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Electromagnetic (EM) fields have been extensively studied as potent side-channel tools for testing the security of hardware 

implementations. In this work, a low-cost side-channel disassembler that uses fine-grained EM signals to predict a program’s execution 

trace with high accuracy is proposed. Unlike conventional side-channel disassemblers, the proposed disassembler does not require 

extensive randomized instantiations of instructions to profile them, instead relying on leakage-model-informed sub-sampling of potential 

architectural states resulting from instruction execution, which is further augmented by using a structured hierarchical approach. The 

proposed disassembler consists of two phases: (i) In the feature-selection phase, signals are collected with a relatively small EM probe, 

performing high-resolution scans near the chip surface, as profiling codes are executed. The measured signals from the numerous probe 

configurations are compiled into a hierarchical database by storing the min-max envelopes of the probed EM fields and differential signals 

derived from them, a novel dimension that increases the potency of the analysis. The envelope-to-envelope distances are evaluated 

throughout the hierarchy to identify optimal measurement configurations that maximize the distance between each pair of instruction 

classes. (ii) In the classification phase, signals measured for unknown instructions using optimal measurement configurations identified 

in the first phase are compared to the envelopes stored in the database to perform binary classification with majority voting, identifying 

candidate instruction classes at each hierarchical stage. Both phases of the disassembler rely on a 4-stage hierarchical grouping of 

instructions by their length, size, operands, and functions. The proposed disassembler is shown to recover ~97-99% of instructions from 

several test and application benchmark programs executed on the AT89S51 microcontroller.  

CCS CONCEPTS • Security and privacy→ Security in hardware →Hardware attacks and countermeasures → Side-

channel analysis and countermeasures  

Additional Keywords and Phrases: Electromagnetic side-channel, embedded processors, instruction-level disassembly, side-

channel security 

1 INTRODUCTION 

On-chip computations impact the electromagnetic (EM) fields emanated as well as the power consumed by embedded 

systems [1]-[10], causing information about the operations they execute to leak through these side channels. By probing 

these fields and exploiting variations in the measured signals, side-channel analysis (SCA) attacks can non-invasively 

recover information about target processes even in embedded processors that execute general-purpose programs. At the 

highest fidelity, EM SCA can potentially disassemble a program’s execution trace from a device under test (DUT) at the 
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instruction level. Although such instruction-level disassemblers based on power SCA are well documented [3]-[5], only a 

few attempts based on EM SCA are reported in the literature [6]-[8].  

        Disassemblers using relatively large EM [6], or power [3]-[5] probes aggregate the fields emanated or power 

consumed by many/all system components throughout the DUT. Thus, any potential features in the measured signals that 

can distinguish instructions are heavily obfuscated by algorithmic noise from uncorrelated processes in addition to 

measurement noise from the environment and the sensor setup [10]. Such coarse-grained EM/power SCA setups generally 

require extensive measurements to quantify and filter out noise [3]-[6]. Contrarily, fine-grained EM SCA setups 

[7],[9],[10], which use relatively small probes, are sensitive to the fields emanated by a subset of system components near 

the probes because EM emanations decay rapidly with distance and are polarized. Indeed, when probes are appropriately 

positioned and oriented, fine-grained EM SCA can improve the success rate of disassembly [7]. Thus, fine-grained EM 

SCA attacks first scan for effective measurement configurations that have high signal-to-noise ratios and then use these 

low-noise configurations to actually extract information [7], [9]. However, the “acquisition cost” of finding optimal 

configurations in existing fine-grained approaches can be prohibitively large [10]. The efficiency of a disassembler directly 

relates to how well the instructions are profiled during the initial acquisition phase, which dictates the acquisition cost in 

terms of measurement time and storage requirements. A naïve profiling approach involves instantiating each instruction 

with all possible combinations of different operands, addresses, and data present in architectural registers, such as program 

counters, stack, etc. [3]-[6]. To feasibly profile instructions, conventional SCA-based disassemblers typically sub-sample 

this space of architectural states by randomly instantiating instructions several times with different operand values and 

machine states. This approach has limited feasibility for fine-grained EM SCA-based disassemblers because of the high 

acquisition cost of searching a 5-D space of potential optimal measurement configurations— the possible probe locations 

(3-D), orientations (1-D), and observation times (1-D) —as the DUT executes many instantiations of each instruction [10]; 

e.g., the setup used in this article would require ~5000 × more signals to be collected compared to using a single probe 

configuration. The scalability of such methods further reduces as the size of the instruction set 𝑁 increases. Indeed, fine-

grained EM SCA approaches using the random instantiations method for profiling instructions [7] have been limited to 

small instruction sets. Random instantiations may also miss critical corner cases which can lead to potential 

misclassifications in the classification phase.  

        In this paper, a novel scalable and effective instruction disassembler using fine-grained EM signals is proposed. As 

in previous SCA-based disassemblers [3]-[7], the proposed method has 2 phases. The feature-selection phase identifies 

optimal measurement configurations and corresponding signal features. After this phase, the classification phase identifies 

instructions from signals measured as the DUT executes an arbitrary code. It collects signals using only the selected set of 

configurations and evaluates them according to the features identified in the first phase. To support large instruction sets, 

the disassembly is performed hierarchically; a 4-stage hierarchy—consisting of an instruction’s cycle length, size, operands 

used, and functions implemented (Fig. 1)—is used; and the feature-selection phase is performed bottom-up, while the 

classification phase is performed top-down through the hierarchy. A hierarchical classification allows evaluators to identify 

distinct leakage-mode informed features pertinent to each stage. Furthermore, ensuring high classification success rate in 

upper hierarchical levels enables evaluators to still recover key information about the executed instructions even if accuracy 

in separating details on lower levels is reduced.  

