. The latter input pair can be
obtained for a given workload using a profiler, e.g. from [3, 17].

Stage 1 synthesizes circuits at the same delay for all
accuracies in ACClist. Netlists can be generated by an automated
tool that parameterizes precision scaling [13, 14] or functional
simplification [15, 16], or synthesizing manually implemented
approximate circuits from a library; our flow is agnostic to the
synthesis method. We consider the synthesized approximate
circuits optimal in the sense that they are the minimum
power consuming circuits possible for that accuracy. We
characterize the power of each circuit (Ckt acci) using the
given representative input in line 3. In line 4 we create a set
of all synthesized circuits, Cktall.

Stage 2 applies a chosen gating method to each instantiation
generated in stage 1 (Cktall), and for each target accuracy. In line
8, the apply gating function returns the minimum power gated
circuit that meets or exceeds the accuracy constraint, ACCj.
Note that gating can only reduce the accuracy of a netlist. So
instantiated circuits are gated only to lower accuracies in the
ACClist. Possible gating strategies are given in [26] for masking
and power gating, and in [28] for clock gating, where our flow
is again agnostic to the chosen method. The output of this
second stage is a database containing dynamic power, area
values (as given in Figure 4), and also leakage power for all
instantiation and gating combinations.

Stage 3 forms and evaluates circuit combinations, CktSet, to
find the minimum power solution for a given area constraint.
This decision depends on the utilization of each accuracy
(Ui), the power consumption of each circuit (Pi), and also the
integration cost (PMUX). We show this relation in Equation (1)
for a system that utilizes n different accuracies.

PCktSetk =

n∑
i=1

PiUi + PLeakage + PMUX

where : Utotal =

n∑
i=1

Ui, 0 ≤ Utotal ≤ 1

(1)

Utotal is the portion of cycles in which at least one circuit
instantiation is active, i.e., the hardware is not idle. PCktSetk
denotes the total power consumption of a circuit set out of many.

The optimizer first generates all dynamic-accuracy solutions
(CktSetall) from the combinations of all prior, static-accuracy
solutions (Cktall). This is the power set of Cktall, except the empty
set. In line 13, we reduce the possible dynamic-accuracy solutions
CktSetall to CktSetcandidates. These are the solutions that fit into
a given area constraint and also include the highest accuracy
circuit (Ckt accmax). If a CktSet does not include Ckt accmax, we
invalidate it because a part of the workload cannot be computed
at a required accuracy. In line 15, we instantiate each CktSet and
synthesize it with the “-incremental” switch in Synopsys DC to
find and exploit the opportunities for sharing logic, i.e., hardware
common subexpressions, between the circuits of each set.

The second part of stage 3 is to evaluate each candidate
CktSet. For each circuit set, we associate the accuracy require-
ments of the workload with circuits. When CktSet contains a
circuit with matching accuracy ACCi, we associate them in line
18. The associate function generates directives for the control
system, binding configurations to accuracies. Our insight from
Section IV-C has shown that when gated, the closest accuracy
requires the lowest power. In case CktSet does not contain a
matching accuracy circuit, we get the gating of the next higher
accuracy circuit available in the set (Ckt acci+1 gi) in line
21-22, and use the configuration previously computed in line 8.
This gives us a permutation of all dynamic-accuracy solutions
(CktSet) over the target accuracies (ACClist) as a complete
table. With the workload associations in line 18 and 22, we
know the utilization of each circuit (Ui) within each dynamic-
accuracy solution (CktSet). We can fill our table with the power
values. In lines 19 and 22, we accumulate the dynamic power
consumption of each circuit weighted proportionally to its
utilization. The total power consumption includes dynamic,
leakage, and also integration costs. Our analysis on system
integration has shown that multiplexer area, dynamic, and
leakage power increase linearly with size. To consider the
integration impacts, we synthesize m-to-1 multiplexers where
we changed m from 1 to 8, and used average increment in
determining AMUX, PMUX, and Pleak MUX at average primary
output toggle rate. Finally, from all evaluated circuit sets, we
pick the one with lowest power consumption, CktSetminpower in
line 26. Since all circuits were synthesized to the same delay,
the CktSetminpower is also the CktSetminenergy. We instantiate all
the circuits in CktSetminpower and connect them as explained
in Section IV-B to generate a dynamic accuracy configurable
circuit (Cktdynamic) in line 27.



ALAN et al.: CROSS-LAYER APPROXIMATE HARDWARE SYNTHESIS FOR RUNTIME CONFIGURABLE ACCURACY 7

TABLE I: Circuits used in our experiments

Name Function Bitwidth I/O tckt[ns] Area [µm2] Input

FIR 4-Tap FIR Filter 8 8/16 0.30 1177 random uniform
Neuron 8 input ReLu Neuron 8 64/8 0.91 5865 random uniform

Sobel 3x3 Sobel Filter 8 64/8 0.60 1337 cameraman
Gaussian 3x3 Gaussian Filter 8 72/8 0.50 764 cameraman

Euclidian
Euclidian Distance

(without square-root)
8 32/16 0.77 1380 random uniform

Thus, our proposed methodology systematically explores the
design space of dynamic accuracy configurable hardware. It
finds circuit sets, that require minimum energy, and match the
required accuracies by their construction, in the joint design
space of gating and instantiating approaches. With an adjustable
area constraint, Amax, it creates a design-time knob on energy
vs. area. It automates the generation of Cktdynamic, i.e. the
energy-optimized dynamic accuracy configurable circuit.

