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Predicting workload behavior during workload execution is essential for dynamic resource optimization in multi-processor systems.
Recent studies have proposed advanced machine learning techniques for dynamic workload prediction. Workload prediction can be
cast as a time series forecasting problem. However, traditional forecasting models struggle to predict abrupt workload changes. These
changes occur because workloads are known to go through phases. Prior work has investigated machine learning-based approaches
for phase detection and prediction, but such approaches have not been studied in the context of dynamic workload forecasting. In this
paper, we propose phase-aware CPU workload forecasting as a novel approach that applies long-term phase prediction to improve the
accuracy of short-term workload forecasting. Phase-aware forecasting requires machine learning models for phase classification, phase
prediction, and phase-based forecasting that have not been explored in this combination before. Furthermore, existing prediction
approaches have only been studied in single-core settings. This work explores phase-aware workload forecasting with multi-threaded
workloads running on multi-core systems. We propose different multi-core settings differentiated by the number of cores they access
and whether they produce specialized or global outputs per core. We study various advanced machine learning models for phase
classification, phase prediction, and phase-based forecasting in isolation and different combinations for each setting.

We apply our approach to forecasting of multi-threaded Parsec and SPEC workloads running on an 8-core Intel Core-i9 platform.
Our results show that combining GMM clustering with LSTMs for phase prediction and phase-based forecasting yields the best
phase-aware forecasting results. An approach that uses specialized models per core achieves an average error of 23% with up to 22%
improvement in prediction accuracy compared to a phase-unaware setup.
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1 INTRODUCTION

Predicting future dynamic workload behavior is essential in optimizing hardware resources at runtime. For example,
anticipating an application’s memory-intensive periods can be leveraged for power management to reduce core
frequency and voltage [29, 37]. Prediction of workload metrics such as CPI has also been exploited in a variety of other
applications, including reduction of task interference in multi-tenant systems [27], task migration and scheduling [34],
defending against side-channel attacks [31], and cache reconfiguration [50]. Predictions allow systems to behave
proactively instead of reactively. It has been previously shown that proactive decisions can yield better results for a
variety of optimization tasks [1]. However, they are challenging because they require predicting the future.

Looking at the past is often a reliable way of estimating the future. Program applications present variable workload
behaviors throughout their execution, and many exhibit periodic trends or patterns. Workload prediction techniques
exploit these characteristics to estimate future behaviors. Previous work in dynamic workload forecasting ranges
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Fig. 1. Example of forecasting executions of two different phases of nab

from basic methods such as exponential averaging and history tables [14], to more advanced machine learning-based
approaches such as recurrent neural networks (RNNs) [27]. Their objective is to minimize the forecasting error of
periodically measured CPU workload metrics obtained at runtime using hardware counters, such as CPI. This periodic
collection of metrics forms a time series. Hence, runtime workload behavior forecasting is formally a time series
forecasting problem [11, 14, 37, 38, 48].

Time series forecasting techniques struggle to predict abrupt workload changes. Such changes occur because
workloads are known to go through phases. Such phases typically also show repetitive patterns. Researchers have
proposed methods to first detect and classify workloads into phases and then learn their long-term behavior to predict
and anticipate phase changes [12, 22, 23, 44]. However, existing approaches for classification and prediction of phase
patterns have only been applied in isolation or in limited combinations for specific optimization contexts, such as task
mapping or thermal modeling [10, 21, 24, 34, 51]. Furthermore, only simple learning-based techniques such as decision
trees have been explored.

In this paper, we study advanced learning-based methods that combine phase classification and phase prediction
with workload forecasting. We propose a novel phase-aware workload forecasting approach that applies long-term
phase classification and phase prediction to improve the accuracy of short-term workload forecasting. Figure 1 shows
the intuition behind our approach. It shows a simple example of a hardware counter trace in the center of the figure.
This workload is going through two phases, highlighted with green and red backgrounds. We partition the trace into
two sub-traces based on its phases. The sub-traces are formed by concatenating consecutive counter samples of the
same phase and represented by square brackets in the figure. We train a predictor that outputs a forecast of future
counter samples specific to each phase, represented by the large green and red arrows. The forecasts belonging to a
phase are thus only dependent on the history of that phase, and phase-based predictors are specialized to each phase
to increase accuracy. Finally, with knowledge of future phase behavior, phase-specific forecasts are concatenated and
assembled to reconstruct the forecast for the overall time series, depicted on the right side of Figure 1.

In our previous work [3], we introduced the concept of phase-aware forecasting using an oracle phase model.
However, the definition of phases can significantly impact the accuracy of phase-aware workload predictors. In more
recent work [2], we evaluated different combinations of phase classification and phase prediction models using advanced
machine learning methods. Nonetheless, they have not been studied in combination with phase-aware forecasting. In
this paper, we perform a comprehensive study of phase classification, phase prediction and phase-based forecasting in
isolation and in different phase-aware forecasting combinations.
Manuscript submitted to ACM



Learning-based Phase-aware Multi-core CPU Workload Forecasting 3

Moreover, previous approaches evaluated classification, prediction and forecasting models for single-threaded
workloads running on a single core only. In this work, we further extend our contributions by studying multi-threaded
workloads on multi-core platforms. Phase classification, phase prediction and workload forecasting pose various
modeling challenges in multi-core systems. Phases of different threads executing on different cores can be distinct
or shared. Furthermore, threads executing concurrently may be competing for the same resources, which can lead
to interference that can affect hardware metrics such as CPI. We propose different model architectures and study
various advanced machine learning techniques to learn such complex multi-threaded workload patterns. We study each
architecture for different phase-aware forecasting tasks both in isolation and in different combinations.

In summary, the contributions of this work are as follows:

(1) We propose three different modeling architectures for hardware counter-based runtime phase classification,
phase prediction, and workload forecasting in multi-core systems, and we evaluate different advanced machine
learning models for each architecture and task.

(2) We perform a comparative study to explore the best modeling architecture and combination of phase classification,
phase prediction, and phase-based forecasting for phase-aware multi-core workload forecasting.

(3) We perform our study and evaluate our approach on multi-threaded workloads from SPEC and PARSEC bench-
mark suites running on a state-of-the-art 8-core Intel Core i9-9900k workstation. Results show that phase-aware
forecasting using a local per-core definition of phases with LSTM-based long-term phase predictors and short-term
forecasters improves prediction accuracy by up to 22% compared to a phase-unaware setup.

The remainder of this paper is organized as follows. We review the related work in the next section. Section 3
summarizes the phase-aware workload forecasting formulation. Section 4 describes the different modeling settings that
we use for a multi-core environment and their implications on phase classification, phase prediction, and short-term
forecasting. We present our experimental results in Section 5. Finally, Section 6 summarizes our work and discusses
future work directions.

2 RELATEDWORK

Predicting workload behaviors at runtime has been studied for a variety of hardware optimization objectives. In [28], [29],
and [30], the authors study proactive dynamic voltage/frequency management (DVFS) and report improvements in
the energy-delay product of multi-threaded applications when compared to reactive DVFS. They forecast CPI and
the number of instructions of the next sampling period to select the lowest core frequency that satisfies performance
loss constraints. In [37], instead of forecasting CPI, they directly forecast the power consumption at different voltage-
frequency levels. The study in [11] proposed proactive threadmigration to reduce temperature hotspots inmultiprocessor
SoCs. They use per-core temperature forecasts to migrate threads from cores that are anticipated to be hot to cool ones.
Another proactive optimization consists of anticipating unused cache ways and shutting them down to reduce power
consumption. W. Zhang et al. [50] use phase prediction and show that more accurate prediction results in lower average
cache sizes. Preventing side channel attacks is another application of runtime workload prediction. The study in [31]
proposes to monitor shared resources such as caches and floating point units with hardware counters, and schedule
tasks predicted to have similar resource usage into separate cores to prevent side channel attacks.

In the rest of this section, we discuss prior work related to phase detection, phase prediction and workload forecasting
models.
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The set of inputs and granularity that researchers have used to define phases is very diverse. Some researchers
aim at finding similar blocks of code [6, 8, 13, 20, 25, 35, 39–41, 50], while others focus on execution time workload
metrics [10, 17, 23, 44]. Most prior work in phase classification for parallel applications focused on finding similar
blocks of code [6, 35, 39] because such features are not affected by executions of other threads. However, finding similar
blocks of code typically requires either access to the source code [8, 41, 50] or augmenting the hardware [13, 20, 25].
For workload forecasting at runtime, we aim to rely on methods that only use standard hardware counters as inputs for
phase classification.

