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Learning-Based, Fine-Grain Power Modeling of
System-Level Hardware IPs

DONGWOOK LEE and ANDREAS GERSTLAUER, University of Texas at Austin, USA

Accurate power and performance models are needed to enable rapid, early system-level analysis and opti-
mization. There is, however, a lack of fast yet fine-grain power models of hardware components at such high
levels of abstraction. In this paper, we present novel learning-based approaches for extending fast functional
simulation models of accelerators and other hardware intellectual property components (IPs) with accurate
cycle-, block-, and invocation-level power estimates. Our proposed power modeling approach is based on
annotating functional hardware descriptions with capabilities that, depending on observability, allow capturing
data-dependent resource, block, or I/O activity without a significant loss in simulation speed. We further
leverage advanced machine learning techniques to synthesize abstract power models using novel decomposi-
tion techniques that reduce model complexities and increase estimation accuracy. Results of applying our
approach to various industrial-strength design examples show that our power models can predict cycle-, basic
block-, and invocation-level power consumption to within 10%, 9%, and 3% of a commercial gate-level power
estimation tool, respectively, all while running at several order of magnitude faster speeds of 1-10Mcycles/sec.
Model training and synthesis takes less than 34 minutes in all cases, including up to 30 minutes for training
data and trace generation using gate-level simulations.
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1 INTRODUCTION
The continued rise in hardware and software complexities of embedded on-chip systems has
necessitated raising the design process to higher levels of abstraction. At the same time, energy
efficiency has become a critical design concern. Fast and accurate system-level power estimation
approaches are needed to drive associated validation and optimization. Virtual platform models
capable of simulating whole systems are widely employed to provide rapid feedback for design
space exploration. Instead of slow co-simulation with low-level register-transfer level (RTL) or
cycle-accurate models of custom hardware intellectual property components (IPs) and processors,
a purely functional modeling of hardware and software behavior is typically utilized. However,
the modeling gap between fast, purely functional models for integration into virtual platforms
and their corresponding low-level hardware implementations makes accurate power modeling
challenging.
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Fig. 1. Power modeling space.
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Fig. 2. Power modeling approaches.

Figure 1 classifies power modeling approaches based on the granularity and abstraction level of
their functional simulation versus activity and power estimation. At the lowest level, a detailed
but expensive simulation of gate-level switching activity is used to estimate gate-level power con-
sumption. Various power modeling approaches at higher levels of abstraction have been proposed.
Most previous work at the system level utilizes a fast functional C/C++ task simulation to drive
state-based power estimations that only model transitions between different coarse-grain operation
modes [Copty et al. 2011; Lee et al. 2006; Lorenz et al. 2014; Schürmans et al. 2015, 2013; Trabelsi
et al. 2011]. Other approaches use accurate but slow activity estimation at a finer micro-architecture
or RTL granularity. More recently, solutions at the intermediate representation (IR) level have
emerged [Chen et al. 2007; Grüttner et al. 2014; Potlapally et al. 2001; Shao et al. 2014; Zhong et al.
2004]. However, they similarly rely on slow, fine-grain simulation of the cycle-by-cycle behavior
of individually scheduled IR operations in control/dataflow graph (CDFG) or finite state machine
with data (FSMD) form to obtain accurate results.

Existing approaches all estimate power at the same level of detail at which the functionality of
hardware is modeled. This allows a detailed functional simulation to drive an accurate, potentially
data-dependent power estimation model, but also creates a fundamental trade-off between speed
and accuracy depending on the simulation granularity. In this paper, we instead propose novel
approaches that enable fine-grain, data-dependent power estimation at the speed of a fast functional
simulation. Instead of detailed micro-architecture or FSMD/CDFG simulation, we extend high-level
functional simulations with fine-grain, dynamic power modeling capabilities. Depending on the
observability of hardware internals and their mapping to high-level constructs, extended white-,
gray-, or black-box models are able to capture data-dependent resource, basic block, or external
I/O activity, respectively. Extracted activity data is then used to drive corresponding cycle-, block-,
or invocation-level power models, where we statically synthesize data-dependent, activity based
power models at three different levels from a given gate-level implementation using machine
learning approaches.
In previous work, we have developed such learning-based cycle- and invocation-level power

modeling approaches for white- and black-box hardware IPs, respectively [Lee et al. 2015a,b]. Our
white-box approach integrates with existing high-level synthesis (HLS) tools to automatically
extract resource mapping information, which is used to trace resource-level activity and drive a
cycle-accurate online power-performance model during functional IR simulation. By contrast, our
black-box approach utilizes only external I/O activity captured from a transaction-level simulation
to drive an offline invocation-level power model. Both approaches leverage state-of-the-art machine
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learning techniques to synthesize abstract power models, where we introduce specialized structural
decomposition techniques to reduce model complexities and increase estimation accuracy.

In this paper, we extend our prior work and present a comprehensive and fully automated power
modeling framework that provides fast yet accurate learning-based power estimation at three levels
of abstraction. We introduce an intermediate gray-box approach that supports power estimation at
basic block-level granularity. It utilizes less total switching activity and fewer invocations of the
power model than cycle-level models, while providing a finer granularity than invocation-level
models, which allows to further navigate accuracy and speed trade-offs. Furthermore, we improve
our existing white- and black-box approaches to increase estimation speed.
The specific contributions of this paper are: (1) Using only limited mapping information about

basic block inputs and outputs, we develop a light-weight approach for extracting block-level
activity from a functional simulation (Section 4.2); (2) We propose a basic block-level power model
that utilizes a novel decomposition using control flow information to reduce model complexity
while improving estimation accuracy (Section 5.2); (3) We redesign white-box resource-level signal
activity computation to improve estimation speed; (4) We adopt an online approach to capture
invocation-level I/O activity and thus improve black-box estimation speed; (5) We present additional
and larger design examples; and (6) We integrate fast and accurate hardware power models with a
GEM5-based full-system simulation to demonstrate benefits of our models for system-level design,
virtual platform prototyping and design space exploration (Section 6.6).

The rest of the paper is organized as follows: following a discussion of related work, Section III
introduces an overview of our proposed methodology, while Section IV and Section V elaborate
on each step in more detail. Section VI shows experimental results of applying the flow to a set of
industrial-strength design examples. Finally, Section VII concludes the paper with a summary.

2 RELATEDWORK
Figure 2 shows a more detailed taxonomy and overview of existing power modeling work in
relation to our approach. Traditional accurate power models are constructed by coupling gate-
level simulations with gate library power models. To generate higher-level timing and energy
models of custom hardware accelerators and processors, library- or learning-based approaches
can be utilized. In a library-based approach, an overall model is assembled from pre-characterized
component data [Bogliolo et al. 2000; Chen et al. 2007; Grüttner et al. 2014; Gupta and Najm 2000;
Hsieh et al. 1996; Potlapally et al. 2001; Ravi et al. 2003; Shao et al. 2014; Zhong et al. 2004]. This
enables rapid exploration but does not accurately account for all glue logic and implementation-level
optimizations in a combined architecture. In learning-based approaches, a low-level implementation
is simulated in a sampling fashion to derive a regression-based model for a complete processor
or each macro-block [Hsu et al. 2011; Park et al. 2007, 2011; Sunwoo et al. 2010; Wu 2015]. Such
approaches can accurately reflect the behavior of the final implementation. In the best reported
cases, state-of-the-art RTL power models achieve up to 95% cycle accuracy compared to gate-level
simulations. However, speed is fundamentally bounded by the abstraction level at which functional
simulation is performed. Accurate fine-grain and data-dependent approaches require simulation at
the RTL or micro-architecture level to extract internal signal information driving the generated
models, which is typically too slow to be integrated into virtual platforms at the system level.
At the system level, component models are often only functionally equivalent ones, where

necessary internal architectural information for fine-grain modeling is not available, especially in
case of pre-designed IPs. The limited observability of such high-level, black-box models restricts
power estimation to a coarse-grain state-based approach, where the projection of either given,
documented states [Lee et al. 2006; Trabelsi et al. 2011], or state information estimated from external
transaction events [Copty et al. 2011; Lorenz et al. 2014; Schürmans et al. 2015, 2013] only supports
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Fig. 3. Power modeling flow.