The computations in Stage 1 and 2 are necessary only one
time and can be parallelized. Afterward, our optimizer works
on provided power and area values. Thus, it is completely
decoupled from the previous stages. To ensure Pareto-optimal
solutions, we run an exhaustive search with a complexity
O(n2n), where n is the number of elements in ACClist. If we
break it down, in line 14, the for loop operates on CktSetcandidates,
which is a subset of the power set term ℘Cktall has the complexity
of O(2n). In line 16, another for loop operates on ACClist,
with complexity O(n). The insight we gained in Section IV-C
allowed us to reduce the gating candidates in line 21 to one. As
a result, this reduced the complexity by one order. Overall, an
exhaustive search is possible within seconds for the practical
range of n, where our carefully structured and computation
efficient algorithm is capable of exploring a design space
significantly beyond the previous work.

VI. EXPERIMENTS AND RESULTS

We evaluate the effectiveness of the proposed cross-layer
methodology on a variety of circuits as listed in Table I.
For the synthesis, we use Synopsys Design Compiler with
the ultra high effort option using an industrially proven
technology library, TSMC 65nm generic plus (typical case,
1.0 Volt, 25°C). We synthesized a circuit for each given
accuracy by precision scaling the primary inputs and letting
the synthesis tool propagate optimizations to later stages with
compiler optimizations (dead code/gate elimination, constant
propagation, etc.). All instantiations of circuits are synthesized
to match the same delay, i.e.,110% of the minimum delay
of the corresponding exact circuit (tckt = delaymin × 110%).
Therefore all circuits compared in our experiments have the
same performance. The extra 10% delay budget was applied
to give some headroom for optimizations; It is not a limitation.
We instantiated each circuit directly in the HDL testbench. For
gating, we reduced the number of primary inputs supplied to
the netlists according to the algorithm given in the state of the
art [28]. For the area and leakage cost of gating, we assumed
a conservative 3% penalty per added accuracy, which is in line
with [26]. We calculated energy by multiplying total power and
time. To characterize the dynamic power consumption of our
circuits, we generated toggling activity files (.vcd file) from

TABLE II: Utilization distributions (Ui) of 4 different circuit
accuracies for 3 synthetic workloads.

Utilization Distributions Accuracy
Workload 100% 98% 96% 90%

W ex - mostly exact 0.5 0.2 0.2 0.1
W eq - even distribution 0.25 0.25 0.25 0.25
W ax - mostly approximate 0.1 0.15 0.05 0.7

gate-level simulations with ModelSim and provided them to
Synopsys Primetime in .saif format. Similarly, we included
the leakage power values that Primetime reported. We ignore
the clock tree power of our post-synthesis netlists. In practice,
there could be additional minor clock tree savings, up to 2.5%
according to our experiments. The unit of length is µm in
our library and we derive the area in µm2. For a gate count
comparisons, the smallest NOT and NAND gates are 1.08
and 1.44 µm2, respectively. As inputs, in Sobel and Gaussian
filter experiments we used a 512x512 pixel cameraman picture.
These filters are used exclusively in image processing. For other
circuits, we used random inputs with uniform distribution. Note
that the 3x3 Sobel kernel inputs 8 pixels (64 bits), excluding
the center pixel. The FIR filter module inputs an 8-bit value
and internally propagates it through its stages.

Workload Profiling: The required circuit accuracies and
their utilizations are application and input dependent. To
abstract their effect on our methodology, we used 4 different
accuracies and 3 different utilization distributions as shown
in Table II. In our experiments on the Sobel filter, 98%, 96%
and 90% accuracies corresponded to PSNR 45, 38 and 31dB,
respectively.

Accuracy: We considered circuit accuracies in terms of
1 − MRED (Mean Relative Error Distance), as shown in
Equation (2), where Oapprox n is the nth approximate and
Oexact n is the nth exact output value.

Accuracy = 1− 1

N

N∑
n=1

∣∣(Oapprox n −Oexact n)
∣∣

Oexact n
(2)

As we use the mean value in Equation (2), our error metric
involves both the rate and magnitude.

Optimizer Runtime: We profiled the runtime of our Cross-
Layer Energy Optimizer (Algorithm 1 - Stage 3) with MATLAB
R2016a using integer variables on an Intel i5 6600 with 16GB
RAM. In Table III, we show that an exhaustive search is
feasible as it is in the order of seconds for the practical range

TABLE III: Optimizer runtime

n ≤9 10 11 12
[s] 0.01 0.14 1.42 21.3



8 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, PREPRINT

0.5

0.6

0.7

0.8

0.9

1

1 1.5 2 2.5

N
or

m
al

iz
ed

E
ne

rg
y

to
E

E
x
a
c
t

Normalized Area to AExact

(a)
W ex

1 1.5 2 2.5

Exact
G1

G2

G3

Normalized Area to AExact

Hy1

Hy2
Hy3

Hy4
Hy5

Inst

(b)
W eq

1 1.5 2 2.5 3

G3

Normalized Area to AExact

Hy1
Hy3

Hy2.(c)
W ax

Fig. 6: Design space of an accuracy configurable Sobel filter under 3 different
utilizations given in Table II. Pareto-front is obtained using the proposed methodology.
Pareto solutions in Figure 6b are labeled to be used in Figures 7 and 12.