In addition to exploring different inputs, various clustering methods have been explored to define phases. Some
studies have looked at methods that can perform clustering in an incremental and online fashion [6, 13, 20, 35, 39, 40, 50]
while others propose iterative clustering methods [8, 10, 23, 41]. In [17], a pre-defined static set of value ranges are
used to bin workloads based on their memory boundedness. The ranges are relevant to dynamic power management
(DPM) as their target use case and require a static definition. A hierarchical, multi-level phase approach is presented
in [50] and [23]. In [50], two separate table-based classifiers are used with different granularities to define fine and
coarse phases. In [23], k-means is used to generate one sub-phase per sample, and the sub-phases are then grouped into
fixed-size windows to define phases with a second instance of k-means. In our prior work [2], we explored multiple
classification methods for single-threaded applications running on one core, where we adapted phase classification
methods previously used with other inputs to support hardware counters and compared them to existing counter-based
solutions both in isolation and in combination with multiple phase predictors. In this paper, we focus on the two
best-performing clustering methods. Furthermore, existing approaches for phase classification and prediction have been
mostly studied in single-threaded or single-core contexts only. The work in [39] extends the classifier from [40] to study
and compare phase behavior in serial (SPEC) and parallel (Parsec) workloads. Similarly, [35] extends the classifier from
[20] with a per-thread table of instruction type vectors (ITVs), while [6] samples the instruction pointer on a per-thread
basis. All these approaches apply clustering and prediction methods separately and independently to each thread, which
ignores interactions among threads in multi-core systems. In this paper, we extend our prior work from [2] to explore
various multi-core scenarios that can account for interference and interaction among multi-threaded workloads.

Classified phases are used by phase prediction methods to learn patterns between them and foretell future phase
behavior. Prior research has followed multiple strategies to predict upcoming phases at runtime. Traditionally, table-
based predictors like global history tables (GHTs) [17] and Markov chain tables [6, 25, 50] were used. Most of these
predictors foretell the phase of the following interval. Many researchers have noticed that the same phase may last
multiple intervals. Consequently, previous work has also proposed either predicting the duration of phases [6, 42, 50]
and the phase ID of the next change [6, 50], or predicting multiple future intervals instead of just one [8]. Predicting
the exact duration of a phase is a challenging task. Chang et al. [6] approximated the duration of phases into ranges,
limiting the precision of a prediction of when a change will happen. Srinivasan et al. [42] proposed to use a linear
adaptive filter that learns and predicts the duration of phases online. Other researchers have proposed predicting the
phase of a window of upcoming sample intervals instead. For example, in [8] a decision tree predictor is trained offline
to predict the phase labels of the following 30 intervals with high accuracy. Each of these phase predictors has been
evaluated with only a single classification scheme. In our prior work [2], we evaluated classifiers and predictors in
multiple combinations and showed that a predictor’s accuracy is highly dependent on the quality of the classified
phases. Additionally, we investigated other more advanced machine learning-based prediction techniques that were
not evaluated for these tasks in the past. Existing work, however, did not apply phase classification and prediction in
combination with workload forecasting. This paper expands on our prior studies and evaluates different phase classifiers
Manuscript submitted to ACM
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Fig. 2. Phase-aware workload forecasting overview.

and predictors for use with phase-aware forecasting. Our goal is to find phases whose interactions are easy to predict
while also capturing intra-phase behaviors that specialized phase-based workload forecasters can in turn easily learn.

Early studies in forecasting dynamic workload metrics proposed basic statistical and table-based predictors. Duester-
wald et al. [14] compared a last-value predictor with exponentially weighted moving average (EWMA) and history
predictors to forecast instructions per cycle (IPC), and L1D cache misses. The history table predictor resulted in the
lowest mean absolute error (MAE). Another study [38] evaluated linear regressors to forecast IPC and showed that they
have a lower MAE than the last-value predictor. Kalman filters have been recently used in the context of CPU workload
prediction [28] by predicting cycles per instruction (CPI) to optimize dynamic energy management. Advanced machine
learning techniques have been more accurate than traditional predictors. Zaman et al. [48] found that an SVM regressor
results in the lowest MAE when forecasting various performance counters. They compared an SVM against last-value,
history table, and ARMA predictors. With the recent popularity of RNNs, a later study [27] investigated the design
space of LSTMs to forecast IPC and other CPU metrics of workloads when they are co-allocated with other tasks in
data centers. They compared LSTMs against linear regression and MLPs, concluding that LSTMs result in the highest
coefficient of determination (𝑅2) scores. None of the existing works has considered the impact of phases on workload
forecasting, however. In [3], we demonstrated that short-term workload forecasting models struggle to learn long-term
patterns and proposed phase-aware workload forecasting to address this problem. We evaluated four representative
time series forecasting techniques for single-threaded workloads in their phase-unaware and phase-aware settings,
where the phase-aware setting used an oracle for phase classification and prediction. In this paper, we study the full
phase-aware forecasting problem by replacing the oracles with learning-based phase classification and prediction
models. Furthermore, we extend our prior work to different multi-core forecasting settings, which have not been
explored before. Some prior approaches have studied interference prediction in multi-core platforms [27, 36], but their
focus is on predicting co-location effects and not on forecasting of future workload behavior.
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3 OVERVIEW

In this section, we summarize the formal definition of phase-aware workload forecasting. Figure 2 shows an overview
of our approach.

The input is a multivariate time series,𝑈 ∈ R𝑇×𝑀 , composed out of𝑇 observations𝑈𝑡 of𝑀 sampled system variables.
In our case,𝑀 is the number of hardware counters. The output is a forecast of future workload samples 𝑦𝑡+𝑘 . We are
interested in predicting one of the𝑀 variables, 𝑦 ∈ 𝑈 . The observation of this variable at time 𝑡 , 1 ≤ 𝑡 ≤ 𝑇 , is denoted
as 𝑦𝑡 . We predict 𝑘 future values of 𝑦 at time 𝑡 , (𝑦𝑡+1, ..., 𝑦𝑡+𝑘 ), using only past observations 𝑈𝑖 , 𝑖 ≤ 𝑡 , where 𝑘 is the
forecast horizon. The rest of the figure shows our proposed phase-aware forecasting process. It internally consists of
three high-level stages: (1) phase classification and separation, (2) phase prediction, and (3) phase-based forecasting and
forecast reconstruction. In the following, we formalize each step in detail.

3.1 Phase Classification and Separation

A phase classifier, Θ, maps each sample,𝑈𝑡 , to a phase 𝛼𝑡 ∈ 1, 2, ...,𝐶 :

𝛼𝑡 = Θ(𝑈𝑡 ). (1)

The samples of 𝑈 that share the same phase, 𝑐 , are concatenated into a single vector. In total, there are 𝐶 disjoint time
series 𝑉𝑐 , defined as follows:

𝑉𝑐 =
(
𝑈𝑡 |𝛼𝑡 = 𝑐

)
, 𝛼𝑡 ∈ 1, 2, ...,𝐶 (2)

with observations 𝑉𝑐,𝑡 ′ , where 𝑡 ′ represents the mapping of original observations𝑈𝑡 into a new time dimension 𝑡 ′ for
each series. Note that the following conditions must be true:

𝑈 =

𝐶⋃
𝑐=1

𝑉𝑐 , and ∀𝑖 ≠ 𝑗 : 𝑉𝑖
⋂

𝑉𝑗 = ∅ (3)

3.2 Phase Prediction

A phase predictor,𝜓 , further takes outputs 𝛼𝑡 from the phase classifier to predict 𝑘 future phases at time 𝑡 based on the
history of 𝑑 previous phases. In other words:

(𝛼𝑡+1, ..., 𝛼𝑡+𝑘 ) = 𝜓
(
(𝛼𝑡−𝑑+1, ..., 𝛼𝑡 )

)
. (4)

3.3 Phase-Based Forecasting

Each new time series, 𝑉𝑐 is processed by a different model𝑚𝑝𝑐 , where 𝑝𝑐 corresponds to a set of trained parameters.
Note that all models use the same model architecture and predictor type, i.e. they differ only in trained parameters.
Each model uses ℎ samples to forecast 𝑘 values of a predicted variable 𝑧𝑐 ∈ 𝑉𝑐 as follows:

(𝑧𝑐,𝑡 ′+1, ..., 𝑧𝑐,𝑡 ′+𝑘 ) =𝑚𝑝𝑐

(
(𝑉𝑐,𝑡 ′−ℎ+1, ...,𝑉𝑐,𝑡 ′)

)
. (5)

Finally, since the forecasting models𝑚𝑝𝑐 are unaware of their interactions and relationships to the original time
series, we use the outputs 𝛼𝑡 from the phase predictor to select those values of 𝑧𝑐,𝑡 ′ that should be output as overall
forecast 𝑦𝑡 . Formally:

(𝑦𝑡+1, ..., 𝑦𝑡+𝑘 ) = (𝑧𝛼𝑡+1,𝑡 ′+1, ..., 𝑧𝛼𝑡+𝑘 ,𝑡 ′+𝑘 ). (6)
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Fig. 3. Multicore workload forecasting system settings.