capturing average power transitions between different operating modes, such as read and write
modes in memories or buses. To take into account data-dependent effects in power estimation of
black-box components, a corresponding extension of coarse-grain state-based models was recently
proposed [Lorenz et al. 2014]. Depending on the hardware being modeled, invocation-by-invocation
errors of 1%-17% at 4,000x speedup compared to gate-level simulations are reported. In this approach,
cycle-level input switching activity information is utilized to refine states in which significant data-
dependent power variations are observed. This requires augmenting state-based models with the
ability to capture cycle-by-cycle activity, which introduces a significant overhead in the simulation.
Furthermore, a simple linear regression is inherently limited in accuracy.
By contrast, we aim to drive fine-grained, data-dependent power models directly from high-

level C/C++ functional simulations. Our approach supports both library-based and learning-based
methods, where our focus is on the learning-based generation of lightweight implementation-level
representations of complete hardware processors. We propose cycle-, basic block-, and invoca-
tion-level power models combined with extraction of resource, inter-basic block communication,
and external I/O activity from high-level functional simulations. Compared to [Lorenz et al. 2014],
our invocation-level approach only requires capturing I/O activity and instead uses advanced
learning methods to improve accuracy.
A key concern in learning-based methods is managing model complexities without sacrificing

accuracy. Existing approaches rely on sampling a subset of key signals or state variables that are
identified either manually or in a trial-and-error process [Hsu et al. 2011; Sunwoo et al. 2010]. Other
approaches decompose the full power model into several parts based on manual decisions [Park
et al. 2007]. This requires detailed architectural knowledge or designer insight, which is often not
available, especially for black-box IPs. By contrast, we automatically decompose a full power model
into several simpler models based on cycle-, block- or purely I/O-specific information, which results
in better accuracy while reducing learning and estimation overhead.

For software running on processors, so-called source-level or host-compiled modeling approaches
have recently emerged as an alternative to micro-architecture or instruction-set simulation. In
such approaches, a source or IR model of the application is statically back-annotated with timing
and energy estimates extracted from low-level simulations [Grüttner et al. 2014; Zhao et al. 2017].
The static back-annotation is typically performed at the basic block level, which is only able to
capture control-dependent power behavior. Our proposed approach is motivated by host-compiled
software models, but also aimed at accurately capturing data-dependent power effects. Instead of
back-annotating static per block estimates, we annotate the functional simulation with dynamic,
data-dependent cycle-, block- or invocation-level power models. Our approach supports offline or
online prediction as part of high-level functional and activity simulations.
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3 POWER MODELING FLOW
Figure 3 shows an overview of our proposed power modeling flow. The inputs to the flow are a
high-level functional simulation model of a hardware component, its corresponding gate-level
implementation, and optional micro-architecture mapping information. Depending on internal
observability, architecture information can consist of a complete mapping of high-level operations
into RTL states and resources (white-box), the mapping of basic block inputs and outputs to
resources and ports (gray-box), or only limited information about the mapping of external I/O (e.g.
in case of black-box IPs). Micro-architecture information can be manually provided or automatically
extracted during synthesis. In our flow, we integrate with existing, commercial HLS tools to provide
a fully automated power model generation for custom hardware synthesized by HLS.

Using white-, gray-, or black-box micro-architecture mapping information, we annotate the high-
level functional simulation code with the ability to capture activity traces of individual resource,
basic block, or external input and output value transitions. In a training phase, the given gate-level
model and the generated activity model are then simulated with the same input vectors. Power
synthesis utilizes resource, block, or I/O activity traces from the high-level simulation together
with cycle-level power traces from gate-level estimation to learn a power model. Instead of building
a single power model, the synthesis flow decomposes power estimation into multiple models
and individually trains them. Each decomposed power model is further simplified using a feature
selection to reduce the amount of switching information that needs to be collected. In the process,
the activity model is also simplified by removing unnecessary signal tracing not utilized after
feature selection. In the prediction phase, the synthesized power models are then used to estimate
data-dependent cycle-, block-, or invocation-level power traces from corresponding resource, basic
block, or external I/O activity captured in high-level simulations.
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4 ACTIVITY MODEL GENERATION
The annotation process refines a high-level C/C++ hardware functional model into an activity
model. Depending on available architecture information, the refined activity model supports three
different levels of switching activity tracing: individual resources, blocks, or only external I/Os. In
the following, we first describe the general annotation process followed by each specific level of
activity tracing and modeling.

Figure 4 shows an overview of our activity model generation flow, accompanied by representative
models and code snippets at various stages. In our framework, we synthesize a given functional
hardware model down to an RTL description using a standard HLS process. In the process, we
extract the IR of the design generated by the HLS frontend. Working at the IR level allows us to
accurately reflect source-level optimizations, such as bit width reductions that affect tracking of
internal signals in the synthesized RTL datapath. At the same time, the IR is extracted in C/C++
form before back-end synthesis in the HLS tool, i.e. it remains at a fast functional level. The IR
code is further synthesized into an RTL implementation by the HLS tool. In this process, we
automatically extract architecture information in the form of an extensible markup language (XML)
file that stores mapping information between the IR and the synthesized RTL implementation.
Mapping information can be automatically generated during HLS as in our case or optionally
manually provided. Depending on observability, it captures the mapping of IR operations to RTL
control steps and datapath resources, the mapping of basic block inputs and outputs to resources
and ports, or the mapping of functional interfaces to external I/O ports. The annotation process
then automatically inserts corresponding signal trace() functions to generate an activity model
that allows capturing cycle-by-cycle switching activity of individual datapath resources, basic
block-by-basic block activity of block input and outputs, or invocation-by-invocation activity of
external I/O during functional IR simulation.

4.1 Resource-Level Activity Computation
In a white-box case, we support capturing cycle-accurate activity of RTL datapath resources, such as
adders and multipliers, during high-level functional simulation by back-annotating abstract micro-
architecture information into the IR. We assume that micro-architecture mapping information
is provided, where we can extract an FSMD-level description from the HLS tool. The extracted
architecture information includes each IR operation node’s resource scheduling, binding, and bit
width information. Based on this information, the annotation process inserts trace() functions
that store the operands and results of each IR operation together with the scheduled control state
and bound resource ID to compute switching activity. We capture the flow of data and associated
switching activity by tracing IR operands and results. To map data activity into signal transitions of
actual hardware resources, we include resource scheduling and binding information in the captured
traces. In addition, bit width information is annotated to extract the actual number of bits utilized
in hardware. This information is then used to track cycle-by-cycle activity of each resource while
taking into account resource sharing and other back-end synthesis optimizations.
The hardware implementation generally exploits operation-level parallelism and scheduling