0

5

10

15

20

25

E
xa

ct G
1

G
2

G
3

H
y1

H
y2

H
y3

H
y4

H
y5 In
st

E
ne

rg
y

Sa
vi

ng
s

(%
)

Proposed vs. Instantiating
Proposed vs. Gating

Fig. 7: Pareto front comparison of cross-layer against
gating and instantiating solutions from Figure 6b.

of the number of required accuracies n (3-6 in [7, 17, 21, 23, 25–
28, 34, 36, 41]). In fact, our computation-efficiently structured
algorithm is capable of exploring a design space for double
the n, that is quadratically larger than the previous work.

A. Design Space Exploration

We begin our evaluations by presenting the design space
of a Sobel filter obtained using our proposed methodology
in Figure 6 under 3 different workloads from Table II. Each
solution on the design space corresponds to a particular com-
bination of instantiated circuit, gating and workload accuracy
association. We show the Pareto front obtained by our proposed
methodology with a dashed line. The Pareto solutions we
refer to in the text are labeled as follows: G1-G3 are gating-
only solutions, Hy1-Hy5 are hybrid solutions of gating and
instantiations in the cross-layer design space, and Inst is the
instantiation-only solution. When examined at 2× maximum
area constraint, the Pareto-optimum solution in Figure 6b is
labeled Hy2. At the same area cost, under W ax workload in
Figure 6c, Hy1 is the optimum solution, which dominates Hy2.
Thus, Pareto-optimal solutions are workload dependent.

The dynamic power impact of instantiating an approximate
circuit is proportional to the utilization of its accuracy. Our
methodology first instantiates the highest power impact so-
lution. At the excess area, only low impact circuits remain.
As an example, under the mostly approximate workload in
Figure 6c, 90% is the dominating accuracy. With solution
Hy1: [Ckt acc100g98g96, Ckt acc90] (i.e., instantiating exact and
90% accuracy circuits and gating the exact for 98% and 96%)

0.5

0.6

0.7

0.8

0.9

1

1 1.5 2 2.5

N
or

m
al

iz
ed

E
ne

rg
y

to
E

E
x
a
c
t

Area*

no overhead
typical
worst-case

(a)
W ex

1 1.5 2 2.5

*: Normalized Area to AExact

Area*

Hy3. Inst.

(b)
W eq

1 1.5 2 2.5 3

G3

Area*

∆
E

=
1
1
%

∆
E

=
1
8
%

∆
E

=
2
3
%

(c)
W ax

Fig. 8: Design space of an accuracy configurable Sobel Filter
with typical integration costs (control+MUX+clk) under 3 different
utilizations given in Table II. Pareto-fronts are obtained using the
proposed methodology with varying integration costs.

we already achieve significant energy savings. Additionally
instantiating a 96% accuracy circuit (Ckt acc96) only reduces
the energy consumption by a mere 2.6% at 0.6×AExact extra
area cost. Similarly, under W eq, where the accuracy utilization
is even, an extra 0.65× area at first reduces energy by 28%
w.r.t. Exact (10% w.r.t. G3), and at the end, only 1.3%, w.r.t.
Hy5. Thus, energy savings diminish at excess area.

B. Comparison of Pareto-Optimal Solutions

In Figure 7, we show the energy savings of cross-layer
solutions over gating and instantiating alone for the Sobel
Filter with W eq workload. We obtain the gating Pareto front
by providing only the exact circuit as the output of Stage 1
in Algorithm 1. Similarly, to obtain the Pareto front of the
instantiating approach, we skip Stage 2 in Algorithm 1 and
associate the missing accuracies with a higher accuracy circuit.
The figure highlights that, as we increase the area budget, the
Pareto solutions of cross-layer and instantiating approaches
offer energy reduction over state-of-the-art gating approaches.
The joint design space offers solutions that are superior or
equal to the two individual approaches.

C. Analysis of Integration and Control Overhead

The integration overheads, as we have previously discussed in
Section IV-B, are dependent on the connection to an enclaving
hardware system. The experiments in Figures 6 and 7 represent
energy savings when the system integration costs can be averted,
such as in adding instantiations with memory-mapped IO [40].
For a shared bus architecture, we need to extend the slave-to-
master multiplexers to connect new instantiations [39].

We included an m-to-1 multiplexer in our design space
exploration in the experiments shown in Figure 8. The system-
level integration overheads manifest themselves as additional
energy and area as a function of m, i.e., the number of
instantiations. In Figure 8, we show their impact on the Pareto-
front for 3 scenarios: The worst-case line represents using the
fastest multiplexer generated by the synthesis tool with the
delay constraint set to 0 ns to maximize synthesis effort. The
typical line represents a multiplexer with an excess delay budget.
In our experiments, the multiplexer delay has been a fraction
of the circuit delay (< 41%). Hence, if necessary, multiplexers
could always comfortably fit into a pipeline stage that is delay
constrained by the experimented circuit. Finally, we included
the ‘no overhead’ line from the previous experiments, as shown