4 MULTI-COREWORKLOAD FORECASTING

There are numerous ways to design the architecture of per-core workload forecasting predictors in a multi-core system.
It can be designed with one dedicated predictor per core or a single global predictor for all cores. Furthermore, the
inputs of per-core predictors may either remain local, i.e., hardware counters data from a single core; or be distributed,
i.e., use data from multiple cores. In this work, we investigate three multi-core workload forecasting architectures,
shown in Fig. 3, where 𝑁 represents the number of cores in the system, 𝑓 is a predictor that learns from the history of
hardware counters sampled during runtime and maps it to workload forecasts, and 𝑝𝑖 is a set of trainable parameters of
𝑓 . The global architecture (G), on the left side of the figure, requires access to data from all cores and simultaneously
outputs the forecasts of each core. The local architecture (L), shown in Fig. 3b, consists of multiple predictors that
target one core and access input data from that core only. On the right of the figure, the distributed architecture (D) is
designed to have one predictor per core, where each predictor accesses data from all cores while producing forecasts
specialized for one core. We also study two variants of L and D: local shared (L-S) and distributed shared (D-S). These
variants enable sharing of knowledge between predictors by sharing the same set of trainable parameters. In other
words, for L-S and D-S, all models are trained with the same training set that consists of data and labels from all cores,
and there is a single set of trainable parameters, 𝜌 , such that 𝑝𝑖 = 𝜌∀𝑖 ∈ 1, ..., 𝑁 . The implementation of these variants
requires considering how to share and update the trainable parameters during runtime.

We assume that predictors specific to each workload are trained at runtime. Since applications and their inputs are
generally not known at design time, models will need to learn application-specific behavior during runtime. As such, the
efficiency of training overhead as well as data and parameter sharing must be considered to deploy an online learning
approach. Note that if the set of applications is restricted and known at design time, e.g. in an embedded context, models
can potentially be trained offline on as subset of inputs to predict application behavior for arbitrary inputs at runtime.
In addition to training, each architecture has different implications from the modeling and implementation perspectives
in terms of inference overhead. In the remainder of this paper, however, we primarily focus on the machine learning
and accuracy aspects for each stage presented in Section 3.

4.1 Phase Classification

Phase classification is the first stage of our phase-aware workload forecasting approach. It maps a trace of hardware
counters to a series of discrete labels, i.e., phases. We observe that the definition of phases in a multi-core system can
be either global or local as shown in Figure 4. Note that phase classification settings have a direct relationship with

Manuscript submitted to ACM



8 Erika S. Alcorta and Andreas Gerstlauer

𝑈𝑈1,𝑡𝑡 𝑈𝑈𝑁𝑁,𝑡𝑡

𝜃𝜃𝑝𝑝

…

𝛼𝛼𝑡𝑡
(a) Global (G)

𝑈𝑈1,𝑡𝑡 𝑈𝑈𝑁𝑁,𝑡𝑡

𝜃𝜃𝑝𝑝1 𝜃𝜃𝑝𝑝𝑁𝑁

…

…

…𝛼𝛼1,𝑡𝑡 𝛼𝛼𝑁𝑁,𝑡𝑡

(b) Local (L)

Fig. 4. Multi-core phase classification settings.

the multi-core settings shown in Figure 3, and that there is no distributed (D) definition of phase classification. This is
because workload phase classification is an unsupervised learning problem. Therefore, a D setting would fundamentally
produce the same results as G with 𝑁 identical copies instead of one.

In a multi-core setting, the G classifier produces one phase label per time step. Therefore, it results in a single-
dimensional series, 𝛼𝑡 . By contrast, a local (L) definition of phases results in one series of phases per core, or a
two-dimensional series, 𝛼𝑛,𝑡 , where 𝑛 ∈ 1, ..., 𝑁 is the core ID. Additionally, as mentioned earlier, the L setting has
a variant, L-S, which shares trainable parameters across all cores. In other words, the L-S phases are defined as
∀𝑛 ∈ 1, ..., 𝑁 : 𝛼𝑛,𝑡 = Θ𝜌 (𝑈𝑛,𝑡 ), where 𝜌 is the single set of trainable parameters for the classifier Θ.

The different definitions of phases that we propose (G, L, and L-S), may be suited for different types of workloads.
Therefore, they have distinct impacts on the overall accuracy of phase-aware forecasting. The G definition is better suited
for workloads whose behaviors across cores are mostly synchronized. It is also suited for a broad, system definition of
phases, e.g., to define which cores have a memory-intensive period. This global definition of phases implies that phase
transitions may be triggered even when the workload behavior of one or more cores did not change. In such scenarios,
a local definition of phases may be more accurate. L is better suited for workloads whose phase behavior across cores is
independent and asynchronous. This classifier must learn local phase behaviors without explicit information about
the workload in other cores. It is also the most specialized classifier per core, but it may be prone to overfitting, i.e.,
finding more phases than necessary. Finally, L-S enables sharing knowledge of phases across cores. It is better suited for
workloads whose threads run the same or remarkably similar operations on different cores. This definition of phases
allows cores to classify phases that they have not encountered before when at least one other core has.

In our most recent work [2], we studied different machine learning-based phase classification and prediction models
in isolation and in different combinations on a single core and compared them against a simple table-based approach
that uses a leader-follower clustering algorithm. In this work, we selected the two best performing learning-based
classification methods from our prior work to study in a multi-core setting.

Two-level k-means. This method is based on [23]. The workloads are classified into sub-phases and phases. The
sub-phases are defined per sample using k-means clustering. Then, the phases are defined by a second instance of
k-means that clusters frequency vectors of sub-phases. The frequency vectors are generated by counting the number of
times a sub-phase is encountered in fixed size windows with size𝑊 . We use the same maximum number of sub-phases
as in [23], 𝑁1 = 10. We select the hyperparameters𝑊 and 𝐶 per benchmark by optimizing for the average duration of
Manuscript submitted to ACM
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Fig. 5. Multi-core phase prediction settings.

phases and for the average corrected coefficient of variation (CCoV), as defined in [40]. In the rest of this paper, we
refer to this classifier as 2kmeans. When we evaluated 2kmeans in isolation in [2], its performance in terms of CCoV
was poor compared to other classification methods. However, when evaluated in combination with different phase
predictors, it outperformed all other methods in thirteen out of fifteen phase predictors. The most remarkable difference
between 2kmeans and all other classifiers is its two-level clustering approach, which defines phases using a window of
samples instead of a single sample. The sub-phases acted as a filter for the main definition of phases.

Gaussian Mixture Model. This clustering method was studied for program phase definition in the past [8], taking as
inputs annotated labels for program branches. In [2], we adopted the clustering method but used hardware counter data
for its inputs instead. GMM is an iterative clustering algorithm that finds its clusters in an analogous way as k-means.
It assumes that combining different Gaussian models creates the data points in a cluster. Therefore, in addition to
considering the cluster means, it considers their variances when assigning samples to clusters. When we evaluated this
classification method in isolation [2], it was the best performing in terms of CCoV. Additionally, it outperformed the
other classification methods for two of the phase predictors. In this work, we evaluate this method with an additional
modification: we filter the data before clustering, giving the clustering method a further advantage similar to 2kmeans,
which also performs 2-level clustering by filtering data before defining phases. Like 2kmeans, we select the filter size
and number of phases per benchmark by optimizing for the average duration of phases and the average CCoV. We refer
to this classification method as fgmm in the rest of this paper.