flexibility to maximize performance under given resource or timing constraints. As a result, opera-
tors in the IR are not necessarily simulated in the same order in which they execute in the final
hardware. Figure 5(a) and Figure 5(b) show such intra- and inter-block level out of order execution
scenarios, respectively.
In order to rearrange out-of-order execution traces captured in the IR simulation into in-order

traces for hardware estimation, we perform an online reordering of traced information using
annotated scheduling and binding information. As shown in Figure 5(a), the execution order of two
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operators in the same basic block can be reversed in the hardware implementation if there is no
dependency between the operations. To rearrange the trace, we utilize a global signal table and a
trace reordering buffer. The global table tracks signal values of all hardware resources in the most
recent cycle. The trace buffer temporally stores and reorders signal updates associated with the
current basic block. It consists of control state tags and corresponding signal trace lists. Each entry
in the signal trace lists contains the utilized resource ID together with operands and result of the
operation. At the beginning of each basic block, an additional function is annotated to initialize the
buffer and insert state tags corresponding to the block’s control states. Within the block, each call
to the trace() function then attaches a new entry to the signal trace linked list corresponding to
the annotated control state. At the end of the current and beginning of the next basic block, all
signals updated in each control steps are sequentially committed to the global signal table, the head
of the buffer is moved to the tail, all current control step and trace lists are discarded, and new
control state tags assigned to the next block are inserted. In this process, the Hamming distances of
all signals toggling in each control step are computed, and this switching activity information is
committed to either a tracing file or the final power model. In addition, for performance estimation,
a global cycle counter is increased by the number of cycles spent on the block.

As shown in Figure 5(b), the execution of basic blocks can be overlapped in the case of pipelined
hardware loops. This results in some operators in the second iteration to be executed before the last
operator in the first iteration. In [Lee et al. 2015a], we had introduced an additional intermediate
pipeline buffer that retains signal traces of previous iterations to emulate the pipeline structure. To
improve simulation speed, we now account for such pipeline effects by instead controlling the head
and tail management in the trace buffer itself. When first entering the header block of a pipelined
loop, control state tags for a single iteration of the loop body block are inserted into the buffer. If
a pipelined execution is detected, the trace buffer is not committed during execution of the loop
body. Instead, during execution of the header block at the start of each new loop iteration, only the
completed control steps, i.e. entries corresponding to the loop initiation interval (II) are committed,
and the head is moved and entries are discarded accordingly. Remaining entries are retained and
their state tags relabeled to overlap with the start of the next iteration. Finally, new control state
tags for the bottom part of the loop body are inserted into the trace buffer. With each such iteration,
new traces will be added to the remaining buffer contents, which will contain uncommitted signal
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data from previous iterations. After the end of execution of a loop, all remaining entries in the
buffer are committed. Loop information (II as well as IDs of all loop header and body blocks) is
automatically extracted from the HLS tool together with other scheduling and binding information.
Overall, this approach allows us to accurately trace the signal transitions of hardware resources
without the need for a slow lockstep pipeline simulation.

4.2 Block-Level Activity Computation
Internal signal switching activity estimation is a key for data-dependent power modeling. Resource-
level tracing provides cycle-accurate switching activity of each datapath component, but requires
extending the functional model to capture cycle-specific activities, resulting in simulation overhead.
Moreover, Hamming distance and switching activity computation for whole resources is typically
the most significant bottleneck for power estimation, and it is often much slower than actual
functional simulation [Pedram 1997]. Instead of computing cycle-by-cycle switching activity for all
resources, we propose a basic block-level model that only utilizes inter-basic block communication,
i.e. inputs and outputs of basic blocks for activity and power estimation. This reduces the total
amount of signal traces and switching activity that need to be collected and computed, which
results in faster estimation speed.
In order to track inter-basic block communication activity in each block, we trace all input

variables that are updated in a previous block but read in the current block, all output variables
that are written in the current and read in a subsequent block, as well as all block-internal memory
accesses. We extract the mapping of each input and output variable and each array access in the
basic blocks to corresponding registers and memory ports in the hardware while taking into account
register and memory port sharing. The annotation process inserts trace() function calls to store
the inter-basic block communication traces along with the mapping IDs. Input variables are traced
at the beginning of each basic block while output variables and memory access are traced at the
end of each block.

Shared memory accesses can be flexibly scheduled during RTL synthesis to maximize hardware
performance if there is no dependency between the operations. To compute accurate memory port
activity, a reordering is therefore also required, but cycle-accurate reordering is not necessary.
Instead of using a reordering buffer, the annotation process statically reorders the shared memory
accesses by inserting the trace functions in access order.
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Figure 6 shows the block-level activity computation process. Basic block inputs and outputs are
collected in the trace buffer at run-time. At a beginning of the basic block, the trace functions attach
basic block inputs to the signal trace linked list, along with annotated resource information. At the
end of each block, memory accesses and outputs are also attached to the linked list. At the beginning
of the next basic block, the whole list of captured traces is committed into the global signal table
to compute inter-basic block activity during a single basic block execution. For cycle-accurate
performance estimation, the execution time of each basic block is also extracted from the HLS tools
and annotated in a similar manner as for resource-level activity tracing.

4.3 External I/O Activity Computation
If no internal architecture information is available, we support black-box power estimation utilizing
only external I/O activity captured for each function invocation. This is the case for pre-designed
hardware IPs, where only functional simulation models without detailed architecture descriptions
are provided together with pre-synthesized gate-level implementations. This approach can also
further reduce tracing and computation overhead, but without internal timing information, only
supports power modeling at invocation-level granularity.
We assume that I/O interface mapping information between system-level transactions and IP

data ports is given. In black-box models, communication interfaces are approximately modeled,
and the detailed computation architecture is fully abstracted out. The models are often also purely
functional, where no timing information is available. However, even a high-level functional model
has interfaces that map to corresponding external I/O ports. In general, we can find such mapping
information in documents or test benches for gate level simulation.
Required architecture information only consists of external I/O port mapping, bit width and

control port/register information. Designers can manually describe the architecture file to utilize our
automated annotation flow or manually insert trace functions into the source code. Both approaches
can be seamlessly integrated into the automated power model synthesis process without further
manual interventions.
Mapping information and external I/O data are passed into annotated trace() calls, which are

inserted at the beginning and end of each function. To compute I/O activity, we utilize a similar
mechanism as at the basic block-level, but we commit signal traces into the global signal table
only at the end of each function invocation. In addition to external data I/O activity, important
control registers or control ports are also traced. We assume that such control dependencies are
available to model functional or performance behavior. The activities of control signals, such as
mode selections, do not by themselves affect power consumption. However, their value is utilized
to estimate operating mode dependent power variations.

5 POWER MODEL SYNTHESIS
After collecting switching activity traces from the activity model using simulations of a training
set, power models are synthesized in a one-time offline learning process. In the following, we
describe cycle-, block- and invocation-level power models associated with resource, basic block and
external I/O activity including proposed power model synthesis processes utilizing state-of-the-art
machine learning techniques.

5.1 Cycle-Level Power Model
Previous approaches for power estimation at the gate, RTL or micro-architecture level mostly
choose a linear function to model the relation between the internal signal switching activity and
power consumption of a hardware component. Given the internal and external signal switching
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Fig. 7. Example of power model decomposition.

activity column vector a(t) at time t , power consumption p(t) can be modeled as

p(t) = θ · a(t), (1)

where θ denotes a coefficient row vector. To simplify the model, we assume that related pins,
e.g. of buses are grouped, and Hamming distances within a group are utilized as an alternative to
individual bit-wise switching activity. With this assumption, power behavior of complex arithmetic
units is generally not linear [Bogliolo et al. 2000], but without loss of generality, we use a linear
model for the following model derivations.
Ignoring glitching or asynchronous activities, we can convert the continuous power function

into a discrete cycle-level model. In general, average power consumption pn in cycle n can be
modeled as

pn =
1
T

∫ nT

(n−1)T
p(t) dt = θ · a(nT ) = θ · an = PCS(an ), (2)

where an is a discrete activity vector. We utilize resource-level activity vectors captured during
functional tracing to drive a single cycle-level power model PCS(an ).