        The hierarchical classification is combined with a leakage model-informed sub-sampling of potential architectural 

states to profile instructions and identify optimal features for each stage in a feasible and scalable manner. The feature-

selection phase uses a Hamming weight (HW) leakage model to design “profiling codes” consisting of a condensed set of 

test instructions such that—if there was no noise and if the leakage model was valid—the signals measured as the DUT 
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executes these codes would min-max bound the signals that would be measured as the DUT executes all possible 

instantiations of the profiled instructions. The min-max signal envelopes for each instruction class are collected and stored 

in the hierarchical database, as the profiling codes are executed. Configurations where pairs of instruction classes can most 

easily be separated are identified. The signals measured at these configurations are the “features” that are used to classify 

instructions using binary classification with majority voting [5] in the next phase.  

        In addition to measured signals, this work also uses novel “differential signals” derived from them to improve success 

rates. These signals capture the impact of an instruction on the architectural state over multiple cycles. The capabilities of 

the disassembler are further augmented by assuming branches taken and not-taken as separate instruction classes, enabling 

control-flow prediction.  The proposed method enables high-resolution measurements at a low acquisition cost, efficiently 

identifying highly potent features within a large search space. As a result of the leakage-model-informed feature selection, 

and hierarchical classification, improved success rates are observed for application benchmarks, compared to alternative 

methods [4], [7].   

The contributions of this work can be summarized as follows: 

- Fine-grained EM SCA-based disassembly is performed by identifying optimal probe configurations and 

corresponding signal envelopes during the feature-selection phase. 

- In addition to directly probed signals, novel differential signals derived from them are used as features. 

- Control-flow leakage prediction is enabled with input-constrained analysis of branch instructions.  

- Success rates of ~99% and ~97% are observed when the proposed method is used to disassemble test codes and 

application benchmarks from the Dalton project [14] executed by a AT89S51 microcontroller unit implementing 

the i8051 instruction set [12] (𝑁 = 90 instructions). 

The rest of the paper is organized as follows: Section 2 compares various disassemblers with the proposed approach. 

Section 3 presents relevant background for the proposed experiments. Section 4 details the feature-selection method. 

Section 5 describes the classification method. Section 6 presents the measurement results. Section 7 concludes the work.   

2 OVERVIEW 

This section reviews previous SCA-based disassemblers and presents an overview of the proposed approach. 

 
Fig.1. Hierarchical grouping of instructions based on length (I), size (II), operands (III), and functions (IV). 
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2.1 Related Work 

Various SCA-based methods exist for recovering information about target processes on embedded systems. Code-

monitoring with SCA is most often used to identify fixed instruction sequences, separate basic blocks, and predict control 

flow [1],[2] based on some a priori knowledge of an evaluated benchmark. Using SCA to disassemble individual 

instructions from an arbitrary unknown code as in [4]-[8] is far more challenging in part because each instruction impacts 

a multitude of architectural blocks differently. Disassemblers can be compared based on their success rates and their 

acquisition cost. While success rate is simply the ratio of correctly identified instructions and total number of executed 
instructions, the acquisition cost is a function of the number of sensor configurations used during profiling 𝑁 , the number 

of instantiations performed to characterize each instruction 𝑁inst, and the number of samples collected for each of these 

measurements 𝑁 . The acquisition cost in this work only accounts for samples stored post measurement collection, and 

does not quantify repeated measurements and averaging performed by the oscilloscope software.1 

        Instruction disassembly based on coarse-grained EM or power SCA setups [4]-[6] uses a single sensor configuration 

(𝑁 = 1)  and requires significant post-processing of the signals measured as the DUT executes an extensive set of test 

instructions. In [4], a power SCA-based disassembler, using principal component analysis (PCA) for feature selection and 

a multivariate Gaussian classifier, was proposed to evaluate a small instruction set (𝑁 = 33). It correctly recognized ~71% 

and ~51% of instructions in test code and application benchmarks, respectively. The method in [4] assumes some a priori 

knowledge of the code, however, as it applies hidden Markov models to blocks of the executed code. In [6], a coarse-

grained EM SCA-based disassembler, using PCA with frequency-domain signals for feature selection and AdaBoost, 

support vector machine, and other methods for classification, was proposed. It was able to distinguish 2 instructions with 

                                                           
1 Please note that the acquisition cost here only quantifies storage requirements and not acquisition time. Acquisition time is related to several setup-dependent 
factors including oscilloscope features, DUT parameters, averaging method, etc., some of which are not always available in literature. 

Table 1: Comparison of Relevant Work 

 [4] [6] [7] [5] [8] [27] This Work 

DUT PIC16F 687 ATMega  328 PIC 16F687 ATMega 328P PIC16F15376 Cortex M0 AT89S51 

# of Instr. (𝑁) 33 2 33 112 50 17 90 

Side-Channel Power 
Coarse-grained 

EM 

Fine-grained 

EM 
Power 

Fine-grained 

EM 
Power 

Fine-grained 

EM 

# of 

Samples 

Measured 

per Instr. 

(𝑁 × 𝑁 ×

𝑁inst) 

~2 × 10  

(1× 1000 ×

2000) 

~2 × 10  

(1× 100 × 

200) 

~1.2 × 10  

(20 × 2500 ×

2350) 

~1.5 × 10  

(1× 50 ×

3000) 

~3.2 × 10  

(400 × 2000

× 40) 

~1.1 × 10  

(1 × 6000

× 1768) 

~4.7 × 10  

(5200 ×

1000 × 9) 

Success 

(test code) 
~70.1% 100% ~96.2% ~99.0% ~95.0% ~99.0% ~99.3% 

Success 

(application 

code) 

~50.8% – ~87.7% – – ~88.2% ~97.3% 

 



5 

a 100% success rate. Unfortunately, the method’s performance for the remaining instructions was not evaluated in [6]. A 

larger instruction set (𝑁 > 100) was evaluated in [5] with a power SCA-based disassembler, using Kullback-Leibler (KL) 

divergence for feature selection and quadratic discriminant analysis for classification. The method disassembled a test code 

with ~99% success rate. Although [5] used hierarchical classification, included an extra method to improve success rates 

for application benchmarks, and recovered 2 instructions implemented in one such code with 92% success rate, the method 

was not evaluated comprehensively on real-world application benchmarks. In [27], an instruction disassembler targeting a 

Cortex M0 processor was proposed, implementing KL divergence for feature selection and classification algorithms 

demonstrated in [5], which was further enhanced by using models based on multi-layer perceptron and convolutional neural 

network. While the method recognized ~99% and ~88% of instructions in test code and application benchmarks 

respectively, the disassembly was limited to a small subset of the full instruction set (𝑁 = 17). 