4.2 Phase Prediction

Phase prediction is the second stage in our phase-aware workload forecasting approach. A phase predictor takes the
history of phase labels at the output of the phase classifier or a sub-trace of past hardware counter samples to predict
the phase label of one or more future samples. We present the different phase prediction settings of a multi-core system
in Figure 5. In a multi-core system, the choice of phase prediction setting depends on the multi-core phase definition.
The G phase predictor is a single model dedicated to predicting G phases. Therefore, its output is a single label per
timestep for the entire system, 𝛼𝑡+𝑘 , 𝑘 ≥ 1. By contrast, L and D phase predictors consist of different models, Ψ𝑝𝑛 , each
dedicated to learning different phase patterns 𝛼𝑛,𝑡+𝑘 per core 𝑛. L relies solely on the data of one core to learn phase
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patterns, whereas D allows explicit interference-aware predictions by accessing data from all the cores. Additionally,
phase prediction supports both variants L-S and D-S, where trainable parameters are shared across all cores.

We study two types of phase predictors, window-based prediction and phase-change prediction [2], including how
they adapt to each multi-core setting.

4.2.1 Window-Based Phase Prediction. Window-based prediction aims to accurately determine the phase label of the
immediately upcoming sample window of size 𝑘 . These predictors can either look at the history of phases or the history
of pre-classification data, in our case, hardware counters. Some workload phases last for very long periods, and using
the history of phase labels per sample may not be helpful information to the predictor. Therefore, all our window
predictors use the trace of hardware counters as inputs. The assumption is that the predictors will learn the relationship
between the counters’ short-term variations and the upcoming phases. Note that while window-based predictions do
not directly utilize the output of phase classifiers, phase classification ground truth is needed to train the predictors.
Formally, the window-based phase prediction problem is a supervised learning problem with inputs (𝑈𝑛,𝑡−𝑑+1, ...,𝑈𝑛,𝑡 ),
and outputs (𝛼𝑡+1, ..., 𝛼𝑡+𝑘 ) for a global (G) window-based predictor or (𝛼𝑛,𝑡+1, ..., 𝛼𝑛,𝑡+𝑘 ) for local (L) and distributed
(D) predictors, where 𝑑 is the input window size, 𝑘 is the output window size, and 𝑛 is the core ID.

In [2], we studied three different models for window-based predictors: decision trees (DT), support vector machines
(SVM), and long short-term memory (LSTM). We found remarkably similar accuracies, with an LSTM delivering
the best accuracy and a DT exhibiting the lowest computational inference complexity. Therefore, we investigate all
window-based multi-core prediction settings with LSTM and DT models in this work. The inputs to the DT models
consist of a single vector containing the values of the hardware counters at different time steps. On the other hand, the
inputs to the LSTM models are given as a sequence of 𝑑 hardware counter vectors. The LSTM encodes the sequence
into a single vector that is then used by a fully connected output layer to produce the phase predictions.

4.2.2 Phase Change Prediction. Phases typically last multiple consecutive intervals. Rather than predicting phase labels
at each interval, phase change prediction focuses on learning and predicting phase transitions. To do so, a series of
phases 𝛼𝑡 is transformed using run-length encoding to generate a new series, 𝑄 𝑗 . The new series consists of pairs
𝑄 𝑗 = (𝛼 𝑗 , 𝑟 𝑗 ) of phase labels 𝛼 𝑗 and their duration 𝑟 𝑗 . At each detected phase transition, 𝑗 , we use a next phase prediction
model to determine the label of the next phase, 𝛼 𝑗+1, and a phase duration prediction model to estimate how far into the
future the transition to this next phase will happen, i.e., the duration of the current phase 𝛼 𝑗 , 𝑟 𝑗 . Note that for an L or
L-S definition of phases, the phase transitions in each core may be asynchronous. As such, each core 𝑛 has its own set
of transitions 𝑄𝑛,𝑗 = (𝛼𝑛,𝑗 , 𝑟𝑛,𝑗 ). We support all three multi-core settings, G, L, and D, for phase change prediction. A G
phase change predictor is a combination of G next phase prediction and G phase duration prediction, which look at the
history of G phase transitions. This applies to the L predictors as well, where each predictor accesses its local history.
However, while we support D next phase prediction, we find no value in a duration predictor accessing a history of
phase duration in other cores. Instead, a D phase change predictor consists of a D next phase predictor and an L phase
duration predictor. Furthermore, note that phase change predictors do not consider counter histories𝑈𝑛,𝑡 as inputs.

Next Phase Prediction. Next phase predictors look at the history of distinct phases as a sequence 𝛼 𝑗 to predict the label
of the next phase 𝛼 𝑗+1. In [2], we showed that table-based predictors could trivially solve this problem for workloads
with uniform phase patterns that repeat without variations. However, more robust predictors that can generalize the
input data can yield better results when the pattern is not entirely uniform. In our previous work [2], we performed
an extensive analysis of existing work in phase classification and prediction, and compared it against learning-based
Manuscript submitted to ACM
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Fig. 6. Multi-core phase-aware short-term forecasting modeling settings

methods such as SVMs, MLPs, and LSTMs. The best performing combination of phase classification and phase prediction
included an SVM as next phase prediction. Therefore, in this work, we investigate all multi-core next phase prediction
settings with an SVM model. The SVM is configured as a classifier whose input is a vector of one-hot encoded values
corresponding to a fixed-size history of phase transition labels.

Phase Duration Prediction. Phase duration prediction aims at accurately determining how long a phase will last. In
the past, phase duration has been framed as either a categorical problem, i.e., predicting whether the duration is within
a pre-defined set of ranges, or a regression problem, i.e., predicting the exact duration of a phase. The former loses
precision when estimating phase changes. Therefore, we frame phase duration prediction as a regression problem. We
have considered two types of inputs for this task. The first is to use the duration history of past phases with the same
phase label, 𝛼 𝑗 , (𝑟𝑖 |𝑖 < 𝑗, 𝛼𝑖 = 𝛼 𝑗 ). The second is using the history of phase labels and their duration, 𝑄𝑖 , 𝑖 < 𝑗 . The
best choice depends on the predictor and the workload. We generally find that the relationships between durations of
the same phase are linear. Therefore, linear predictors are better suited for these inputs. Some workloads may have
relationships between the duration of different phases, and in general, these inter-phase relationships may not be linear.
Our previous study’s best-performing phase classification and prediction combination included an SVM as the phase
duration predictor. Therefore, we investigate all multi-core phase duration settings with an SVM model in this work.
This SVM model is configured as a regressor. The duration history inputs, 𝑟𝑖 , are encoded as integer values, while the
history of phase transition labels are one-hot encoded.

4.3 Phase-based Forecasting

Phase-based forecasting is the last stage in our phase-aware approach. It dedicates one forecasting model per phase
to map the history of hardware counter data within a single phase to a fixed-size window of workload forecasts
specialized in that phase. We investigate all three multi-core settings, global (G), local (L), and distributed (D), for
phase-based forecasting (Figure 6). The choice of phase-based forecasting setting depends on the definition of phases. A
G phase-based forecasting architecture is tied to a G definition of phases. It consists of 𝐶 models that forecast 𝑁 values
per time step. By contrast, L and L-S definition of phases can only be combined with L and D forecasters. They consist
of up to 𝐶 × 𝑁 models, each dedicated to learning workload patterns per phase in each core. L models are designed to
access hardware counter data from a single core, while D models are explicitly interference-aware and use data from all
cores as inputs. We also study shared variants L-S and D-S. They share trainable parameters across cores. As such, they
conceptually have 𝐶 different models, which are instantiated in and replicated per core. In other words, for L-S and
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D-S, there exist𝐶 sets of trainable parameters 𝜌𝑐 such that 𝑝𝑛,𝑐 = 𝜌𝑐∀𝑐 ∈ 1, ...,𝐶 ;∀𝑛 ∈ 1, ..., 𝑁 . These variants are better
suited for the L-S classification, where all cores share the same definition of phases. By contrast, L and D forecasters are
better suited for an L phase classification.

Each phase-based forecasting model has a different definition of the set of disjoint time series, 𝑉 , as defined in
Equation 2. For the G models, the resulting number of disjoint time series is 𝐶 , and each includes data from all cores:
𝑉𝑐 =

(
(𝑈1,𝑡 , ...,𝑈𝑁,𝑡 ) |𝛼𝑡 = 𝑐

)
. The L and D models have up to 𝑁 ×𝐶 disjoint series, 𝑉𝑛,𝑐 , with different definitions. For

the L models, the series are defined as using data from a single core: 𝑉𝑛,𝑐 = (𝑈𝑛,𝑡 |𝛼𝑛,𝑡 = 𝑐). On the other hand, the
distributed models access data from all cores, i.e., 𝑉𝑛,𝑐 =

(
(𝑈1,𝑡 , ...,𝑈𝑁,𝑡 ) |𝛼𝑛,𝑡 = 𝑐

)
.