ALAN et al.: CROSS-LAYER APPROXIMATE HARDWARE SYNTHESIS FOR RUNTIME CONFIGURABLE ACCURACY 9

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 1.5 2 2.5 3

N
or

m
al

iz
ed

E
ne

rg
y

to
E

E
x
a
c
t

Normalized Area to AExact

FIR
Neuron
Sobel
Euclidian
Gaussian

(a) W ex

1 1.5 2 2.5 3
Normalized Area to AExact

(b) W eq

1 1.5 2 2.5 3

∆E=33%
0.516

0.333

∆E=32%
0.584

0.396

∆E=23%

0.905

0.701

Normalized Area to AExact

(c) W ax

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 1.5 2 2.5 3

N
or

m
al

iz
ed

E
ne

rg
y

to
E

E
x
a
c
t

Normalized Area to AExact

FIR
Neuron
Sobel
Euclidian
Gaussian

(d) W ex*

1 1.5 2 2.5 3
Normalized Area to AExact

(e) W eq*

1 1.5 2 2.5 3

∆E=30%
0.516

0.360

∆E=28%0.584

0.421

∆E=20%

0.905

0.720

Normalized Area to AExact

(f) W ax*

Fig. 9: Pareto curves for a range of circuits under workloads with accuracy utilizations given
in Table II. The experiments denoted with a “*” in (d,e,f) include system integration overheads.
Each point represents a particular dynamic accuracy configurable circuit, Cktdynamic, which is
energy optimized for the given area and the workload.

0

0.4

0.8

1.2

1.6

100 98 96 90

N
or

m
al

iz
ed

E
ne

rg
y

to
P

E
x
a
c
t
×

1
c
y
c
le

Accuracy (%)

Gating Inst

1.00
0.91

0.74

0.57

1.57
1.51

1.41

1.29

1.43

1.26

1.13

1.04

0.93

0.760.75

0.55

0.39

0
.5

2
0
.1

6

E
xa

ct

E
xa

ct
C

kt
98

E
xa

ct
C

kt
98

C
kt

96

E
xa

ct
C

kt
98

C
kt

96
C

kt
90

Fig. 10: Energy required for accuracy
reconfiguration of the Sobel Filter: Each
bar represents one-time energy to activate
a circuit for the desired accuracy. The
purple line represents clock gating the
exact circuit for the desired accuracy. The
blue line is the runtime energy requirement
of instantiations at their designed accuracy,
without switching. Normalized to the av-
erage of P exact × 1cycle, for Cameraman
picture as input.

in Figure 6. Values are normalized to the area and the energy of
the Sobel Filter. Depending on the scenario, Figure 8c shows
11% to 23% energy savings over G3, the most energy-efficient
solution of the state-of-the-art gating method.

Note that in the typical case, the solution of instantiating
all circuits (inst) is no longer on the Pareto front for any
workload. We also observe that Hy3 is dominated in Figure 8b.
These are the first (lowest area) solutions that use 4 and 3
instantiations and their energy reduction do not compensate
for the increased integration overheads. This finding supports
the previous argument of energy savings diminish at the excess
area for a different reason: increasing overheads.

We have also explored placing multiplexers inside the
pipeline stages of the hardware block, similar to the previous
work [26, 37]. As such, we can enable sharing some stages and
configuring accuracy in others. This setup has not given energy
savings more than gating as it significantly reduces the delay
margin for both the instantiations and the multiplexer and thus
more aggressive delay optimizations that increase energy.

D. Area vs. Energy Trade-offs
In Figure 9, we generalize our exploration by repeating

it for a range of datapath circuits. We share the energy-area
Pareto front obtained under 3 different workloads from Table II,
with (d,e,f) and without integration overheads (a,b,c). For each
circuit, after the exact, the first 3 data points represent the gating
solutions and for Figure 9a,b,c the last data point represents the
solution at which all circuits are instantiated. Figure 9 shows
that our cross-layer synthesis methodology is general and it
applies to a wide range of circuits.

We can observe that Pareto points change in number and
x-axis position under different workloads. For instance, the
Gaussian filter has 10 Pareto solutions under the workloads W ex
and W eq whereas 8 under W ax. This validates the workload

dependency of Pareto solutions. Similarly, a maximum area
constraint of 2× AExact results in an average 18%, 28%, and
48% energy savings under W ex, W eq and W ax workloads,
respectively. Afterward, an additional area budget of AExact

only reduces energy by 4%, 5%, and 1%. These values support
our previous finding on diminishing energy savings at excess
area. In other terms, instantiating all accuracies solution (inst)
has only a small, incremental energy saving over cross-layer
solutions at relatively large area cost.

Previously, in Figure 1, we shared power savings with
instantiating compared to an exact Euclidian distance calculator
as up to 78%. Compared to gating an exact circuit, we reported
additional power savings of up to 46% with instantiation at
matching accuracy. These values set the maximum possible
savings: under a workload utilizing constantly 90% accuracy
(U90 = 1). Between our workloads, W ax shows higher energy
savings than W eq and W ex, as it utilizes the energy-efficient,
approximate instantiations more. At 2x area cost, the power
reduction under the mostly exact workload in Figure 9a is up
to 26% whereas the reduction under the mostly approximate
workload reaches 60% in Figure 9c. When compared to the
state-of-the-art gating approach and at matching accuracy, in
Figure 9c, we achieve up to 32% additional energy savings.

In the experiments shown in Figure 9(d,e,f), we considered
the system-level integration overheads by including an m-to-
1 multiplexer in our design space exploration methodology,
generalizing our previous overhead analysis in Section VI-C.
We observe that some Pareto points such as solutions that
instantiate all (inst) vanish; effectively, for the remaining Pareto-
solutions, the energy overhead of integration is less than 4%.
When Figure 9(d,e,f) are examined, apart from the initial low-
cost gating solutions, only the cross-layer solutions remain
on the Pareto-front.