Instruction disassembly based on fine-grained EM SCA was demonstrated in [7],[8]. A small instruction set (𝑁 = 33) 

was evaluated in [7] using linear discriminant analysis for feature selection and a k-Nearest Neighbor algorithm for 

classification. While the disassembler recognized ~96% of the instructions in a test code and ~88% of them in application 

benchmarks, the approach in [7] is an invasive method that requires decapsulation of the DUT to constrain the search space 

of configurations during feature selection. A similar fine-grained setup in [8] targeted a slightly larger instruction set (𝑁 =

50) by performing bit-level disassembly of opcodes, training quadrature discriminant analysis-based classifiers to identify 

individual bit transitions as instructions are pre-fetched. Although the disassembler recognized 95% of instructions in test 

codes, it was not evaluated on real benchmarks.  

While the methods proposed in [4]-[8], [27] (Table 1) have very high success rates when disassembling test codes 

that follow the same structure/template as the profiling codes they use to select features, their success rates either decrease 

markedly or are unknown when disassembling application benchmarks; moreover, the methods in [4],[6],[7], [27] which 

were developed and tested with only limited number of instructions, may not scale well as 𝑁, the instruction set’s size, 

increases. Another issue common to the methods in [4]-[8] is that they do not elaborate on the disassembly of conditional 

branches; such branches requires careful consideration during both phases of disassembly and can enable the detection of 

possible transitions to different parts of the code and the evaluation of control flow for comprehensive disassembly. Finally, 

the methods in [4]-[7] extensively instantiate instructions with randomized operands, in different sequences, etc.; they 

 
Fig.2. Overview of the proposed approach. 
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instantiate each instruction from 200 [6] to 3000 [5] times. These methods cannot be directly extended to fine-grained EM 

SCA because their acquisition costs would be infeasibly high, especially if the number of possible instructions and 

measurement configurations is large. By contrast, our proposed method aims to (i) improve the success rate of disassembly 

for application codes, (ii) identify if branches were taken/not taken during execution, and (iii) maintain a feasible 

acquisition cost even for large instruction sets and high-resolution EM probing. 

2.2 Proposed Approach 

As mentioned in the Introduction, the proposed method consists of two phases (Fig. 2). In the feature-selection phase, EM 

fields emanated from the DUT are collected for all instructions by designing and using profiling codes that instantiate each 

instruction for multiple specific machine states, chosen according to the HW leakage model [9], [15]. The signals are 

collected with all measurement configurations in a 5-D search space consisting of the probe location, probe orientation, 

and time interval. Next, the min-max bounds of signals—directly probed fields, as well as differential signals derived from 

them—are found for each instruction, and these signal envelopes are compiled within a hierarchical database. The database 

stores for each instruction—at the bottom stage of the hierarchy—real-valued envelopes that are multivariate functions of 

the measurement configuration, i.e., they are functions of 5 variables. For the upper stages of the hierarchy, instructions 

are grouped using certain instruction attributes (Fig. 1), and the database is compiled bottom-up, i.e., the envelopes for the 

instruction classes in the upper stages are constructed using envelopes for instruction classes compiled in the lower stages.  

Once the database is constructed, it is used to identify optimal measurement configurations and features for binary 

classification. During feature selection, the envelopes for each instruction class are compared pairwise (one at a time) to 

those of other classes at the same stage; the comparison identifies 𝑀 configurations, where the pair’s signal envelopes are 

most distant; i.e., these are the optimal values of the 5 variables to distinguish the pair from each other. The signals obtained 

with the optimal measurement configurations, i.e., the selected features, and the envelopes of the two classes corresponding 

to them are recorded for use in the next phase. In the classification phase, signals measured while the DUT executes 

arbitrary codes are categorized hierarchically starting from the top stage. At each stage, candidate classes are identified 

given the class selected in the previous stage, using binary classification with majority voting [5].  

3 BACKGROUND 

This section describes the DUT’s measurement setup, the SCA threat model, the hierarchical grouping of the instruction 

set, and the signals used in the proposed method.  

3.1 Measurement Setup 

To demonstrate the proposed method, this article uses the AT89S51 microcontroller, which implements 111 instructions, 

differing in function, size, length, addressing mode, source and destination operands, etc. [12]. The setup used for the 

measurements is shown in Fig. 3. The DUT was operated at 2 MHz. Fields were sensed using a 1-mm H-field probe, 

positioned at a fixed height of 0.5 mm and various points on an equally spaced 51×51 grid over the DUT’s surface 

(area~8×8 mm2) using Riscure’s probe positioner. Measurements were performed using both x- and y- oriented probes. 
Therefore, 𝑁 =5202 probe configurations were used for constructing the database. Signals were collected and analyzed 

using a Keysight DSOS054A oscilloscope, at a sampling rate of 2 GS/s (𝑁 = 1000 samples); the signals were collected 

50 times and averaged to minimize measurement noise. For comparison and validation, measurements using the coarse-

grained EM SCA setup were also performed, using a 10-mm H-field probe. HEX files for programs, generated using Keil’s 

8051 emulator, were uploaded to the program memory of the chip using an Arduino as interface. These codes included 
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start/end markers to simplify measurements, implemented via a general-purpose I/O pin. The probe positioning, data 

acquisition, and subsequent data storage were automated to save experiment time. To reduce storage requirements, samples 

were saved as single-precision floating-point numbers in binary file format. More information on the setup can be found 

in [15], [16]. Only 𝑁 = 90 instructions were considered for the following analyses; instructions that use external and 

indirect addressing modes were excluded because such instructions are seldom used by compilers for general-purpose 

codes, unless access to external memory is required, and because the focus of this article is on EM emanations arising from 

on-chip switching activity.  