In general, per-core workload forecasting is a multi-dimensional regression estimation problem, where the dependent
variable is a vector, 𝑦𝑡 ∈ R𝑁 . L and D divide this problem into multiple one-dimensional problems. Therefore, they
cannot learn the inter-dependent relationships of their outputs. By contrast, G forecasting models are designed to
learn such relationships by minimizing a multi-dimensional output function. For example, consider an artificial neural
network (ANN) for our per-core workload forecasting problem. In this scenario, the output layer of L and D models is a
single neuron, whereas the output layer of G models has 𝑁 neurons. The hidden layers of G models are updated with
gradients estimated from all outputs.

In [3], we explored four short-term workload forecasting techniques in their phase-aware and phase-unaware settings
for a single core. We showed that the phase-aware forecasting models yield lower forecasting error for workloads that
go through distinct phases, measured with the mean absolute percentage error (MAPE) metric. The models that we
explored were support vector machines (SVMs), dynamic linear models (DLMs), long short-term memory (LSTM),
and matrix profile (MP). The best performing phase-aware and -unaware models were LSTMs and SVMs, respectively.
Therefore, we use these two models to study short-term multi-core forecasting in this work. Both LSTMs and SVMs
are configured as regressors. The input to the SVM is a single vector in which all the hardware counter values of
different time steps are concatenated. The inputs to the LSTM models consist of a sequence of ℎ vectors of concatenated
hardware counter values. The LSTM encodes this sequence into a vector that a fully connected layer uses to compute
the forecasts.

5 EXPERIMENTS AND RESULTS

This section presents the evaluation of each component of our phase-aware approach and its various settings. We study
multiple combinations of G, L, and D models and their shared variants for phase classification, phase prediction, and
phase-based forecasting. When evaluated together, we use the notation (C, P, F), where C is the phase classification, P
is the phase prediction, and F is the phase-based forecasting setting. We study global (G) phase classification, phase
prediction and phase-based forecasting in a (G, G, G) combination. For local (L) phase classification, we assess all
combinations of L and D phase prediction and phase-based forecasting, i.e., (L, L, L), (L, L, D), (L, D, L), and (L, D, D).
Finally, for local phase classification with shared parameters (L-S), we evaluate it in all combinations with L-S and D-S
phase prediction and phase-based forecasting, i.e., (L-S, L-S, L-S), (L-S, L-S, D-S), (L-S, D-S, L-S), and (L-S, D-S, D-S).

To generate the workload traces, we executed multi-threaded workloads from the PARSEC-3.0 and SPEC CPU 2017
suites. The PARSEC applications run with their native input set and the SPEC applications use the reference input set.
We selected a subset of workloads whose traces are long enough to contain sufficient data for training and validation.
The workloads that we study from each suite and their respective number of samples are shown in Table 1.

Our target platform is a desktop-class Intel Core i9-9900K running Debian 9.13 with the ondemand Linux governor
enabled. We execute the workloads on four cores and collect hardware counters from the performance monitoring unit
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Table 1. Benchmarks.

SPEC 2017 Parsec-3.0
Benchmark Samples Benchmark Samples
cactuBSSN 47,411 blackscholes 7,577
fotonik3d 55,100 bodytrack 8,744
imagick 120,658 canneal 10,870
nab 71,769 facesim 18,607
wrf 91,523 ferret 17,769
xz 29,163 fluidanimate 18,701

freqmine 26,268
raytrace 10,016
streamcluster 29,424
swaptions 12,520
vips 7,315

Table 2. Hardware counters.

Fixed counters Variable counters
INST_RETIRED.ANY L2_RQSTS.MISS

CPU_CLK_UNHALTED.THREAD OFFCORE_REQUESTS.DEMAND_DATA_RD
BR_MISP_RETIRED.ALL_BRANCHES

FP_ARITH_INST_RETIRED.SCALAR_DOUBLE

(PMU) every 10ms using Intel’s EMON tool. The Intel platform can sample 4 fixed counters and up to 4 variable counters
simultaneously per core. We select four variable counters to characterize the workload by its memory boundedness (L2
misses and main memory read accesses), control flow predictability (mispredicted branch instructions), and operation
mix (floating-point operations). The exact names of hardware counters used are listed and summarized in Table 2.
Normalizing the PMU counters to the number of instructions yielded more accurate forecasting results. We also found
that reducing dimensionality with principal component analysis (PCA) improves the performance of phase-based
forecasting and window-based predictors. We use standard scaling to map the values of each counter to a range between
0 and 1, and then select the two components with the highest variance using PCA.

We evaluate the ability of our models to generalize to unseen samples and perform an offline study where we split
each time series into 70% for training and 30% for testing and train separate models with data for each benchmark.

CPI is used as the variable of interest, 𝑦, to compare our models. We use mean absolute percentage error (MAPE) to
measure accuracy of phase-based and phase-aware forecasting. We set a fixed forecast horizon of all models of 𝑘 = 20.
With this, we compute a separate𝑀𝐴𝑃𝐸𝑖 for every step 1 ≤ 𝑖 ≤ 𝑘 in the forecast horizon as follows:

𝑀𝐴𝑃𝐸𝑖 =
100%
𝑛

𝑛−𝑘∑︁
𝑡=1

(
|𝑦𝑡+𝑖 − 𝑦𝑡+𝑖 |

𝑦𝑡+𝑖

)
(7)

When comparing different models, we look at the average MAPE (𝐴𝑀𝐴𝑃𝐸) of all 𝑘 = 20 predictions: 𝐴𝑀𝐴𝑃𝐸 =

1
𝑘

∑𝑘
𝑖=1𝑀𝐴𝑃𝐸𝑖 . Similarly, we use average accuracy of all 𝑘 = 20 predictions to evaluate window-based phase prediction.

Note that in this work, we focus our exploration on a generic and application-independent notion of forecast error. The
impact of and tolerance to this error depends on the targeted runtime optimization (e.g., maximizing performance with
DVFS or reducing interference with task migration). We leave such investigations for future work.
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In addition to forecast error, we measured the inference time corresponding to one prediction step with the purpose
of comparing model complexities. Forecasting models are implemented and trained using Keras [9] for all LSTM models,
scikit-learn [32] for k-means and GMM clustering as well as phase prediction SVM and DT, andmsvr [5] for multi-output
SVM regressors. We use Python’s time standard library to measure inference times on our target platform. We also
profiled the memory requirements and runtime of our offline training setup with a fixed number of samples. We used
mprof [15] for memory profiling. Note that while inference time is measured per sample, training times are reported
for the whole training set.

5.1 Phase Classification

We explore two different clustering techniques, 2kmeans based on [23] and our proposed fgmm. Both methods require
two hyperparameters as inputs, the number of phases and the filter size. Our goal for phase classification is to find
long-term workload phases whose intra-phase patterns can be learned by short-term phase-based forecasting. We
employ a hyperparameter selection methodology with two optimization objectives: (1) minimize the corrected coefficient
of variation (CCoV) and (2) maximize average phase duration. The CCoV metric was introduced in previous work [40]
as an extension of the coefficient of variation (CoV), computed as variance divided by mean, to penalize phases that
last a single interval. To calculate the CCoV, samples whose phase labels are different from their neighbors’ phases
are assignd a "virtual phase" label. Then, the CoV of the whole program is computed (as if the whole program was
a single phase), and this value is assigned to the virtual phases when computing the per-phase CoV. In addition to
minimizing phase variations, we are interested in finding stable long-term patterns. We use the second objective to
prevent classification overfitting, where the classifier defines more phases than necessary.

For hyperparameter tuning, we execute the phase clustering techniques with multiple combinations of phase count
and filter size. We then obtain the Pareto-optimal data points that maximize the average phase duration and minimize
the CCoV. Next, we sort the Pareto-optimal data points in descending order of duration and apply an elbow method
to select the optimized parameters, i.e. we iteratively go through each hyperparameter’s data points until the CCoV
is no longer decreased by 5% or more. We follow this process for each clustering technique (2kmeans and fgmm)
and each multi-core phase classification setting (G, L, and L-S). The outcomes are six different definitions of phases
per benchmark. Table 3 shows the resulting number of unique phases, average duration, and average CCoV for each
definition.