The complexity of the power model in (2) is directly proportional to the dimension of the activity
vector, where high dimensionality may create generalization errors in learning processes. To avoid
over-fitting, feature sampling, which reduces model dimensions by selecting a key subset of signals,
can be utilized, but this may result in a loss of accuracy. As an alternative to traditional feature
selection, we introduce a structural model decomposition that uses architectural information to
reduce unnecessary signals while improving accuracy.

In white-box models, hardware can be described in FSMD form. Given a finite set of FSMD states
S , where the state executed in cycle n is defined as sn , the power consumption in a given cycle n is
dependent on resource utilization in FSMD state sn . Further, given a finite set of hardware resources
R, a resource scheduling and binding function can be defined asm : S × R → {0, 1}. For instance,
m(r , s) = 1 indicates that resource r is utilized in the state s . With such mapping information, we
can formulate the power consumption in a given cycle n in the following manner:

pn =
∑
r ∈R

m(r , sn) θr · an,r =
∑
r ∈R

θ′
sn,r · an,r , (3)

where θr and an,r denote the coefficient and switching activity subvectors corresponding to
resource r , respectively. In this formulation, the coefficient factors vectors θ′

sn,r =m(r , sn) θr are
not only resource-, but also state-dependent. Coefficients are masked and zeroed depending on
resources utilized in each state. Crucially, such a re-formulation also allows unmasked entries to
vary in order to be able to account for any power consumption of resources as well as connected
control and glue logic being dependent on the control state.

With this, we can decompose equation (3) into separate and independent cycle-level powermodels
PCD,sn for each control state sn . Decomposedmodels PCD,sn are separately and independently trained
from corresponding state-specific training sets. In the process, we can further exploit mapping
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information m(r , s) to identify and remove unnecessary signals an,r corresponding to unused
resources r and thus masked activity in a particular state sn :

pn = PCD,sn (a′sn,n) = θ′
sn · a′sn,n, (4)

where a′sn,n = (an,r |r : m(r , sn) , 0) is a subvector composed of activity of those signals used
in the state sn . We illustrate this with the help of a small example. Figure 7 shows a hardware
micro-architecture in which three resources are allocated (MUL0, MUL1 and ADD). The power
consumption of the complete hardware processor can be estimated using a single cycle-level model
(PCS) from (2) using all switching vectors connecting to all resources. By contrast, the decomposed
power model (PCD) of a given control state instead utilizes the much smaller subset of signals
connecting the resources scheduled in the given state only. For example, the power consumption
of state S3 can be estimated with three signals instead of all nine switching vectors. As such, a
power model decomposition based on structural micro-architecture information is able to reduce
the complexity of the model with little to no information loss. At the same time, it also allows for
state-dependent variations in coefficients θ′

s that can account for differences in power consumption
of resources and other shared logic.
Decomposition based on the FSMD information still has limitations in handling states with

high resource utilization, such as pipelined states with many scheduled operators. Moreover,
decomposition still requires all signals to be traced across states, which decreases simulation speed.
To further reduce feature sets, we additionally leverage a decision tree approach from machine
learning [Ratanamahatana and Gunopulos 2003]. Additional feature selection further reduces
complexity and improves estimation latency.

5.2 Block-Level Power Model
Instead of internal resource-level activity, our block-level power model only utilizes switching
activity of sampled basic block inputs and outputs for power estimation. Given the mapping of
block inputs and outputs to registers or ports, internal signal activity in such an approach is
indirectly observed from switching activity of input and output signals. Internal signal activity for
pipelined and multi-stage hardware architectures in the current cycle can thereby be approximated
from future and past switching activities of output and input registers/ports, respectively. We
leverage the fact that internal switching activities are highly correlated with input and output
activities. Figure 8(a) and Figure 8(b) show such correlations in combinational logic and multi-stage
architecture implementations, respectively.
The input and output switching activities of combinational arithmetic operators are linearly

correlated [Bogliolo et al. 2000]. Hence, the input switching activity of an operator can be modeled
as a linear function of the input switching activity of the driving ancestor. For example, the power
consumption of the dataflow graph in Figure 8(a) can be formulated as pn =

∑
v=a...e θv ·an,v . Using

such a linear input-output relationship, we can simplify this equation to pn =
∑
v=a,b,c,e θ

′′
v · an,v .

For pipelined or multi-stage architectures, input activity and activity of the first pipeline stage
register are also linearly correlated. Similarly, activity of the second stage is linearly correlated to
activity in the first stage. We can therefore approximately estimate internal switching activities
throughout the pipeline from the input activity history. However, the activity of registers far away
from the input are weakly correlated or not correlated at all. Instead, they are more likely to be
correlated to activity at the outputs of the pipeline. Hence, to handle deeply pipelined logic and
improve accuracy, we also consider future output activities for prediction. For a given pipeline of
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Fig. 8. I/O switching activity correlation.

depth d , we can derive an I/O-based cycle-level power model PCI as

pn = PCI(an−d+1, I , ..., an, I , an,O , ..., an+d−1,O )

=
∑d−1

i=0 θ′′
i · (an−i, I , an+d−i−1,O ),

(5)

where an, I and an,O denote the input and output activity vectors, and θ′′
i denotes coefficient vectors

corresponding to pipeline stage i . For example, the power consumption of the pipelined hardware
implementation in Figure 8(b) can be computed as pn =

∑
v=a,b,c,d θv · an,v . Using I/O history

and future, we can instead re-formulate power consumption as pn =
∑2

i=0 θ
′′
i · (an−i,a ,an+2−i,d).

The power consumption of the micro architecture in Figure 7 can similarly be formulated as
pn =

∑1
i=0 θ

′′
i · (an−i,a,an−i,b,an−i,c,an−i,d,an+1−i, i) using activity history of primary I/O ports ‘a’,

‘b’, ‘c’, ‘d’, and ‘i’. Note that this model applies to power estimation in all cycles/states Sn , n = 1...3,
i.e. the stage-wise decomposition here is different from the state-wise in (4).
A block-level power model can then be formulated to estimate an average power consumption

per basic block using switching activity of basic block inputs and outputs. Given a set of basic
blocks B, where them-th executed basic block is defined as bm , the average power consumption
p̄m of basic block bm can be formulated from (5) as

p̄m =
1
L̄m

nm+L̄m−1∑
n=nm

d−1∑
i=0

θ′′
i · (an−i, I , an+d−i−1,O ), (6)

where nm and L̄m denote the start cycle time and execution cycles of them-th basic block, respec-
tively. To simplify the equation, we can remove the summations over the pipeline and execution
cycles by introducing a new coefficient vector θ̄ and thus define a single block-level power model
PBS in the following manner:

p̄m =
1
L̄
θ̄ · ām = PBS(ām), (7)

where L̄ = maxm L̄m denotes the maximum execution cycles over all basic blocks and ām =
(anm+j, I , anm+j+d−1,O | 1− d ≦ j < L̄) denotes a concatenation of all the activity of input and output
ports that can flow through the pipeline for the length of the block. For blocks with length L̄m < L̄,
we append zero pad vectors (anm+j, I = anm+j+d−1,O = ®0, L̄m < j < L̄) to keep the same dimension
for all ām .
In block-level gray-box activity models, we can only observe inputs and outputs of each basic

block, not the actual cycle-by-cycle activity of all primary input and output registers or ports. For
example, in Figure 7, ‘a’, ‘b’, ‘c’, ‘d’, and ‘i’ are primary I/O ports of the whole hardware. Assuming
that a basic block starts and ends with S1 and S3, block inputs are ‘a’, ‘b’, ‘c’, and ‘d’ in state S1, and
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Fig. 9. Basic block-level decomposition for multi-path control flow.