3.2 Threat Model 

Different threat models are assumed in the feature-selection and classification phase experiments. To allow accurate 

profiling, limited restrictions are placed on evaluators during the first phase. As in previous works [4]-[8], the feature-

selection phase assumes that evaluators have the ability to control a clone of the DUT, or the DUT itself such that they 

have the ability to send known profiling codes to the device and observe the internal architectural state of the 

microcontroller as each instruction is executed. Further, the evaluators are assumed to also have the ability to repeat such 

 

Fig. 3. Measurement setup used for instruction disassembly (top, same as in [9]) and probes used for coarse-grained (bottom-left) and 

fine-grained (bottom-right) EM SCA. 
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codes as many times as desired, allowing field measurements to be averaged to minimize measurement noise. In contrast 

to this transparent “white-box” model of the feature-selection phase, a more restrictive “gray-box” model [17] is used in 

Table 2: Instruction Classes 

Length Size Operands Functions 

1Cycle (51 ins) 1Byte (25 ins) Acc1 INC; DEC; RR; RRC; RL; RLC; SWAP; DA; CPL; CLR 

Acc,Reg ADD; ADDC; SUBB; ORL; XRL; ANL; MOV; XCH 

C-bit2 SETB; CLR; CPL 

Reg3 INC; DEC 

Reg,Acc MOV 

No ops. NOP 

2Byte (26 ins) Acc, Imm4 ADD; ADDC; SUBB; ORL; XRL; ANL; MOV 

Acc, Dir ADD; ADDC; ORL; ANL; XRL; SUBB;MOV; XCH 

Dir5 INC; DEC 

C-bit, Bit MOV 

Bit6 CLR; CPL; SETB 

Reg, Imm MOV 

Dir, Acc ORL; ANL; XRL; MOV 

2Cycle (51 ins) 1Byte(5 ins) Acc, Dptr7 MOVC 

Acc, PC8 JMP; MOVC 

No ops. RET;RETI 

2Byte (17 ins) Addr9 ACALL; AJMP 

C, Bit ANL; ORL 

Reg, Off10 DJNZ 

Off JZ; JNZ; JC; JNC; SJMP 

C, /Bit ANL; ORL 

Dir PUSH;POP 

Reg, Dir MOV 

Dir, Reg MOV 

Bit, Cbit MOV 

3Byte (15 ins) Dir, Imm MOV; ANL; ORL; XRL 

Bit, Off JB; JBC; JNB 

Addr LCALL;LJMP 

Acc, Imm, Off CJNE 

Acc, Dir, Off CJNE 

Reg, Imm, Off CJNE 

Dir, Off DJNZ 

Dir, Dir MOV 

Dptr, Imm MOV 

4Cycle (2 ins) 1Byte (2 ins) Acc, B11 MUL;DIV 

1Accumulator, 2 Carry Bit, 3 General Purpose Registers, 4 Immediate Value,5 Direct RAM Address, 6 Register Bit, 7 Data Pointer, 8 Program 

Counter, 9 Branch Address, 10 Branch Offset, 11 B Register 
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the classification phase. In this model, the code being executed, the inputs, and the internal operations of the DUT are 

assumed to be not visible to the evaluators but the evaluators are assumed to still have the ability to repeat the codes being 

targeted, similar to the setup used by other fine-grained EM works that combine measurements from multiple locations to 

increase success rates of disassembling instructions [7], [8], or identify an instruction’s functional units [18].  

3.3 Hierarchical Grouping of Instructions 

Attempting to directly classify measured signals within a large set of candidate instructions increases the odds of 

misclassification. Hierarchical classification can decrease the misclassification risk by reducing the number of possible 

candidates in each stage, assuming the stages in the hierarchy are appropriately chosen for the DUT (poor groupings can 

result in potentially more misclassifications at the upper stages). In [5], a 2-stage hierarchy was used: the instructions were 

separated into 8 groups based on operands and into sub-groups based on their function. That grouping is not suitable for 

microcontrollers that have a large number of possible operands (>30 for AT89S51). Instead, in this article, 2 higher stages, 

where instructions are grouped according to length and size, are added to the hierarchy. In Stages III and IV of the 

hierarchy, instructions are grouped based on operands and their functions as in [5], resulting in 4 stages of hierarchy (Fig. 

1). These 4 attributes of each instruction 𝑖𝑛𝑠 are represented with the label ID = (𝐿, 𝑆, 𝑂𝑝, 𝐹𝑛). Here, 𝐿 denotes the 

length, 𝑆 the size, 𝑂𝑝 the operands, and 𝐹𝑛 the function of the instruction i.e., how long it requires to complete execution, 

the number of bytes fetched from program memory for it, the memory locations of the chosen data values in it, and the 

operations it performs, respectively. In AT89S51, instructions require 𝐿 ∈ {1,2,4} cycles for execution, are of size 𝑆 ∈

{1,2,3} bytes, have 30 possible operands, and implement 45 functions. Table 2 shows the resulting hierarchy. In the 

following, cycle lengths and sizes are represented with the suffixes C and B; e.g., the label for the 1 cycle 1 byte instruction 

INC Acc is ID  = (1C, 1B, Acc, INC).  