When comparing the average CCoV across benchmarks for each multi-core setting and classifier, fgmm yields lower
values than 2kmeans for all three settings, with G providing the lowest CCoV. We observe that cactuBSSN and xz have
significantly higher CCoV results in some settings when compared to the other benchmarks. The phases that 2kmeans
defines for cactuBSSN have very high CCoV because this benchmark has short regions where the CPI is two orders of
magnitude higher than the rest of the trace. The 2kmeans filter is unable to account for this difference in magnitude
and misses these transitions. In case of xz, the traces in all cores have very high-frequency CPI variations. Additionally,
there is a region with an evident change in CPI behavior for all cores. However, most classifiers failed to detect this
change because the difference in hardware counter values was not as significant in all cores.

In terms of phase duration, 2kmeans finds, on average, longer phases than fgmm for G and L. However, L-S has
the longest duration of phases on average for both fgmm and 2kmeans, with fgmm finding the longest phases. Both
classifiers tend to find very long phases in the PARSEC benchmark suite. They also find very long phases in imagick,
fotonik3d, wrf, and xz for some settings. Therefore, there is a limited number of phase transitions in these multi-threaded
workloads, especially compared to their single-threaded variants that we previously studied.
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Table 3. Phase Classification Results

G L L-S
CCoV 𝐶 dur. CCoV 𝐶 dur. CCoV 𝐶 dur.

cactuBSSN 2kmeans 6.4 6 74 9.2 2 130 7.2 5 38
fgmm 0.5 5 16 0.8 3 28 0.9 3 34

fotonik3d 2kmeans 0.6 2 27549 0.6 2 17218 0.7 2 44
fgmm 0.5 3 44 0.4 3 16 0.6 3 17218

imagick 2kmeans 0.2 5 4160 0.2 4 9896 0.1 5 4841
fgmm 0.1 6 2741 0.1 5 3086 0.3 3 8658

nab 2kmeans 1.1 5 98 1.2 2 160 1.1 6 92
fgmm 1.0 4 71 0.6 5 71 1.7 2 771

wrf 2kmeans 0.3 2 854 0.3 2 11588 0.3 2 188
fgmm 0.3 3 29 0.3 2 201 0.3 3 37

xz 2kmeans 2.6 5 149 4.3 6 54 8.3 2 12758
fgmm 2.4 2 9720 6.6 3 447 8.2 2 10935

blackscholes 2kmeans 0.3 6 686 0.2 6 223 0.4 4 1353
fgmm 0.2 6 755 0.2 3 1133 0.2 5 1021

bodytrack 2kmeans 0.9 2 1248 0.9 2 775 0.8 2 203
fgmm 1.0 3 672 1.0 2 1109 1.0 2 1179

canneal 2kmeans 0.1 5 1358 0.2 3 1954 0.2 3 3849
fgmm 0.1 6 1552 0.1 3 1864 0.1 6 1554

facesim 2kmeans 0.2 6 89 0.2 4 375 0.2 6 2931
fgmm 0.1 5 96 0.2 3 1709 0.3 2 12404

ferret 2kmeans 0.6 4 203 0.7 2 264 0.6 3 1100
fgmm 0.6 2 5922 0.6 2 1630 0.7 2 14806

fluidanimate 2kmeans 0.3 6 2077 0.3 3 3134 0.3 3 4804
fgmm 0.4 4 3739 0.2 3 2108 0.5 2 15583

freqmine 2kmeans 0.3 6 772 0.2 4 184 0.3 3 2725
fgmm 0.4 3 4377 0.2 3 2643 0.5 2 6785

raytrace 2kmeans 0.6 2 1112 0.2 3 1354 0.6 2 4798
fgmm 0.2 6 667 0.2 3 1232 0.5 2 8346

streamcluster 2kmeans 0.2 4 1730 0.5 2 9632 0.5 2 13135
fgmm 0.3 3 2451 0.1 3 2396 0.1 4 2941

swaptions 2kmeans 0.1 3 131 0.1 5 98 0.2 2 12519
fgmm 0.1 2 4172 0.1 2 2758 0.1 2 10432

vips 2kmeans 0.3 6 187 0.4 4 318 0.4 5 484
fgmm 0.3 6 260 0.2 4 288 0.5 2 5746

Overall, the isolated evaluation of phase classification shows that fgmm with global (G) phases is the best classifier
in terms of CCoV, and fgmm with an L-S setting is the best in terms of average duration.

With regards to runtimes, the fastest phase classifier is fgmm with the L setting, with an inference time of 2.14ms
per sample, followed by the G-type fgmm classifier with 2.37ms. 2kmeans inference times are 3.81ms and 4ms for the L
and G settings, respectively. As can be seen, the choice of multicore setting has less impact on the inference time than
the choice of clustering model, where inference times of 2kmeans are approximately 1.7x slower than fgmm.
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Fig. 7. Average window-based phase prediction accuracy using DT and LSTM models with different multi-core settings and classifiers.

5.2 Phase Prediction

Next, we evaluate the different multi-core phase prediction model settings introduced in Section 4.2. The quality of
phases impacts the accuracy of phase prediction. Therefore, we compare each phase prediction setting against its
corresponding definitions of phases.

5.2.1 Window-based Prediction. We evaluate two models for window-based phase prediction, DT and LSTM. We follow
the hyperparameter selection from [2] and use models with an input window size of 𝑑 = 20 steps. Additionally, we
select a tree depth of 8 for DT, and a single-layer LSTM with 128 neurons. The output layer of the LSTM model has
𝐶 × 𝑘 neurons and computes 𝑘 = 20 soft-max activation functions (for each group of 𝐶 neurons).

Figure 7 shows the average accuracy of each model across all benchmarks with different multi-core settings and the
two classifiers, 2kmeans and fgmm. We observe that DT and LSTM models have consistently higher accuracy with
fgmm phases regardless of the multi-core setting. When comparing DT and LSTM, LSTM is better than DT, even if
only marginally. To better analyze this trend, we compare the accuracy of DT and LSTM predictors with the fgmm
classifier across benchmarks and settings in Figure 8. We observe that an LSTM is better for most benchmarks and
classification combinations, with very few exceptions. When comparing the accuracy of different multi-core settings,
the average trend shows that L-S and D-S phase prediction settings are the best. Figure 8 also shows a general trend of
L-S and D-S having the highest accuracy, with a few exceptions, specifically wrf, xz, and canneal. Additionally, D and
D-S have a lower accuracy than their L counterparts. They work with L and L-S definitions of phases, respectively.
These phase classification settings use data from a single core to classify phases. We explored distributed (D) settings
for phase prediction to account for activity of different cores interfering with each other, where information from other
cores may help to anticipate phases. Such additional inputs helped in a few cases, such as cactuBSSN and wrf. However,
the local predictors were generally capable of learning without the explicit activity information from other cores.

Overall, the best window-based phase predictor in terms of accuracy is an LSTM with fgmm classification and a (L-S,
L-S) multi-core setting.

In terms of model runtimes and complexities, the measured inference times for DT are 1.23ms for G and D models
and 1.22ms for L models. By contrast, LSTMs run in 2.94ms, 3.12ms, and 3.13ms per sample for G, L, and D settings,
respectively. Similar to phase classification, the inference time of window-based predictors is impacted more by the
choice of model (DT vs. LSTM) than by the choice of setting (G, L, or D).
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Fig. 8. Window-based phase prediction accuracy using DT and LSTM models with a fgmm classifier under different multi-core
(classification, phase prediction) settings.

5.2.2 Phase Change Prediction. We chose SVM models for both next phase and phase duration predictions. Following
the hyperparameter exploration in [2], we use an input window size of 10 phase transitions for next phase prediction
and the duration and label of the 5 previous phases of any type and the duration of the prior execution of the target
phase for phase duration models. Furthermore, we selected a polynomial and linear kernel for next phase and phase
duration SVMs, respectively.

As opposed to window-based predictors, which make predictions at every sample, phase change predictors are
activated on phase transitions only. Since, as mentioned earlier, many benchmarks have a limited number of phase
transitions throughout their executions, such benchmarks have insufficient data points to train phase change predictors.
In particular, PARSEC benchmarks run only for relatively short amounts of time while also having long phases. By
contrast, the majority of SPEC benchmarks have sufficient data points to train phase change predictors. Note, however,
that different combinations of multi-core settings and classifiers yield a different definition of phases per benchmark. As
such, we show phase change predictor accuracy only for SPEC benchmarks in combinations with enough data. Results
are shown in Figure 9. Figure 9a shows the accuracy of next phase prediction and Figure 9b shows the mean absolute
error (MAE) of phase duration prediction in units of samples. The missing data points in the figures correspond to
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Fig. 9. Phase change prediction accuracy using SVM models with 2kmeans and fgmm classifiers for different multi-core settings.

definitions of phases that did not have sufficient data samples in the training set. Note that, as discussed earlier, we only
support D multi-core settings for next phase prediction and we combine them with L duration predictors.