‘c’ and ‘d’ again in state S2. Block output is ‘i’ once in S3. We capture only these values, which are
represented as different variables in the activity model code. Similarly, assuming the block starts
with S2, block inputs would be ‘c’, ‘d’, ‘g’, and ‘h’. In this case, instead of using history of primary
input ports for estimating activity of internal registers REG0 and REG1, we directly capture and
trace block inputs ‘g’ and ‘h’. In all cases, we can therefore only use actual inputs and outputs of the
current basic block to estimate the power consumption, where feature selection is implicitly applied
to remove unnecessary signals not utilized in the block, thus reducing model complexity. With
this, we can further decompose equation (7) into separate and independently learned block-specific
power models PBD,bm for each basic block bm in the following way:

p̄m = PBD,bm (ā′m,bm ) =
1
L̄m

θ̄
′
bm · ā′m,bm (8)

where ā′m,bm
and θ̄

′
bm denote the block-level activity vector and corresponding coefficient vector

for basic block bm , respectively.
In case of pipelined or speculative scheduling, executions of successive basic blocks can overlap.

Since we can not separate power consumption of overlapped blocks during training, we need
to account for such periods by attributing power contributions of previous blocks that are still
executing to the model of a current block. We redefine the execution length L̄m of a characterized
block bm as the cycle difference between the start of its first operation and the start of the first
operation of the next block. In other words, a block is defined to end when the next block starts. In
addition, we extend the activity vector of a block by including activity vectors of all overlapping
blocks. Such extended activity vectors may increase the complexity of the model, but only a small
part of the transaction activities contribute to the power consumption in any given cycle, which
results in many of the elements of the feature vector being zero or small. To prune away such
uncorrelated features, we apply an additional feature selection for each decomposed model.
Finally, overlapped execution of blocks can also depend on control flow. Figure 9 shows the

control flow graph of five basic blocks with two different paths (Path 1 and Path 2). Depending on
the taken path, the length and overlapping of block B2 varies. To account for such variations, we
extract possible execution paths during training and build different power models PBD,bm,k for each
possible path k through a block bm .

5.3 Invocation-Level Power Model
For black-box cases, we propose an invocation-level power model that estimates an power con-
sumption per invocation using switching activity of external I/O and control signals only. Given a
per-invocation execution latency ¯̄Ll and assuming that the l-th invocation starts in cycle nl , we
can formulate an invocation-level power model PIC that itself is not learned, but instead computes
the average power ¯̄pl of invocation l by averaging cycle-by-cycle power obtained from a single
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I/O-based cycle-level power model PIC according to (5) over the length of the invocation ¯̄Ll :

¯̄pl = 1
¯̄Ll

∑nl+ ¯̄Ll−1
n=nl PCI(..., an, I , an,O , ...)

= PIC, ¯̄Ll (AI,l,AO,l ).
(9)

Here, AI,l and AO,l denote an external input and output activity matrix composed of ¯̄Ll input and
output activity column vectors an, I and an,O , nl ≦ n ≦ nl +

¯̄Ll − 1, respectively. In this formulation,
we assume that invocations do not overlap, and we enforce the following initial condition on the
input and output activity vectors: an, I = an,O = ®0 for all n < nl or n > nl +

¯̄Ll .
In this model, re-arrangement of transactions and cycle-by-cycle I/O tracking is required to

compute cycle-level switching activity on external input and output ports, which introduces a
significant computation overhead. However, by fully expanding equation (9) following (5), it can be
seen that invocation-level power does not actually depend on the order of activity information.
Furthermore, if there is no transition in cyclen for input or output ports, the corresponding elements
in external activity matrices AI,l or AO,l will be zero and terms will be masked. This indicates
that we can formulate a single invocation-level power model PIS, ¯̄Ll by finding the contributed and
reordered coefficients ¯̄θ purely from transaction-level activity vectors ¯̄a:

¯̄pl =
1
¯̄Ll

¯̄θ · ¯̄a = PIS, ¯̄Ll (¯̄a). (10)

We create multiple such power models, one for each possible invocation latency ¯̄Ll .
Transaction-level activity vectors are computed using Hamming distances over transaction data

traces, where ¯̄a is a concatenated vector composed over all transactions in an invocation, which
does not require cycle-level rearrangement or cycle-by-cycle activity computation. However, the
worst-case dimension of ¯̄a is the product of the total number of external ports and execution cycles
¯̄Ll , which may create generalization errors in learning processes.
To address such issues, we previously decomposed cycle- and block-level power models into

separate and independent models for each state or block. However, this is not possible in black-box
models, where control flow or state composition as well as scheduling and binding information is
not available. However, since the current state is a function of the cycle n, we can indirectly capture
the state based on n and an additional control vector c. We thereby assume that control signals c,
if any, determine the IP operating mode on a per invocation basis, but remain constant over one
invocation. With this, we can decompose the power model into separate and independently learned
models PID,n(c, ¯̄a) for each cycle n. In the process, we convert equation (10) into an ensemble of
decoupled multiple regressions as follows:

¯̄pl = PIE, ¯̄Ll (c, ¯̄a) =
1
¯̄Ll

∑nl+ ¯̄Ll−1
n=nl PID,n(c, ¯̄a),

PID,n(c, ¯̄a) = ¯̄θ′
n · (c, ¯̄a),

(11)

where ¯̄θ′
n denotes a decomposed coefficient vector and (c, ¯̄a) the concatenation of control inputs

and transaction activity. In (11), the dimension of each model PID,n is the same as the single power
model PIS, ¯̄Ll from (10), i.e. the decomposed models use the complete transaction activity ¯̄a at their
input. However, only a small part of the transaction activities actually contribute to the power
consumption in any given cycle. We leverage a decision tree based feature selection for each
decomposed model to remove such unimportant features and reduce model complexity. As a result,
the uncertainty of the individual cycle-models is improved and there is less chance to run into
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generalization errors. Note that (11) is similar to (9), but (9) uses a single, uniform instead of separate
and independent models for each cycle. Overall, the total number of models to learn is increased.
However, each decomposed model uses the same input vectors, which enables parallel learning
and prediction without additional overhead. Note that models could be further decomposed along
control inputs. However, as the control space is exponential in the number of control signals, this
would result in significant learning overhead.

The decomposition in (11) represents a form of ensemble learning. Ensemble learning is known
to achieve better accuracy by utilizing the diversity over multiple learning models [Bishop 2007].
Traditional ensemble learning introduces diversity by dividing the training set, training each model
with the partitioned training set, and then predicting the target value as the average over the
prediction values of each model. By contrast, we introduce diversity by decomposing the model into
separate cycle models. Compared to the single invocationmodel in (10), if errors of each decomposed
cycle model are uncorrelated, the error of the ensemble model can be reduced by a factor of ¯̄L [Lee
et al. 2015b]. In general, each decomposed model predicts a different cycle power, which implies
that individual cycle errors will not be highly correlated. Moreover, we utilize non-linear learning
approaches to prevent correlations between models, as will be discussed in the following section.
As such, we can expect that the ensemble model always provides better accuracy than the single
invocation one. Note that an averaged cycle-level model PIC also estimates cycle-by-cycle power
behavior using a single model instead of multiple decomposed ones. However, since each error is
generated from the same model, errors are highly correlated. As a result, we can also expect that
the ensemble model shows better prediction accuracy than a single cycle-level model.