3.4 Observed Signals and Target Processes 

Signals collected by a near-field probe above a DUT are functions of 5 variables in the measurement setup used (Fig. 3): 

The probe’s configuration 𝑝𝑐—its transverse location (𝑥, 𝑦), height ℎ, and orientation 𝑜 relative to the DUT—and the time 

of observation 𝑡. Thus, the probed fields can be represented as 5-dimensional functions 𝑉(𝑝𝑐, 𝑡). Of course, the measured 

signal also depends on the processes 𝑝𝑟 that the DUT is executing, i.e., the state of the microcontroller. These processes 

are performed at specific time-intervals within a DUT’s machine cycle, localizing features temporally. The processes can 

be abstracted as a combination of a target process 𝑇𝑝𝑟  and one or more background processes 𝐵𝑝𝑟 , where the subscripts 

𝑖 and 𝑗 represent versions within these processes [9]; e.g., if the entire instruction opcode is considered the target process, 

then the 90 target versions are 𝑇𝑝𝑟 ≡INC Acc, 𝑇𝑝𝑟 ≡ DEC Acc, …, 𝑇𝑝𝑟 ≡DIV Acc, B and the background processes 

include data operations in various architectural registers. The background processes can be represented using the state of 
architectural registers 𝑋 ∈ {X ,… X }, where each state X  represents a unique data value in registers (RAM, stack, 

program counter, etc.) and 𝑁  is the number of combinations of register contents. Thus, the signals can also be represented 

as 7-dimensional functions 𝑉(𝑝𝑐, 𝑡, 𝑇𝑝𝑟 , 𝐵𝑝𝑟 ). Using the notation in [9], a signal’s dependence on measurement 

configuration and processes executed on the DUT are highlighted with super/sub-scripts; e.g.,  𝑉 ,
, . 

In addition to the probed fields 𝑉 ,
, , the differential signal  

                                                              Δ𝑉 ,
,

= 𝑉 ,
, ∆

− 𝑉 ,
,

,                (1) 

is introduced. Here, ∆𝑡 is the product of cycle length 𝐿 of the target process 𝑇𝑝𝑟  and clock period 𝑇 . In this work, the 

differential signals are computed between the corresponding clock cycles of adjacent instructions. While traditional 

differential side-channel analysis assumes observed signals in a single clock cycle represents the transition between 
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different machine states, the differential signal introduced in this article computes differences in fields over multiple clock 

cycles, i.e., it captures the change in fields measured from before an instruction is executed, to after it is executed. This is 

a useful quantity for separating instructions that modify contents of architectural blocks shared across the instruction set, 

such as program counters, or the pre-fetched architectural registers. For instance, the 8051 reserves certain sub-cycles to 

operate on the accumulator or certain RAM registers [11], irrespective of the executed instruction, enabling easier 

identification of instructions impacting these registers with differential signals. Example signals are plotted in Fig. 4.     

If a single-stage disassembler was used, the target process would be the complete instruction opcode. Thus, each version 

of the target process from 𝑇𝑝𝑟  to 𝑇𝑝𝑟  would represent a candidate opcode for disassembling the observed signals. The 

large set of candidates poses major issues in feature selection and classification; e.g., a total of 𝐶=4005 classifiers are 

required for binary classification [5]. In contrast, the proposed 4-stage hierarchical disassembler constructs only 281 

classifiers because there are relatively small numbers of candidate classes in each stage. What constitutes target and 

background processes, however, changes at each stage of the hierarchy. The target process in each stage is a different 

attribute of the opcode, identified by the label ID = (𝐿, 𝑆, 𝑂𝑝, 𝐹𝑛). Because classification in each stage distinguishes 

instructions based on only one attribute, the remaining attributes of the opcode are assumed to be part of the background: 

In Stage I, the target instruction length can take values from the set 𝐿 ∈ {1C, 2C, 4C}. Here 𝐵𝑝𝑟 for 𝐿 = 1 C instructions 

includes any combination of the architectural state 𝑋, and the 51 groups of (1C, 𝑆, 𝑂𝑝, 𝐹𝑛) in Table 2. The hierarchy then 

enables independent analysis within each branch in the following stages; e.g., in Stage II, the instruction size is analyzed 

separately for 1C instructions (for which 𝑆 ∈ {1B, 2B}) and 2C ones (for which 𝑆 ∈ {1B, 2B, 3B}). Although attributes 

(𝑆, 𝑂𝑝, 𝐹𝑛) are assumed to be “background” processes here, they are still constrained by target process versions being 

evaluated, unlike the state of background architectural registers that is unrestricted.  

4 PHASE I: FEATURE SELECTION 

This section details the database construction, the profiling codes, and the feature-selection method in the first phase of 

disassembly. 

4.1 Database Construction 

Each instruction class is characterized by 4 signal envelopes in the database; these envelopes are 5-dimensional functions 

(of 𝑝𝑐, 𝑡). The hierarchical database is constructed as follows (see Fig. 1 for stage definitions). First, the Stage IV portion 

 

(a)  Probed Fields                                                                       (b) Differential signals 

Fig.4. Space-time distribution of (a) probed fields, and (b) differential signals derived from them, measured by a y-oriented probe at 
51×51 locations for MOV A, #00 instruction. Spatial maps are plotted at 25 ns and time variations are plotted at the center location. Each 
machine cycle is divided into 6 states and 2 sub-states [12]. 
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of the database is compiled for the 90 instructions. For each instruction 𝑇𝑝𝑟 , multiple instantiations are executed (see 

Section 4.2), the EM fields are probed using all possible probe configurations, and the min-max envelopes of probed fields 

and differential signals are stored in the database:  
                                                       𝐞𝐧𝐯

,
= [min 𝑉 , max 𝑉 , min Δ𝑉 , max Δ𝑉]           (2) 

Here, the minima and maxima are found among all instantiations of the instruction, i.e., ∀𝐵𝑝𝑟 ∈ 𝐵𝑝𝑟. Next, these 90 

instructions are grouped according to their operand class, as per Table 2. The envelopes for each of the 35 operand classes 

in Stage III are constructed by computing the min-max bounds of the envelopes of all the instructions with that operand. 

Similarly, Stage II (I) portions of the database are compiled from its Stage III (II) portions. Fig. 5 shows an example 

computation of the min-max envelopes.  