Next phase prediction is faced with some trivial cases when the classifier finds two phases only, which results in
perfect accuracy. These cases are cactuBSSN and nab with the 2kmeans classifier and wrf with both classifiers for the L
setting, and fotonik3d and wrf with 2kmeans and nab with fgmm for the L-S setting. The G phase predictor exhibits
higher accuracy with the fgmm classifier for the benchmarks where the comparison between classifiers is available.
However, the rest of the phase predictors do not show a clear trend. When comparing the accuracy of the different
predictor settings, L and D predictors have either similar or better accuracy than G. For phase duration prediction, the G
setting with the fgmm classifier results in the lowest error for all benchmarks except xz, where 2kmeans with L is better.

To explore the combined accuracy of next phase and phase duration prediction, we evaluate phase change prediction
in conjunction with phase-based forecasting as part of finding the best complete phase-aware combination in Section 5.4
(see Figure 12).

The measured inference times of next phase prediction are 0.08ms for G and L settings and 0.07ms for D settings. For
phase duration, the measured times are 1.59ms and 1.56ms for G and L settings, respectively. Next phase and phase
Manuscript submitted to ACM
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Fig. 10. Average AMAPE of phase-based forecasting with different classifiers and multi-core settings.

101

102

AM
AP

E

(G, G) (2kmeans, LSTM)
(fgmm, LSTM)

101

102

AM
AP

E

(L, L)
(L-S, L-S)

(2kmeans, LSTM)
(fgmm, LSTM)

ca
ct

uB
SS

N

fo
to

ni
k3

d

im
ag

ick na
b

wr
f xz

bl
ac

ks
ch

ol
es

bo
dy

tra
ck

ca
nn

ea
l

fa
ce

sim

fe
rre

t

flu
id

an
im

at
e

fre
qm

in
e

ra
yt

ra
ce

st
re

am
clu

st
er

sw
ap

tio
ns

vi
ps

101

102

AM
AP

E

(L, D)
(L-S, D-S)

(2kmeans, LSTM)
(fgmm, LSTM)

Fig. 11. AMAPE of phase-based forecasting with different classifiers and multi-core (classification, forecasting) settings.

duration prediction tasks can be performed in parallel since they do not have any dependencies. As such, inference time
measurements show that predicting phase duration would be the bottleneck of phase change prediction. By contrast,
the choice of multi-core setting does not have a major impact on the inference time of these models.
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5.3 Phase-based Forecasting

We investigated the accuracy of LSTMs and SVMs in phase-based forecasting with different multi-core settings.
Following the hyperparameter tuning and model selection exploration from [3], we employ an LSTM architecture
that is comprised of a single-layer LSTM using 128 cells and one fully connected layer of 𝑘 = 20 neurons with linear
activation to output the forecasts. The LSTM layer has an input window of ℎ = 100 inputs. The SVM uses an input
window size of ℎ = 50 and a radial-basis function (RBF) kernel to improve the forecasting accuracy compared to a
linear SVM. For the G setting, we use a multi-dimensional support vector regressor (MSVR) as presented in [5, 33] to
differentiate from D models with only a single output.

Figure 10 shows their average AMAPE across all benchmarks. Note that this accuracy evaluation is independent
of phase prediction. We evaluate the average error over all phase-specialized forecasts independent of which model
is ultimately selected for forecast reconstruction. The figure shows the AMAPE of each phase-based setting using
2kmeans- and fgmm-classified phases compared to the AMAPE of phase-unaware models using only a single phase.

Results show the benefits of specializing models to phases. Phase-based models (using 2kmeans and fgmm phases)
consistently show lower forecasting error than phase-unaware ones, with the exception of a global (G) SVM model
using 2kmeans. In general, the G setting performs poorly with SVM models. This figure also shows that an LSTM yields
lower forecasting error than an SVM for all phase-based forecasting settings and classifications, while single-phase
forecasting has only one case when an SVM is better, L-S.

The difference in forecasting error between fgmm and 2kmeans is not very significant. The lowest forecasting error
overall is given by (L, L) using fgmm phases with an LSTM. However, when looking at each setting individually, the
best-performing classifier is not as clear as it was when we analyzed window-based phase prediction. We show the
comparison of both classifiers with LSTM models in Figure 11. The best classifier for phase-based forecasting varies
across benchmarks and multi-core settings. Therefore, we explore the combined accuracy of phase prediction and
phase-based forecasting to find the best phase-aware combination in the next section.

Single-phase LSTM models struggle to learn workload patterns when sharing trainable parameters. This trend is
persistent in various PARSEC benchmarks, whose CPI traces exhibit different behaviors across different cores. D-S
alleviates some of the issues for LSTM models. For example, the single-phase L-S LSTM has its AMAPE of over 150% for
blackscholes reduced to less than 40% with D-S. Similarly, the AMAPE of streamcluster with L-S is 105% while it is 18%
with D-S. We observe similar trends between single-phase L-S and D-S LSTMs for facesim and swaptions.

The high AMAPE difference between L-S and D-S in single-phase LSTM models is not observed for phase-based
models. However, when comparing L and D models, the forecasting error increases from L to D. During training, the D
forecasters sometimes fail to identify the target core from their inputs and rely heavily on other core inputs to compute
the target core’s outputs. Therefore, the D forecasts are negatively impacted if other cores go through different phases
later in their execution. We observed this behavior in facesim, fluidanimate, freqmine, and vips. The same benchmarks
do not show such behavior comparing L-S and D-S variants. D-S models share data from all cores during training,
forcing the models to identify the target core for forecasting. However, we found that xz exhibited a particular case with
an LSTM and fgmm phases. One of xz’s phases occurs only for a short amount of time at the beginning of execution,
and when it is is reencountered, the D-S model has not yet learned to identify the target core. Instead, another core
highly influences its predictions.
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Fig. 12. Average AMAPE of each phase-aware multi-core forecasting settings for SPEC benchmarks.

On average, the best phase-based forecasting result in terms of accuracy is given by the L multi-core setting with an
fgmm classifier and LSTM models. Similarly, the best phase-unaware result in terms of forecasting error is given by an
L multi-core setting with LSTM models.

In terms of runtimes, as opposed to phase classification and phase prediction, the choice of multi-core setting can
strongly impact the inference time of phase-based forecasting models. Particularly, the L setting of the SVM models
is up to 2.4x faster than the other settings, with 1.19ms, 0.52ms, and 1.25ms for G, L, and D settings, respectively. A
similar behavior is not observed with LSTMs, whose inference times are slower than SVM for any setting, with 4.31ms,
4.19ms, and 4,28ms for G, L, and D settings, respectively.

5.4 Combined Phase-aware Workload Forecasting

We finally study the combined accuracy of phase classification, phase prediction and phase-based forecasting for all
the multi-core settings. Results of different settings averaged over benchmarks are shown in Figure 12 and Figure 13.
Both figures include the results of using an oracle phase predictor with 100% phase prediction accuracy. We found that
a fgmm phase classifier was better than 2kmeans for window-based phase prediction, but not necessarily for phase
change prediction and phase-based forecasting. Therefore, we compare average results using both classifiers. Figure 12
shows averaged results only for SPEC benchmarks for which both window-based and phase change predictors are
available. By contrast, Figure 13 shows results averaged over all benchmarks using window-based phase predictors.
Phase change predictors use SVM models. Window-based phase prediction and phase-based forecasting use LSTMs as
their models since those resulted in the best accuracy when evaluated separately.

As seen in Figure 12, a classification with 2kmeans yields better results than fgmm across different multi-core
settings when using phase change prediction, where the best phase change predictor in combination with phase-based
forecasting is (L-S, L-S, L-S) with a 2kmeans classifier. However, an opposite trend is observed for window-based
predictions, where fgmm yields the lowest error with the exception of (L-S, D-S, D-S). This generally confirms that
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Fig. 13. Average AMAPE accuracy of each phase-aware multi-core forecasting settings using window-based phase predictors.

isolated phase prediction trends from Section 5.2 hold when combined with phase-based forecasting. Overall, window-
based predictors consistently exhibit the lowest forecasting error across all multi-core settings. Therefore, we focus on
window-based phase prediction in the rest of this evaluation.