5.4 Model Selection and Training
Each power model is trained from given power and activity traces. The activity traces collected
from activity model simulation contain the start cycle times, execution cycle times, decomposed
model IDs, and corresponding switching vectors. Power traces contain actual power measurements
from an equivalent gate-level simulation for the same set of training inputs. Activity and power
traces are partitioned into model IDs, and each power model is then trained with the corresponding
partitioned traces. Synthesized power models are thereby able to compute data-dependent power
consumption estimates from the captured activity traces.

In general, a least squares linear regression over a set of training vectors has beenwidely employed
to find the coefficient of power models. However, as mentioned previously, power behavior of
complex arithmetic units is generally not correlated linearly to Hamming distances of inputs and
outputs [Bogliolo et al. 2000]. Moreover, control dependencies may have a non-linear correlation
with power consumption in the invocation-level case. A decomposition along control inputs could
potentially linearize them, but this increases learning complexity. Furthermore, linear regressions
provide not enough diversity, which increases the error in the final ensemble model [Gashler et al.
2008].

By contrast, depending on hardware functionality, input data statistics and complexity of models,
a non-linear machine learning model can represent the power consumption behavior better than a
typical linear least squares model while also providing more diversity, but this comes at the expense
of estimation overhead. We thus evaluate various linear as well as non-linear regression models as
part of our experiments.
For online power estimation, calls to a regression model library are inserted as part of the

annotations in the activity model. At the start of hardware simulation, synthesized power model
parameters, coefficients, and data structures are loaded into regression models. As part of this
process, unnecessary signal tracing calls inserted during the activity annotation process are removed
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Table 1. Benchmark summary

Pipe
Basic

States
Cycles per

Gates
Traced Traced Traced Train Test Total Avg.

Blocks Invocation IR Op. Block I/O Ext. I/O Invoc. Invoc. Test Cycles Power

GEMM
No 10 6 734 703 11 4 3 2,000 5,000 3,670,000 0.36mW

Yes 6 4 436 964 20 4 3 2,000 5,000 2,180,000 0.72mW

DCT
No 6 23 179 7,007 139 32 8 3,000 10,800 1,933,200 0.67mW

Yes 6 12 94 6,309 127 32 8 3,000 10,800 1,015,200 2.05mW

HDR
No 13 18 995 4,883 70 24 12 988 1,200 1,194,000 0.81mW

Yes 10 20 825 7,887 104 52 12 988 1,200 990,000 1.07mW

QUANT
No 6 6 194 1,032 7 10 4 3,600 12,288 7,150,452 0.24mW

Yes 6 4 68 1,035 8 10 4 3,600 12,288 2,506,752 0.43mW

BF
No 4 12 135 19,364 159 7 4 2,460 24,000 3,240,000 3.65mW

Yes 4 4 25 22,228 169 7 4 2,460 24,000 600,000 4.08mW

to improve simulation speed. At run-time, the power model then estimates the power consumption
of the hardware implementation from the dynamically computed switching activities.

6 EXPERIMENTAL RESULTS
We have implemented a fully automated realization of our power modeling flow. We integrated
our flow with the Xilinx Vivado HLS engine utilizing the LLVM compiler framework [Lattner and
Adve 2004] for automatic activity annotation, prediction insertion and IP model generation. Power
model synthesis utilizes the scikit-learn [Pedregosa et al. 2011] machine learning library for Python.
For fast online prediction, we natively implemented C++ based power estimation models to reduce
Python binding overhead. We have released our learning-based system-level power modeling tool
set in open-source form at [Lee 2017].

We applied our flow to generate models for pipelined and non-pipelined hardware designs of a
6x6 general matrix multiplication (GEMM), a 2D discrete cosine transform (DCT), a JPEG quantizer
(QUANT), a weight computation block of a high dynamic range (HDR) imaging application [Mertens
et al. 2007] and a bilateral filter (BF) [Paris et al. 2009]. The quantizer has two control inputs for
choosing a quantization table and the image scaling quality. All hardware designs were synthesized
using Synopsys Design Compiler with the Nangate 45nm Open Cell Library [Nangate 2017] at
200Mhz clock frequency. Gate-level power was estimated using Synopsys PrimeTime PX with VCD
files generated from full gate-level simulation. All experiments were performed on a quad-core Intel
i7 workstation running at 3.5 GHz. To learn each power model, we used training sets generated
from different random seeds or images. To generate test vectors, the GEMM design was simulated
with 5000 random test matrices. A 640x320, a 512x512, and a 200x100 24-bit RGB image are used to
generate DCT, QUANT, and HDR test vectors, respectively. The test vectors for the BF design are
sampled from a 600x402 gray image. Three different quality factors and two different table setting
are utilized to generate the test set for the QUANT design. Table 1 summarizes benchmarks and
synthesis results including number of basic blocks and states in each design, execution cycles per
invocation, the number of signals traced and utilized by each activity and power model, the size of
training and test sets, and the average power consumption of each test set simulation.
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(a) Cycle-by-cycle power accuracy.
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Fig. 10. Comparison of cycle-level model accuracy and speed.

6.1 Cycle-Level Power Estimation Results
Figure 10 shows accuracy and speed of proposed decomposed cycle-level power models (CD) as
compared to a single cycle-level power model (CS) across various benchmarks. We measured data-
dependent cycle-by-cycle mean absolute error (MAE) of values predicted by each model compared
to gate-level simulations, normalized against average power over the full simulation. We compare
both power models utilizing a least squares linear regression (CS-L and CD-L) against a decomposed
model using a decision tree regression (CD-DT), a linear Bayes ridged regression (CD-BL), or a
gradient boosting regression composed of multiple decision trees (CD-GB). In all cases, we applied
a decision tree based feature selection to remove uncorrelated features and then unused signals.

We can observe that, in all cases, linear decomposed models (CD-L) show on average 1.8x better
accuracy than single cycle-level models with least squares regression (CS-L). The proposed structural
decomposition technique results in up to 26% less MAE, which indicates that decomposition is a
key factor in improving model accuracy. Significant accuracy improvements are observed in the
non-pipelined DCT case. In the non-pipelined DCT, there is a substantial power variation across
states. It is generally hard to capture such state-dependent trends in a single cycle model. Compared
to simpler designs (QUANT, GEMM), higher accuracy improvements are observed in complex
hardware implementations (HDR, DCT, BF), which indicates that decomposition is more effective
in large designs. Among all models, decomposed power models utilizing decision tree (CD-DT) or
gradient boosting (CD-GB) regression show better accuracy than others. Linear models (CD-BL,
CD-L) show the worst results in all cases, with up to 4.8% higher errors, where Bayesian models
(CD-BL) generally perform similar or worse than standard least squares regressors.