4.2 Profiling Codes 

One approach to finding the signal envelopes is to collect an extensive set of signals, e.g., by instantiating the architectural 

registers 𝑋 with random values. For instance, [5] used 3000 such instantiations per instruction for feature selection. While 

this can improve classification accuracy for coarse-grained EM/power SCA setups, the acquisition cost for fine-grained 

EM setups quickly becomes intractable when so many instantiations are used: For 𝑁 = 90 instructions, if 𝑁 = 50 time 
samples of signals are measured as in [5] with a single probe configuration (𝑁 = 1), a total of 13.5 × 10  samples would 

be acquired. If they are measured with the fine-grained EM SCA setup in this work, with 𝑁 ~5200 probe configurations 

(Section 6.1), a total of 70 × 10  samples would be acquired. Storing these samples as single-precision floating-point 

numbers would require ~50 MB of space for the former and ~280 GB for the latter setup. Additional storage may be 

required during feature selection, e.g., to transform time-domain data to frequency domain.  

        A smaller set of signals can be collected by modeling the leakage as if it depends only on HWs of data in architectural 

registers, a common approach in processor security evaluations [9],[11]; e.g., signals for 256 data values can be bound by 

those for extreme instantiations of data 0x00 (HW 0) and 0xFF (HW 8). Then, the data-dependency of each instruction—

except conditional branch instructions—can be bound by using at most 4 instantiations, by setting operands and result to 

data values 0x00 and 0xFF. For example, consider the instruction ADD Acc, Imm. To bound its data dependence, the data 

values in the Accumulator register and the Immediate value in program memory are chosen from the set {(0x00,0x00), 

(0x00,0xFF), (0xFF,0x00), (0xFF,0xFF)}. Further, to improve coverage of background processes, all 128 bytes of RAM, 

including stack registers, are instantiated as either 0x00 or 0xFF. Therefore, 8 instantiations are used to characterize each 

 

Fig.5. The envelopes in stage IV portion of the database (left) are the min-max bounds of the probed fields for multiple instantiations of 
each instruction; here, the SETB C-bit instruction. The instantiations have different initial conditions of the C-bit (0 and 1) and RAM 
registers (0x00 and 0xFF). The envelopes in stage III portion of the database (right) are the min-max bounds of the envelopes of all 
instructions that have the same operand; here, C-bit.   
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instruction in the profiling codes. Code snippets used to profile this instruction are shown in Fig. 6. In addition to the 

instruction instantiations, extra instructions are used to support measurements, such as a general-purpose pin triggering the 

oscilloscope for ease of experiment.  

         Because conditional branches perform different functions depending on the result of the condition evaluation, 

branches taken and not taken for the same instruction are considered as separate classes in Stage IV, i.e., they have the 

same instruction length, size, and operands, but different functions. Introducing 12 additional instruction classes for the 

conditional branch instructions in Table 2, control-flow prediction is enabled in the final stage of disassembly. Using 16 

instantiations for conditional branch instructions and 8 for other instructions, the proposed profiling codes contain a total 

of 𝑁𝑁 = 12 × 16 + 78 × 8 = 816 specially-designed test instructions (in addition to miscellaneous instructions used 

as markers for measurement, and various instructions needed to clear flag registers, data memory, or stack). These profiling 

codes are used to acquire the following total number of samples to construct the database: 

                                                   𝑁 = 𝑁𝑁 𝑁 𝑁    (# of Samples Acquired)        (3) 

Here, 𝑁  is number of probe configurations, 𝑁  is number of time samples, 𝑁 is the number of instructions, and 𝑁  is 

the average number of instantiations used to profile each instruction. While 𝑁 𝑁  depends on the measurement setup, 

𝑁  depends on the profiling method.   

4.3 Selecting the Features  

Feature selection identifies optimal measurement configurations where envelopes (and therefore signals) are easily 

separable when compared pairwise. Here, as well as in Section 5, the process is presented for two instruction classes 𝑎 and 

𝑏 at the same stage of the hierarchy. First, the “average distance” between the pairs’ envelopes is computed: 

                                     𝐷𝑖𝑠𝑡 ,
,

=
(𝐞𝐧𝐯

,
[ ] 𝐞𝐧𝐯

,
[ ]) (𝐞𝐧𝐯

,
[ ] 𝐞𝐧𝐯

,
[ ])

         (4) 

While feature selection in Stages II-IV directly uses this quantity, a pre-processing step is required in Stage I because 

signals with different time lengths are compared. It is assumed that the first cycle of multi-cycle instructions is similar to 

 

Fig.6. Profiling codes instantiate instructions with different operands, under different machine states. NOP instructions are introduced to 
keep the computation of differential signals consistent. 
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a single-cycle instruction, due to the presence of opcode fetch-related processes. Consequently, in Stage I feature selection, 

signals for multi-cycle instructions are partitioned into multiple single-cycle windows, similar to [4]. The partitioned 

windows are then compared separately to single-cycle instructions, assuming the cycles that follow the first cycle will 

show sufficient differences to allow their length-based classification. Fig. 7 shows an example of the distance between 
single-cycle instructions and the second cycle of two-cycle instructions. The distance Δ𝐷𝑖𝑠𝑡 ,

,  between the differential 

signal envelopes is computed similarly. As demonstrated in Fig. 8, some instruction classes are potentially more separable 

using differential signals. Prediction of a program’s control flow can be achieved in Stage IV of the disassembly, as shown 

in Fig. 9.  

Next, optimal measurement configurations that maximize the distance between signal envelopes are identified. For 

each pairwise comparison, 𝑀 = 10 optimal probe configurations—5 each for direct and differential signals—and the 
corresponding 10 optimal time instances are stored in the arrays 𝐩𝐜 ,  and  𝐭 , . The signals at these optimal measurement 

configurations are the selected features that will be compared with the stored envelopes to classify instructions. 