Figure 13 shows that when averaging results using window-based phase prediction over all benchmarks, an fgmm
phase classification achieves consistently better results than 2kmeans, even for the (L-S, D-S, D-S) setting. When
comparing the error difference between oracle and window-based prediction, 2kmeans exhibits a larger gap than fgmm.
This is consistent with our results in Section 5.2. On average, the best and worst phase-aware combinations are (L, L, L)
and (G, G, G), respectively. Distributed phased-based forecasting variants (combinations with D and D-S as the last
forecasting element) generally have worse errors than their local counterparts. This trend was already observed in
Section 5.3. By contrast, there is no clear advantage of distributed versus local phase predictors in average accuracy.

To further analyze different multi-core settings per benchmark, Figure 14 compares phase-aware combinations using
an fgmm classifier and window-based phase prediction against corresponding phase-unaware settings using only a
single phase. We again include results of using an oracle phase predictor. We observe that in global settings (top graph),
phase awareness does not consistently improve forecasting error. Phases sometimes underfit the trace, where per-core
changes remain undetected. As discussed earlier, when we analyzed phase classification data, xz suffered from these
undetected changes in CPI behavior, leading to high CCoV values. We find similar issues in bodytrack, freqmine and
streamcluster, even though this did not show up during the phase classification evaluation.

By contrast, local settings (second graph from the top), show in some cases significant benefits of phase-aware
forecasting, with shared or non-shared variants having the lowest forecasting error for most benchmarks. In particular,
blackscholes exhibits the most benefits, where phase-awareness reduces the error by over 22%, followed by canneal

with an error reduction of 13%. There are only two cases where phase specialization was not able to improve on
phase-unaware forecasting, ferret and bodytrack. All models struggle to learn their workload patterns. In the case of
bodytrack, the forecasting error had someminor improvements with phase-based forecasting, but the error introduced by
phase prediction negated the benefits. In the ferret case, the hardware counter data is comprised of very high-frequency
Manuscript submitted to ACM
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Fig. 14. Accuracy of best phase-aware and -unaware models for different multi-core settings.

components, and all models struggled to find patterns. Additionally, the inability of phase specialization to improve
forecasting error is an indication of poor phase classification. As mentioned before, some benchmarks have phases with
changes in CPI behavior that remain undetected by the phase classifiers. Interestingly, for xz, the phase predictor in
some cases recognized these changes and improved the overall phase-aware forecasting accuracy. This can be observed
by comparing the oracle phase prediction to the LSTM of the (L, L, L) setting. However, since the phase classifier dictates
which phase-based forecaster should be activated, the forecasts from the phase corresponding to the phase predictor’s
output are not updated, limiting the accuracy improvements. In some benchmarks, the error gap between the oracle
and the window-based phase prediction LSTM is high. This can be observed in imagick, nab and vips with the (L, L, L)
setting. Note that this gap is not as high with the (L-S, L-S, L-S) variant. This is consistent with the results in Section 5.2,
where the shared variant exhibited higher phase prediction accuracy for these benchmarks.
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Table 4. Model complexities for each phase-aware task.

Task Model Inference time (ms)
G L(-S) D(-S)

Phase Classification 2kmeans 4.00 3.81 -
fgmm 2.37 2.14 -

Phase Prediction
Window-based DT 1.23 1.22 1.23

LSTM 2.94 3.12 3.13

Phase Change Next phase SVM 0.08 0.08 0.07
Phase duration SVM 1.59 1.56 -

Phase-based Forecsting LSTM 4.31 4.19 4.28
SVM 1.19 0.52 1.25

Finally, the bottom graphs show the distributed (L, D, L) and (L, D, D) settings in their regular and shared variants. As
mentioned above, phase-aware (L, D, D) variants (bottom graph) generally have higher forecasting error than their (L,
D, L) counterparts (second to last graph). By contrast, this trend is not seen in phase-unaware models. When compared
to the (L, L, L) setting, distributed results are very similar, with a few exceptions. For both phase-aware and -unaware
forecasting, a distributed setup can improve the accuracy of cactuBSSN and imagick. However, it increases the error of
other benchmarks, including blackscholes and canneal.

Table 4 compares the complexities of all models and multi-core settings of each phase-aware task in terms of inference
times for a basic software implementation. For phase classification, the best model in terms of accuracy, fgmm, is also
the one with the least overhead. However, this was not the case for phase prediction and phase-based forecasting,
where the most accurate models, LSTMs, are also the slowest. Phase prediction and phase-based forecasting tasks
are independent from each other and can therefore be computed in parallel. As such, in the best phase-aware model
combination in terms of accuracy, (L, L, L) and (fgmm, LSTM, LSTM), the main bottleneck is the phase-based forecasting
task. Note that these numbers are only meant to provide an indication of relative model complexity rather than an
actual implementation proposal. Our user-level software implementations have not been optimized for deployment as
workload forecasting tasks. Optimized hardware or software implementations of models such as LSTMs have been
studied extensively using methods such as pruning [7, 45] or hardware acceleration [4, 43, 45, 47, 49]. These methods
demonstrate inference time acceleration of 43x when compared to a CPU implementation [49] and power consumption
reduction by more than 50% with pruning and quantization without compromising accuracy of LSTM models [7]. In our
own prior work [3], we also performed an exploration of the hyperparameter space of such models (number of LSTM
cells and number of input steps, ℎ) to study tradeoffs between model complexity and accuracy. Results showed that the
smallest LSTM can reduce inference times down to 0.5ms per prediction albeit at a cost of 9% higher average error.

In addition to inference complexity of phase-aware models, their training overhead must ultimately also be considered
when deploying an online learning approach. Training time is dependent on multiple factors such as the optimization
algorithm, e.g. whether batching is utilized, and the number of samples used. As an example, we measured the time and
memory space taken to update the weights of our phase-based forecasting LSTM with 5,000 samples consecutively and a
minibatch size of 10. This requires up to 48MB of memory, and runs in faster than real-time requiring 4.8ms per sample
and 24 seconds total. Reducing the minibatch to size 1 reduces the memory space to 24MB, but increases the training time
to 230 seconds total. Using the same training set size, the training time of the phase-based forecasting SVM is in the order
of hundreds of milliseconds, but requires up to 84MB of memory. The window-based phase prediction DT is the most
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memory-efficient task using only up to 7MB of space and up to 8 seconds. Overall, a standard offline setup is not the best
fit for training during runtime. Instead, optimized online training methods that accelerate gradient computations [26],
intelligently train on a fraction of the samples [18], or reduce the model search space [16, 52] can be applied. In particular,
continual learning is an active field of research [16] with many studies focusing on reducing training overhead, including
approaches such as few-shot learning [46] and importance sampling [18, 19], that can potentially enable low-overhead
re-training of our models at runtime in the future. For example, importance sampling [18] can reduce training times by
at least 20% and up to 2x for various deep learning models without compromising accuracy.

6 SUMMARY AND CONCLUSIONS

In this paper, we studied learning-based methods for phase-aware workload forecasting in multi-core systems using
performance monitoring counters. Our approach combines workload phase classification and phase prediction to
separate time series into phases and train a separate, specialized prediction models for each phase. We proposed three
main multi-core forecasting settings and performed a comparative study of hardware counter-based phase classification,
phase prediction and phase-based forecasting techniques in isolation and under different combinations.

Our isolated studies concluded that a global definition of phases is best at minimizing the average variation per
phase. However, when evaluating the combined solution, a phase-aware LSTM with per-core phase definitions was the
best predictor with 23% average MAPE across benchmarks and up to 22% improvement over a phase-unaware approach.
Results from SPEC 2017 and PARSEC-3.0 benchmarks running on a state-of-the-art workstation show that phase-aware
forecasting reduces MAPE by 6% on average across different benchmarks when compared to the best-performing
phase-unaware approach. Compared to our prior work using oracle phase classification and prediction [3], effectiveness
of phase-aware forecasting is limited by phase classification results. A poor quality of phases will negatively affect both
phase prediction and phased-based forecasting accuracy.

Future work includes investigating better multi-core phase classifiers as well as phase-aware forecasting for a
wider range of workloads, approaches for online training of predictors, efficient hardware or software deployment of
predictors, and application of phase-aware workload forecasting to various use cases such as power management or
system scheduling.
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