Speed (Figure 10(b)) generally depends on the complexity versus execution cycles of the design.
Single models are slightly faster than decomposed ones on average. In the single models, more
activity features are treated as correlated and thus removed during feature selection, which results
in significantly less accuracy but better speed. Models using gradient boosting regression (CD-GB)
are on average 3.6x slower than others. Gradient boosting needs to call multiple subcomponent
models, which generally introduces much larger prediction overhead. The decision tree model (CD-
DT) is thereby 3.4x faster than a gradient boosting (CD-GB) one at similar accuracy. Least squares
models (CD–L) are on average slightly faster, but decision tree models (CD-DT) provide on average
1.3x better accuracy. Overall, when comparing different regression methods and models, results
show that a decomposed power model utilizing a decision tree regression (CD-DT) provides the
best trade-off between accuracy and speed. The CD-DT model achieves on average 1.3Mcycles/sec
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Fig. 11. Comparison of block-level model accuracy and speed.

at 94% accuracy. Compared to our previous work [Lee et al. 2015a] that did not include overhead
for writing results to disk, when similarly excluding file I/O, decision tree models (CD-DT) are
on average 2.4x faster at the same accuracy. Such speed gains are achieved using an improved
resource-level activity computation (Section 4.1) and adopting a C++ instead of a Python based
power estimation model.

6.2 Block-Level Power Estimation Results
Figure 11 shows model accuracy and speed of proposed block-level decomposed power models
(BD) as compared to the single basic block models (BS) across various benchmarks. To evaluate
block-by-block MAE, we convert the gate-level cycle-by-cycle trace by assigning the average power
dissipation to corresponding blocks. We compare both power models utilizing a least squares linear
regression (BS-L, BD-L) against a decomposed model using a decision tree (BD-DT), a linear Bayes
ridged (BD-BL), or a gradient boosting (BD-GB) regression. Decision tree based feature selection is
applied in all cases.

The decomposed model using least squares regression (BD-L) shows up to 19% higher accuracy
than a single model (BS-L). In case of pipelined QUANT and GEMM, accuracy is not improved
since one single loop body block takes up most of the execution time. Non-linear regression models
(BD-DT and BD-GB) again show better accuracy than the linear ones (BD-L, BD-BL), with up to
12.1% lower errors.

Figure 11(b) compares speed across various benchmarks. Here, decomposed models show faster
estimation speed than single ones, since the latter require the union of all possible block inputs
and outputs to be provided for each block. As before, the decision tree model (BD-DT) provides
the best balance. It is on average almost as fast as linear models, and 2x faster than a gradient
boosting (BD-GB) one at similar accuracy. Overall, block-level models provide similar accuracy
than cycle-level estimates at significantly improved speed. The BD-DT model achieves on average
4.1Mcycles/sec at 94.5% accuracy.

6.3 Invocation-Level Power Estimation Results
Figure 12 compares model accuracy and speed of proposed invocation-level ensemble models
(IE) as compared to averaged single cycle-level (IC) and single invocation-level power models (IS)
across various benchmarks. We measured data-dependent invocation-by-invocation MAE of values
predicted by each model compared to gate-level simulations. We compare all power models utilizing
a least squares regression (IC-L, IS-L, IE-L) against an ensemble model using a linear Bayes ridged
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Fig. 12. Comparison of invocation-level model accuracy and speed.

(IE-BL), a decision tree (IE-DT), or a gradient boosting (IE-GB) regression. Decision tree based
feature selection is applied in all cases.
The ensemble model using a least squares regression (IE-L) shows up to 6.2% and 1.4% lower

errors compared to the single cycle- and invocation-level models (IC-L and IS-L), respectively. The
non-pipelined DCT hardware shows large power variations in each cycle, but almost constant
power consumption for each invocation. Since errors of the cycle-level model (IC-L) generated
from the same, single cycle model are highly correlated, the error is not significantly reduced by
averaging over invocations. The single invocation-level model (IS-L) shows better accuracy on
average, but higher errors in complex cases utilizing long transaction activity vectors (GEMM,
HDR). By contrast, the ensemble estimation (IE-L) utilizing decomposed cycle models does not
suffer from such correlation and complexity problems. Among ensemble models, linear regressions
(IE-L and IE-BL) again show the worst accuracy. Non-linear models (IE-DT, IE-GB) show up to 3.3%
additional accuracy improvement. The accuracy improvements in QUANT benchmarks are bigger
than in other benchmarks due to the non-linear correlation between control inputs and power
consumption. Overall, IE-DT and IE-GB estimate invocation-level power dissipation to within 3.3%
MAE compared to gate-level power results.
When comparing speed (Figure 12(b)), due to its simplicity, the single invocation model (IS-L)

is on average significantly faster than others. Both the ensemble and cycle-level power models
(IE-L and IC-L) estimate at a cycle-by-cycle level, but the ensemble models (IE-L) are on average
5x faster due to light-weigth activity computation and parallelized cycle-level prediction. Among
ensemble models, decision tree (IE-DT) models are the fastest. The dimension of activity features
for the invocation-level model is much higher than resource- and block-level activity features.
With such high-dimensional feature vectors, decision tree regressions can be faster than linear
ones. Overall, when comparing different regression methods and models, results show that IE-DT
provides the best trade-off between accuracy and speed. The IE-DT model achieves on average
8.8Mcycles/sec at 98% accuracy. By adopting an online I/O activity computation, it is on average
24x faster than our prior offline estimation in [Lee et al. 2015b].

6.4 Overall Speed and Accuracy Comparison
Table 2 summarizes accuracy and speed of models across benchmarks. We compare the accuracy of
cycle-level decomposed models (CD), basic block-level decomposed models (BD), and invocation-
level ensemble models (IE) utilizing decision tree regression in all cases. In addition to average
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Table 2. Summary of modeling accuracy and estimation speed

Pipe

MAE Average Speed

Cycle Basic Block Invocation Error [Cycles/Sec]

CD CD BD CD BD IE CD BD IE C Code CD BD IE RTL Gate

GEMM
No 10.1% 7.9% 7.8% 3.1% 3.0% 3.3% 0.4% 0.5% 0.5% 220M 1.20M 2.34M 7.92M 51K 0.61K

Yes 7.9% 6.5% 6.5% 2.2% 2.2% 2.3% 0.1% 0.1% 0.1% 130M 0.84M 1.70M 7.27M 35K 0.36K

DCT
No 0.6% 1.3% 0.5% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 32M 1.40M 7.44M 15.59M 16K 0.41K

Yes 3.9% 2.5% 3.6% 1.1% 1.4% 1.6% 0.5% 0.2% 0.2% 17M 1.25M 4.83M 12.69M 5.9K 0.19K

HDR
No 7.6% 3.2% 6.1% 2.0% 1.9% 1.8% 0.9% 0.7% 0.7% 32M 1.66M 7.61M 9.17M 13K 0.28K

Yes 6.6% 3.1% 5.4% 2.4% 1.9% 2.4% 1.0% 1.4% 1.9% 27M 1.65M 8.94M 10.73M 11K 0.20K

QUANT
No 10.0% 10.0% 9.0% 3.6% 3.0% 1.0% 0.1% 0.9% 0.2% 48M 2.08M 2.91M 13.00M 19K 1.80K

Yes 6.0% 6.0% 6.8% 1.7% 3.0% 1.1% 0.4% 0.7% 0.8% 17M 1.48M 1.64M 5.11M 9.3K 1.52K

BF
No 4.6% 2.7% 3.8% 0.7% 1.3% 1.4% 0.5% 0.5% 0.7% 64.80M 0.85M 4.98M 1.28M 19K 1.80K

Yes 3.2% 4.3% 5.6% 1.5% 4.5% 2.8% 0.9% 3.9% 1.8% 17M 1.48M 1.64M 5.11M 9.3K 1.52K