10 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, PREPRINT

E. Energy Cost of Runtime Accuracy Reconfiguration

Runtime systems decide and dictate an accuracy reconfigu-
ration in relatively large periods [17, 18], and independently of
our hardware synthesis methodology. Architecturally, as shown
in Figure 3, an accuracy change is conducted by setting a small
number of registers (∼ log(n), for n accuracies). Although
this register energy cost is negligible, activating a different
instantiation can result in a context switch cost.

In the real-world, due to temporal and spatial correlations
in input data, we can expect that not all input bits change
and lead to toggles and energy consumption in every cycle. In
other words, bit-level input correlation is a factor in energy
consumption. For instance, in a picture, neighboring pixels
are likely to have a similar value, as do successive frames in
a video stream. Running a kernel on the equal value pixels
of a graphic would not lead to any toggling activity. Small
changes in the input are likely to toggle only LSB paths which
are inherently short and more energy-efficient [35]. However,
activating a different circuit instantiation by switching accuracy
or changing the input data context leads to a high amount of
toggle in the hardware. Upon a context switch, the correlation
in inputs is lost and the energy consumption is expected to be
higher. The impact can be generalized as energy consumption
upon context change.

Each time we switch to a different instantiation, we can
expect the current input values to not be correlated to what
the inputs of the instantiation were the last time it was used:
A context switch occurs to instantiations upon activation. To
evaluate this energy impact of input data correlation, we have
tested the Sobel Filter with uniform random input values that
have no correlation from one cycle to the next, which emulates
a setup in which accuracy re-configuration occurs in every cycle.
In Figure 10, we compare the average power consumption per
cycle with accuracy configuration (bars) against the runtime
cost of using the same circuit with normal inputs benefiting
from correlation (lines). In other words, bars represent the
energy consumption of switching to and activating a specific
instantiations when changing the hardware accuracy, while the
lines represent the energy consumption at a fixed accuracy,
where purple is a gated exact circuit and blue is instantiations
without gating. The figure can be read as follows: Normalized
to an energy unit of PExact× 1cycle, 1.43x energy is required
to switch to the 98% accuracy instantiation. In comparison, if
there are no instantiations and only the exact circuit, the circuit
could be gated to 98% at no context switch cost, resulting
in a fixed energy cost of 0.91x as shown with the purple
line. Hence, by switching to a different accuracy circuit, we
incur an energy overhead. However, instantiated circuits are
more energy-efficient than the gated ones at the same accuracy.
Considering a net switching cost of (1.43−0.91) = 0.52x and
following savings of (0.91− 0.75) = 0.16x, our approach can
amortize an accuracy reconfiguration within 4 cycles.

This analysis is particularly useful as it abstracts the hardware
from the workload and hence retains generality. We see
the impact of switching between instantiations on energy,
independent of the workload characteristics such as the switch
frequency and previous state (as in a finite state machine).

(a) Cameraman

50

60

70

80

90

100

1 2 3 4 5 6 7 8

N
ei

gh
bo

r
B

it
Si

m
ila

ri
ty

(%
)

Bit Position

Cameraman
Random

54
58

67

75

82

89
93 95(b)

0.2

0.4

0.6

0.8

1

909698100

∆P = 44%

N
or

m
al

iz
ed

Po
w

er
to

P
E

x
a
c
t

Accuracy (%)

Random
Cameraman

Ckt100 ,98 ,96 ,90(c)
0.5

0.6

0.7

0.8

0.9

1

1 1.5 2 2.5 3

Exact
G1

G2

G3 . .

N
or

m
al

iz
ed

E
ne

rg
y

to
E

E
x
a
c
t

Normalized Area to AExact

DSE+IN:Random
DSE+IN:Cameraman
DSE:Random+IN:Camera

Hy1

Hy2
Hy3

Hy4
Hy5

Inst

∆E = 4.5%

∆E = 5.2%

(d)

Fig. 11: Input dependency of cross-layer design space. (a) Cameraman
picture used in our experiments. (b) Bitwise similarity between
neighbor pixel values of the Cameraman picture vs. uniform random
numbers. (c) Power consumption of a Sobel Filter with random inputs
compared to the cameraman picture as input. Lines with different
markers represent the dynamic power consumption of instantiations
when gated, as in Figure 4. (d) Design Space of accuracy configurable
Sobel filter under W eq workload from Table II, with random inputs,
highlighting the mismatch in solutions and its energy impact.

F. Input Dependency of Cross-Layer Design Space

The dynamic power consumption depends on the charac-
teristics of the input stream. Figure 11a is the cameraman
picture used in our experiments. We use it is a representative
of real-world data with spatial correlations (similarly valued
neighbor pixels). The image processing kernels we used, Sobel
and Gaussian filters, work on neighboring pixels and shift over
the image pixels like a sliding window for each output. The
required computation is strongly affected by spatial correlations.
In Figure 11b, we analyze the bitwise similarity between
neighboring pixels of the cameraman picture using MATLAB.
The figure can be read as follows: the MSB of the pixels
have the same value for 95% of the neighbors; only 5% of
the neighbor pixels have a different MSBs. The LSBs of the
neighbor pixels, however, have the same value for only 54%.
Using real-world data, the kernel inputs have relatively high-
frequency changes between LSBs compared to their MSBs.
In comparison, uniform random input has the same, 50%
toggle rate for each bit position. As we lower accuracy through
precision scaling, we omit the high frequency LSB toggles,
which leads to bigger normalized savings in real-world data (up
to 44%, in Figure 11c) than random. Since both experiments
are on the same circuit, the area and leakage power remain
the same. To the scope of our experiments, precision scaling
leads to higher normalized energy savings with inputs from
real-world data than random inputs with uniform distribution.