 

Fig.7. Spatial map (top-left) of 𝐷𝑖𝑠𝑡 ,
,  between 1-cycle and 2-cycle instructions at 𝑡~30 ns and time variation (top-right) at an optimal 

probe location (starred). Distance (bottom-left) and envelope (bottom-right) plots for an optimal time interval showed that instruction 
classes were more separable when the difference between the envelope averages (dashed) increased, particularly at 𝑡~30 and 𝑡~37 ns.   
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5 PHASE II: CLASSIFICATION 

During classification, the probed field 𝑉
,  and differential signal 𝛥𝑉

,  are compared to the signal envelopes in the 

database. The deviation of evaluated signals from the envelopes of candidate classes 𝑎 and 𝑏 in the database are computed 

as  

                                  𝐷𝑒𝑣 /
,

= Max 𝑉 − 𝐞𝐧𝐯 /
, [2], 0 + Max 𝐞𝐧𝐯 /

, [1] − 𝑉, 0                       (5) 

This metric is 0 if the evaluated signal is within the stored envelope. The deviation of a probed field from the envelopes in 
Fig. 7 is shown in Fig. 10. A corresponding metric Δ𝐷𝑒𝑣 /

,  is computed for the differential signals.  

During binary classification, the net deviation of the evaluated signal from the two candidates 𝑎 and 𝑏 is computed only 

with the 𝑀 optimal measurement configurations for separating them: 

                         𝑁𝑒𝑡𝐷𝑒𝑣 / = ∑ 𝐷𝑒𝑣
/

 𝐩𝐜 , [ ],𝐭 / [ ]/
+   ∑ Δ𝐷𝑒𝑣

/

 𝐩𝐜 , [ ],𝐭 , [ ]

/                       (6) 

The instruction class with the smaller net deviation is considered the more likely candidate for the evaluated signal. To 

classify among multiple candidates, the binary classification is implemented with a majority voting method [5]:  

 

Fig.8. Comparing the classes (1C, 2B, Dir) and (1C, 2B, [Acc, Dir]) in stage III with 𝐷𝑖𝑠𝑡 ,
,  (left) and Δ𝐷𝑖𝑠𝑡 ,

,  (right) shows that they 

are more separable when using differential signals. Here, 𝑡~120 ns.   

 

 

Fig.9. Distance between branch “taken” and “not taken” classes for instruction (1C, 2B, Off, JNZ) in Stage IV (left), shows that the 
disassembly can potentially predict program flow. The spatial map of distance is plotted at 𝑡~285 ns and the observed fields are plotted 
at an optimal configuration (starred). 
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𝑣𝑜𝑡𝑒 , =

+1, if 𝑁𝑒𝑡𝐷𝑒𝑣 ≥ 𝑁𝑒𝑡𝐷𝑒𝑣
−1, if 𝑁𝑒𝑡𝐷𝑒𝑣 < 𝑁𝑒𝑡𝐷𝑒𝑣

       𝑎∗ = argmax ∑ 𝑣𝑜𝑡𝑒 , ( )

                           (7) 

Here, 𝑎∗ is the most likely candidate class and 𝑁  is the number of candidate classes. 

6 EXPERIMENTS AND RESULTS 

To test the proposed disassembler, first, each instruction is instantiated 100 times with random operand values. In this test 

set, each instruction is padded with a NOP instruction, and before the instantiations the RAM registers are cleared, similar 

to the profiling codes shown in Fig. 6. A total of 10200 instructions are evaluated in this test set. This evaluation is similar 

to the test sets that follow the templates of profiling codes, used in [4]-[7]. For conditional branch instructions, two separate 

test sets are used for the branch “taken” and “not-taken” cases. The operands in both cases are randomized with constraints, 

to ensure the functions are correctly executed; e.g., for the jump-if-not-zero instruction’s branch “taken” case, the operand 

is allowed to take all values other than 0.  

        Second, a more robust and complete evaluation of the proposed disassembler is performed by using a set of 4 

application codes from Dalton benchmarks [14], which are specifically designed to optimize the performance of 8051 

cores: the greatest common divisor (GCD), Fibonacci (FIB), sort, and square root (SQRT) codes. As their names indicate, 

the codes compute the GCD of two numbers, generate the first 10 Fibonacci numbers, sort 10 specified integers in 

ascending order, and find the square root of a specified floating-point number. The compiled codes were first disassembled 

using KIEL’s 8051 emulator, providing a reference assembly code to judge the accuracy of the proposed disassembler.  

Third, the potency of fine-grained EM SCA approach is evaluated by implementing the proposed feature-selection and 

classification methodology using a coarse-grained EM SCA setup (with a relatively large probe [6]) and comparing the 

success rates of the two approaches. Here, the measurement configurations are optimized only over the time dimension as 

there is a single fixed probe location and orientation.  

 

6.1 Feature-Selection Results 

To construct the database with the proposed profiling codes, a total of 𝑁 = 𝑁𝑁 𝑁 𝑁  = 816 × 5202 ×

1000~4.2 × 10  samples (after they were averaged 50 times by the oscilloscope) were acquired. For comparison, consider 

 

Fig.10. An evaluated signal for instruction (1C,1B,Acc,Inc) correctly shows large deviation from envelope of 2-cycle instructions at 𝑡~30 
ns and 𝑡~37 ns.    
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applying the methods presented in [4]-[7] directly to the presented fine-grained EM SCA setup: Assuming 𝑁  and 𝑁 are 

the same as in this work, but using the same 𝑁  and 𝑁  values as in the previous works, the methods would require ~222× 

[4], ~17× [5], ~2.2× [6], and ~650× [7] more samples than the proposed method.  

Results for feature selection phase are exemplified in Fig. 11, which shows that the envelope-to-envelope distances 

reduce across space and time at the lower stages of the hierarchy. This behavior is expected for well-designed hierarchies 

that progressively refine the granularity of recovered instruction. It was also observed that the spatio-temporal distributions 

of distances for each stage were different, i.e., each stage of the hierarchy impacted the probed fields differently. Further, 

it was observed that features for all classifiers were limited to the region marked with white in Fig. 11. Consequently, 

measurements for the classification phase were limited to this region (25×25 locations).  