Avg. - 6.0% 4.8% 5.5% 1.8% 2.2% 1.8% 0.5% 0.9% 0.7% 60M 1.30M 4.08M 8.79M 17K 0.58K

(a) DCT simulation.
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Fig. 13. Cycle-by-cycle power traces for a single invocation.
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Fig. 14. Invocation-by-invocation power traces.

errors across the whole simulation, we measure the data-dependent cycle-by-cycle, basic block-
by-basic block, and invocation-by-invocation MAE predicted by each relevant model compared to
gate-level simulations. We compute the basic block-by-basic block, and invocation-by-invocation
errors of the cycle- and basic block-level models, respectively, by averaging power models over
blocks and invocations. The cycle-level model (CD) shows better block-level accuracy than the
basic block-level model (BD), similar invocation-level accuracy to the ensemble model (IE), and the
best average error across the whole simulation since it utilizes the largest amount of tracing. The
BD model utilizes the smallest number of decomposed models, which results in the worst average
prediction accuracy among all models. The ensemble approach (IE) utilizes the largest number
of models, which enables a better invocation-level accuracy than others. Across all benchmarks,
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Fig. 15. Learning overhead vs. model accuracy for pipelined DCT.

average errors of cycle-, block- and invocation-level models across the whole simulation are below
1%, 2%, and 2%, respectively.

We also compare simulation speed of generated models to pure source-level, RTL, or gate-level
simulation. The block-level model (BD) is on average 3x faster than the cycle-level one (CD). This
is due to its reduced activity features and smaller number of power model function calls. Both IE
and CD utilize cycle-level estimation models, but the invocation-level model is on average 7x faster.
The light-weight activity computation and parallelized internal component power estimation of
the I/O-based ensemble approach improves simulation throughput significantly. Overall, compared
to a pure source-level simulation, the cycle-, block- and invocation-level models are on average 45x,
15x and 7x slower. However, they are about 77x, 239x and 516x faster than RTL power simulation,
and 2,200x, 7,100x, and 15,300x faster than gate-level estimation.

Figure 13 and 14 show cycle-by-cycle and invocation-by-invocation profiles of estimated versus
measured power waveforms for the pipelined DCT and HDR designs, respectively. Note that the
cycle-level trace of the block-level model shows the averaged power at block granularity. As the
profiles show, our proposed models can accurately track power behavior within each invocation,
as well as data-dependent effects across different invocations of the same design.

6.5 Learning Overhead
The major learning overhead is collecting gate-level simulation results to construct the training
vectors. Depending on the trace length and design complexity, we were able to generate gate-level
power traces for training within 6 to 30 minutes. The learning times of cycle-, block-, and invocation-
level models are proportional to the number of decomposed models, i.e. states, basic blocks, and
execution cycles per invocation, respectively. As mentioned previously, the invocation-level model
supports parallel learning, which results in comparable learning speed to cycle-level models. The
synthesis time of block-level models is the shortest with 30 to 90 seconds. Synthesis of cycle- and
invocation-level models is on average three times slower than block-level models, taking 30 to
200 seconds. Overall, we were able to synthesize power models in each case within 34 minutes
including trace generation.

Figure 15 further details the learning overhead and accuracy at different modeling levels for the
pipelined DCT benchmark. By increasing the size of training sets, we explore trade-offs between
learning overhead and final accuracy of trained models. We measure accuracy as invocation-by-
invocation MAE of CD, BD and IE models utilizing either decision tree (-DT) or least squares linear
regression (-L). In all cases, as discussed before, models utilizing decision tree regression always
show better results than simple linear ones. Models with linear regression suffer from overfitting
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Fig. 16. GEM5 simulation of HDR application with integrated hardware accelerator model.

trends, which indicates that IP power behavior is inherently non-linear. We can observe that the
CD-DT model provides the best accuracy for the same size of the training set, reaching more
than 99% accuracy for a training set with 300 vectors. The IE-DT model shows the worst learning
efficiency, reaching 96% accuracy with the same amount of training. For the same training size,
models based on more detailed and fine-grain estimation generally show better accuracy than more
coarse-grain ones. Combined with opposing trends in estimation speed, this establishes a trade-off
between modeling level, accuracy, training efficiency and speed.

6.6 Integration with Full-System Virtual Platform Simulation
In order to demonstrate benefits of our models for virtual platform prototyping and system-level
design space exploration, we integrate the generated power and performance model for the HDR
weight computation accelerator into a full-system simulation of a complete HDR application. For
online power and performance estimation, we integrate a C++ model of the HDR weight computa-
tion block annotated with our cycle-accurate white-box power model into the GEM5 [Binkert et al.
2011] system simulator. We combine the weight computation accelerator with a cycle-accurate
simulation of the remaining HDR application executing on an ARM Cortex-A15 CPU running
a Busybox Linux kernel version 2.6.38. We manually design the necessary software drivers and
hardware wrappers to provide the communication interface between the HDR application on the
CPU and the generated hardware accelerator model. Figure 16 shows an overview of the final
system model integrating the HDR accelerator.
To enable processor power estimation, we modify GEM5 to integrate a McPAT [Li et al. 2013]

based power model for the CPU as well as DVFS capabilities based on [Spiliopoulos et al. 2013].
In an offline process, we first extract power coefficients from McPAT for the given Cortex A15
processor description. Using these coefficients, we then integrate a fast online power model that
estimates CPU power consumption using statistics collected from the GEM5 simulator together
with DVFS state information sampled every 5ms. The CPU governor in the Linux OS running on
the platform thereby controls processor voltage and frequency between 1GHz and 310MHz through
a DVFS module model. The hardware accelerator is simulated to run at a fixed 200MHz.

We demonstrate system-level architecture design space exploration for the HDR application using
three different system configurations: a floating-point software-only design (Float), a fixed-point
software-only design (Fixed), and fixed-point hardware-accelerated system (FixAcc). Figure 17
shows the simulated full-system power traces, total HDR execution time and total energy con-
sumption for each configuration. Full-system simulations run at speeds of 29Kcycles/sec (Float),
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Fig. 17. Simulated traces of total system power for HDR application.

25Kcycles/sec (Fixed) and 26Kcycles/sec (FixAcc) in terms of fixed 1GHz system reference clock
cycles simulated per second. This demonstrates that overall simulation speed is limited by CPU
simulations. Even our most detailed, cycle-accurate hardware model introduces only negligible
simulation overhead and is, in fact, faster than the cycle-accurate CPU model.

7 SUMMARY AND CONCLUSIONS
In this paper, we presented a novel machine learning-based approach for extending fast high-level
functional models of hardware IPs with data-dependent accurate power estimates. Our power
modeling approach is fully automated by integrating with commercial HLS tools for custom
hardware synthesized by HLS. Depending on hardware observability, an automated annotation
flow first generates activity models, which allow capturing data-dependent hardware activity
without detailed micro-architecture simulation. Our power model synthesis flow then leverages
state-of-the-art machine learning techniques to synthesize power models at different granularities.
We propose novel model decompositions that reduce model complexities and increase estimation
accuracy. We have evaluated our flow on several industry-strength benchmark designs. Results
show that our proposed power models are able to achieve orders of magnitude speedup compared
to gate-level or RTL power simulation, all while estimating cycle-, block- and invocation-level
power to within 10%, 9% and 3% of a commercial gate-level estimation tool. Such fast and accurate
power and performance models allow integration with virtual platform or full-system simulators
to support system-level architecture exploration.
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