We run our cross-layer synthesis methodology using both
random and representative input values for comparison by
changing the inputs in line 3 and 9 of Algorithm 1. In Fig-



ALAN et al.: CROSS-LAYER APPROXIMATE HARDWARE SYNTHESIS FOR RUNTIME CONFIGURABLE ACCURACY 11

ure 11d, we present the design space exploration of the accuracy
configurable Sobel filter with random input and the Pareto-
fronts for random and representative inputs when evaluated
running the same inputs as used during search. Comparing the
Pareto-fronts, we notice a difference in energy consumption.
The red line in Figure 11d shows the solutions for random input
evaluated by running on the cameraman input. An in-depth
analysis shows that most of the solutions on both Pareto-fronts
are the same configuration. However, some Pareto-solutions are
input dependent. Using an unrepresentative input during design
space exploration can lead to suboptimal solutions, which cost
up to 5.2% energy. By contrast, performing exploration using
representative inputs reveals additional Pareto-solutions (Hy4,
Hy5) for further energy savings of up to 4.5% in this example.

G. Leakage Energy Analysis and Technology Independence

Instantiating additional circuits increases area and hence the
leakage of the hardware. The contribution of leakage energy
over total energy is a function of the technology and hardware
utilization, Utotal: the portion of cycles, in which at least one
circuit is active. In Figure 12, we present the total energy
consumption of dynamic accuracy configurable Sobel filters
under the workload W eq for different technologies and varying
utilization factors, achieved by introducing idle cycles. The y-
axis shows the total energy (including the leakage), normalized
to the total energy of the exact circuit. Note that the x-axes
(utilization factor) are on a logarithmic scale. The graph can
be read as follows: at a utilization factor of 1, there are no
idle cycles. At 0.1 the hardware is used for 1 cycle out of 10
on average, i.e., 9 idle cycles. Here, the energy contribution
of the dynamic part is also reduced to 0.1, while the leakage
remains constant.

In Figure 12a, dynamic accuracy configurable circuits that
we use are from the Pareto front of Figure 6b. We plot
their energy under two different utilization scales: The main
(bottom) x-axis represents our analysis with the TSMC65nm
library at the typical corner. The second x-axis represents
results for the worst-case corner instead. The TSMC65nm
library characterized for worst-case conditions (0.9V, 125C)
results in an increase in leakage to dynamic power ratio by 2x.
This is equivalent to doubling the number of idle cycles, i.e.,
scaling utilization by a factor of 0.5 as shown in the figure.
The highest energy savings are obtained with instantiation
(inst) and cross-layer solutions (Hy1-Hy5) at high hardware
utilization, such as 1 to 0.1 for the x-axis representing the
typical corner. As the effect of leakage power becomes more
prominent, the energy of Hy1-Hy5, and inst increase above
gating-only solutions G1-G3 between 0.1 and 0.05 (marked in
Figure 12a). Until the range of 0.05 to 0.0125, the Hy1-Hy5,
and inst remain superior to the exact circuit.

We applied the Sobel Filter to a camera system application
with a 512×512 pixel video feed at 30 frames per second,
running at a clock frequency of 100MHz. In this specification,
the utilization factor is 0.08. Even though this can be considered
as a low utilization to justify the accelerator, the best solution
is Hy2 (with typical x-axis). When we increase the resolution
and frame rate to 1280×720 pixels and 60fps, the utilization

0.6

0.7

0.8

0.9

1

1.1

0.01 0.1 1

10.1
(TSMC65nm worst-case)

(TSMC65nm typical)

0.50.05

N
or

m
al

iz
ed

E
ne

rg
y

to
E

E
x
a
c
t

Utilization Factor Utotal

Exact
G1
G2
G3
Hy1
Hy2
Hy3
Hy4
Hy5
Inst

(a)

Gating Cross-layer

0.6

0.7

0.8

0.9

1

1.1

0.01 0.1 1

(NanGate45nm typical)N
or

m
al

iz
ed

E
ne

rg
y

to
E

E
x
a
c
t

Utilization Factor Utotal

Exact
nG1
nG2
nG3
nHy1
nHy2
nHy3
nHy4
nHy5

(b)

Fig. 12: Leakage impact on accuracy configurable Sobel filters under
varying utilization factor Utotal with different technology libraries.
Each line is a Pareto solution under the workload W eq.

factor becomes 0.54. At this value, leakage power has a much
lower impact on total energy. The instantiation solution (inst)
offers 0.4%, 26%, and 37% more energy savings than solutions
Hy5, G3 and exact, respectively.

The data can be read in a technology-independent manner,
for different leakage impact on total energy, by scaling the
utilization factor axis accordingly, as we show in Figure 12a.
Furthermore, In Figure 12b, we redo the experiments (synthesis,
gating, design space exploration, and leakage analysis) with a
NanGate 45nm library. Note that the Pareto-points in Figure 12a
and Figure 12b are not the same set. For instance, the NanGate
inst solution is dominated by nHy5 and not drawn in Figure 12b.
There are differences in synthesis and gating results that change
the design space and Pareto-points. The NanGate experiments
validate our previous leakage analysis using a completely
independent technology library. With these experiments, we
can generalize that for a significant range of utilization factor,
the cross-layer approach produces superior solutions.

VII. CONCLUSION

We addressed the necessity of accuracy-configurable hard-
ware systems with the exploration of applying gating mech-
anisms to existing circuits together with instantiating more
efficient circuits into the architecture. Jointly, they present a
larger design space where non-trivial cross-layer decisions are
necessary to find optimal solutions. We proposed a systematic
methodology to ensure Pareto-optimal combinations towards
minimizing energy consumption under given workload and
area constraints. Our work has demonstrated that dynamic
accuracy configurable hardware with significantly (up to 33%)
reduced energy compared to existing gating solutions can be
synthesized when more circuit area can be utilized.



12 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, PREPRINT

REFERENCES

[1] T. Alan, A. Gerstlauer, and J. Henkel, “Runtime accuracy-configurable
approximate hardware synthesis using logic gating and relaxation,” in
DATE, 2020.

[2] S. T. Chakradhar and A. Raghunathan, “Best-effort computing: re-thinking
parallel software and hardware,” in DAC, 2010.

[3] V. K. Chippa, S. T. Chakradhar, K. Roy, and A. Raghunathan, “Analysis
and characterization of inherent application resilience for approximate
computing,” in DAC, 2013.

[4] T. Lee, M. Hwangbo, T. Alan, O. Tickoo, and R. Iyer, “Low-complexity
hog for efficient video saliency,” in ICIP, 2015.

[5] S. Cass, “Taking ai to the edge: Google’s tpu now comes in a maker-friendly
package,” IEEE Spectrum, 2019.

[6] J. Song, Y. Cho, J.-S. Park, J.-W. Jang, S. Lee, J.-H. Song, J.-G. Lee, and
I. Kang, “7.1 an 11.5 tops/w 1024-mac butterfly structure dual-core sparsity-
aware neural processing unit in 8nm flagship mobile soc,” in ISSCC, 2019.

[7] G. Tagliavini, S. Mach, D. Rossi, A. Marongiu, and L. Benini, “A
transprecision floating-point platform for ultra-low power computing,” in
DATE, 2018.

[8] M. Horowitz, “1.1 computing’s energy problem (and what we can do about
it),” in ISSCC, 2014.

[9] S. Gupta, A. Agrawal, K. Gopalakrishnan, and P. Narayanan, “Deep
learning with limited numerical precision,” in ICML, 2015.

[10] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa,
S. Bates, S. Bhatia, N. Boden, A. Borchers et al., “In-datacenter perfor-
mance analysis of a tensor processing unit,” in ISCA, 2017.

[11] A. K. Verma, P. Brisk, and P. Ienne, “Variable latency speculative addition:
A new paradigm for arithmetic circuit design,” in DATE, 2008.

[12] N. Zhu, W. L. Goh, and K. S. Yeo, “An enhanced low-power high-speed
adder for error-tolerant application,” in ISIC, 2009.

[13] J. Miao, A. Gerstlauer, and M. Orshansky, “Approximate logic synthesis
under general error magnitude and frequency constraints,” in ICCAD, 2013.

[14] S. Lee and A. Gerstlauer, “Fine grain precision scaling for datapath
approximations in digital signal processing systems,” in VLSI-SoC, 2013.

[15] J. Castro-Godı́nez, S. Esser, M. Shafique, S. Pagani, and J. Henkel,
“Compiler-driven error analysis for designing approximate accelerators,” in
DATE, 2018.

[16] I. Scarabottolo, G. Ansaloni, and L. Pozzi, “Circuit carving: A methodology
for the design of approximate hardware,” in DATE, 2018.

[17] S. Yesil, I. Akturk, and U. R. Karpuzcu, “Toward dynamic precision scaling,”
IEEE Micro, 2018.

[18] W. Baek and T. Chilimbi, “Green: A system for supporting energy-
conscious programming using principled approximation,” in PLDI, 2010.

[19] M. A. Laurenzano, P. Hill, M. Samadi, S. Mahlke, J. Mars, and L. Tang,
“Input responsiveness: using canary inputs to dynamically steer approxima-
tion,” in PLDI, 2016.

[20] D. S. Khudia, B. Zamirai, M. Samadi, and S. Mahlke, “Rumba: An online
quality management system for approximate computing,” in ISCA, 2015.

[21] V. K. Chippa, D. Mohapatra, K. Roy, S. T. Chakradhar, and A. Raghunathan,
“Scalable effort hardware design,” IEEE TVLSI, 2014.

[22] V. Chippa, A. Raghunathan, K. Roy, and S. Chakradhar, “Dynamic effort
scaling: Managing the quality-efficiency tradeoff,” in DAC, 2011.

[23] S. Venkataramani, V. K. Chippa, S. T. Chakradhar, K. Roy, and A. Raghu-
nathan, “Quality programmable vector processors for approximate comput-
ing,” in MICRO, 2013.

[24] C.-C. Hsiao, S.-L. Chu, and C.-Y. Chen, “Energy-aware hybrid precision
selection framework for mobile gpus,” Computers & Graphics, 2013.

[25] A. Jain, P. Hill, S.-C. Lin, M. Khan, M. E. Haque, M. A. Laurenzano,
S. Mahlke, L. Tang, and J. Mars, “Concise loads and stores: The case for an
asymmetric compute-memory architecture for approximation,” in MICRO,
2016.

[26] S. Jain, S. Venkataramani, and A. Raghunathan, “Approximation through
logic isolation for the design of quality configurable circuits,” in DATE,
2016.

[27] V. Mrazek, Z. Vasicek, and L. Sekanina, “Design of quality-configurable
approximate multipliers suitable for dynamic environment,” in AHS, 2018.

[28] Y. Kim, S. Venkataramani, K. Roy, and A. Raghunathan, “Designing
approximate circuits using clock overgating,” in DAC, 2016.

[29] M. Brandalero, A. C. S. Beck, L. Carro, and M. Shafique, “Approximate
on-the-fly coarse-grained reconfigurable acceleration for general-purpose
applications,” in DAC, 2018.

[30] M. Imani, D. Peroni, and T. Rosing, “Cfpu: Configurable floating point
multiplier for energy-efficient computing,” in DAC, 2017.

[31] V. Leon, G. Zervakis, S. Xydis, D. Soudris, and K. Pekmestzi, “Walking
through the energy-error pareto frontier of approximate multipliers,” IEEE
Micro, 2018.

[32] A. B. Kahng and S. Kang, “Accuracy-configurable adder for approximate
arithmetic designs,” in DAC, 2012.

[33] R. Ye, T. Wang, F. Yuan, R. Kumar, and Q. Xu, “On reconfiguration-
oriented approximate adder design and its application,” in ICCAD, 2013.

[34] B. Moons and M. Verhelst, “Dvas: Dynamic voltage accuracy scaling for
increased energy-efficiency in approximate computing,” in ISLPED, 2015.

[35] T. Alan and J. Henkel, “Slackhammer: Logic synthesis for graceful errors
under frequency scaling,” IEEE TCAD, 2018.

[36] D. J. Pagliari and M. Poncino, “Application-driven synthesis of energy-
efficient reconfigurable-precision operators,” in ISCAS, 2018.

[37] B. Boroujerdian, H. Amrouch, J. Henkel, and A. Gerstlauer, “Trading off
temperature guardbands via adaptive approximations,” in ICCD, 2018.

[38] Design Compiler® User Guide, Synopsys, www,synopsys.com, 2010.
[39] ARM AMBA 5 AHB Protocol. [Online]. Available: https://static.docs.arm.

com/ihi0033/bb/IHI0033B B amba 5 ahb protocol spec.pdf
[40] MSP430 Hardware Multiplier. [Online]. Available: http://www.ti.com/sc/

docs/products/micro/msp430/userguid/ag 06.pdf
[41] D. J. Pagliari, E. Macii, and M. Poncino, “Automated synthesis of energy-

efficient reconfigurable-precision circuits,” IEEE Access, 2019.

Tanfer Alan is currently pursuing the Ph.D. degree
at Chair for Embedded Systems (CES) at Karlsruhe
Institute of Technology (KIT), Germany, under the
supervision of Prof. Jörg Henkel. He received his
bachelors degree from Hacettepe University, Turkey
and his masters degree from TU Darmstadt, Germany,
in 2011 and 2014, respectively. His current research
interests include approximate computing, cross-layer
design, design automation, and architectures for
emerging workloads. He holds a US patent.

Andreas Gerstlauer (Senior Member, IEEE) re-
ceived the Ph.D. degree in information and computer
science from the University of California, Irvine
(UCI), CA, USA, in 2004. He was an Assistant
Researcher with the Center for Embedded Computer
Systems, UCI, from 2004 to 2008. He is currently
a Professor with the Electrical and Computer En-
gineering Department, The University of Texas at
Austin, TX, USA. He has coauthored three books and
over 100 refereed conference and journal publications.
His research interests include system-level design

automation, system modeling, design languages and methodologies, and
embedded hardware and software synthesis. His work has received several best
paper nominations from, among others, DAC, DATE, and HOST, and two best
paper awards at DAC16 and SAMOS15. He was a recipient of a 2016-2017
Humboldt Research Fellowship. He has been a General and the Program Chair
for conferences such as MEMOCODE and CODES+ISSS. He also serves as
an Associate Editor for ACM TODAES and ACM TECS journals.

Jörg Henkel (Fellow, IEEE) received the Diploma
and Ph.D. (summa cum laude) degrees from the
Technical University of Braunschweig. He was a
Research Staff Member with the NEC Laboratories
in Princeton, NJ, USA. He is currently the Chair
Professor for embedded systems with the Karlsruhe
Institute of Technology. His research work is focused
on co-design for embedded hardware/software sys-
tems with respect to power, thermal, and reliability
aspects. Prof. Henkel received six best paper awards
throughout his career from, among others, ICCAD,

ESWeek, and DATE. He has led several conferences as the General Chair
including ICCAD, ESWeek, and serves as a Steering Committee Chair/Member
for leading conferences and journals for embedded and cyberphysical systems.
He coordinates the DFG program SPP 1500 Dependable Embedded Systems
and is a Site Coordinator of the DFG TR89 collaborative research center on
Invasive Computing. He is also the Chairman of the IEEE Computer Society,
Germany Chapter. For two consecutive terms, he served as the Editor-in-Chief
for the ACM Transactions on Embedded Computing Systems. He is also the
Editor-in-Chief of the IEEE Design & Test Magazine. He is/has been an
Associate Editor for major ACM and IEEE journals.