6.2 Classification Results 

First, the test codes with 100 randomized instantiations of each instruction were disassembled and the recovered results 

were compared to the reference assembly code line by line. The accuracy is then simply computed as a ratio of correctly 

 

                                                                      (a) 𝐷𝑖𝑠𝑡 ,
,                                                 (b) 𝐷𝑖𝑠𝑡( , ),( , )

,  

 

                                                     (c) 𝐷𝑖𝑠𝑡( , , ),( , , )
,                         (d) 𝐷𝑖𝑠𝑡( , , , , ),( , , , , )

,  

Fig.11. Example spatial maps of the envelope-to-envelope distances computed during feature selection phase in stages (a) I (𝑡~30 ns),         
(b) II (𝑡~270 ns), (c) III (𝑡~360 ns), and (d) IV (𝑡~70 ns), observed at the most optimal time instants. The distances between instruction 
classes are smaller at lower stages of the hierarchy. 
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recovered instructions to the total number of instructions. The success rate of the disassembly was 10130 out of 10200 

instructions (~99.3%). Evaluating accuracy stage-wise showed that the disassembled instructions had 100% accuracy for 

all instructions in Stages I-III, i.e., all misclassifications were in Stage IV. Therefore, the incorrectly recovered instructions 

still contained some relevant information. It was also observed that all conditional branches were correctly identified, 

including if the branch was taken or not. Such high success rates are to be expected because these codes follow a similar 

template to the profiling codes.  

        Results for the disassembly of application benchmarks are shown in Table 3. The total accuracy for the fine-grained 

setup was found to be ~97%, with less than ±2% variation among the 4 benchmarks. Similar to the evaluation of the test 

codes, no misclassifications were observed in the first three stages, and a 100% accuracy was observed in identifying 

conditional branch instructions. While a slight decrease in the disassembly accuracy was observed for the benchmarks, the 

difference is minimal compared to the disassemblers demonstrated in [4] and [7]. Finally, the most misidentified instruction 

for both test codes and benchmarks was the ADDC Acc, Reg, commonly misclassified as instruction 

ADD Acc, Reg (misclassified in 22 out of 123 instances).  Potential reasons for the misclassification have to do with the 

close functional relation between the ADD and ADDC (i.e., add with carry) instructions, since in the absence of a carry 

bit, identical operations are performed by the microarchitecture. The opcodes of these instructions in the ISA are also very 

similar, including how they are decoded. Similar misclassifications were also observed for rotate and rotate with carry 

instructions that only differ minimally in functionality and operation. However, these instructions are not frequently used 

by the compiler thereby limiting inaccuracies and misclassification rates in large benchmarks. 

        The disassembler implemented using the coarse-grained EM SCA only showed a success rate of ~70% disassembling 

test codes and ~65% accuracy disassembling the benchmarks (Table 3). Contrary to the fine-grained measurement setup, 

misclassifications were observed in Stages II, III, and IV. Clearly, the fine-grained EM SCA setup resulted in a more potent 

disassembler. An example demonstrating the differences between database envelopes for the fine-grained and coarse-

grained EM setups are shown in Fig. 12. It was observed that envelopes from the fine-grained setup were narrower and 

had sharper signal variations compared to the envelopes from the coarse-grained setup. Consequently the min-max 

envelopes predicted by the coarse-grained setup overlap for multiple classes at selected configurations leading to 

misclassifications, even when distance predicted between instruction classes is high (Fig. 12). Further, the overlap is also 

observed to increase in the coarse-grained case, as the classification moves to the lower hierarchical levels.  

Table 3: Measurement Results 

Benchmark 
Code Size 

(bytes) 

# of 

Instructions 

Fine-Grained EM Coarse-Grained EM 

# of Correct 

Instructions 

Accuracy 

(%) 

# of Correct 

Instructions 

Accuracy 

(%) 

GCD 55 111 108 ~97.3 71 ~64.0 

FIB 303 804 794 ~98.7 531 ~66.0 

sort 572 2665 2556 ~95.9 1702 ~63.9 

SQRT 1167 2006 1972 ~98.3 1327 ~66.1 

Total 2097 5586 5430 ~97.2 3631 ~65.0 
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7 CONCLUSIONS AND FUTURE WORK 

A fine-grained EM SCA based disassembler was proposed to recover instructions executed on a general-purpose micro-

controller. The proposed method uses a hierarchical framework to improve feature selection and classification. It identifies 

optimal measurement configurations that distinguish instruction classes in the first phase by (i) executing model-based 

profiling codes to efficiently collect probed fields in a database, (ii) finding envelopes that bound the probed fields and, a 

novel quantity, differential signals derived from them. In the second phase, measured signals with these optimal 

measurement configurations are classified by comparing them to the signal envelopes of instruction classes one pair at a 

time. The comparisons were performed by quantifying the deviation of the measured signals from the signal envelopes. 

The proposed disassembler was shown to successfully and feasibly recover ~97% to ~99% instructions from application 

benchmarks and test codes executed on an AT89S51 microcontroller. Further, all conditional branch executions were 

correctly identified, enabling control-flow leakage prediction. It was also observed that the fine-grained EM SCA was 

significantly more potent compared to a coarse-grained EM SCA analysis.  

        The proposed disassembler can potentially detect malware within basic blocks [19], as well as those impacting control 

flow integrity [20]-[22]. Combined with appropriate tools quantifying vulnerabilities in side channels [15], [23]-[25], the 

disassembler can further enable programmers to optimize programs to minimize leakage. Finally, the instruction level 

 

(a) Stage II comparison 

              
(b) Stage III comparison 

Fig.12. Signal envelopes and distance metric for fine-grained EM SCA setup at an optimal configuration (left) and coarse-grained EM 
SCA setup (right) for (a) instruction size-based classification in Stage II, separating single-cycle one-byte instructions and single-cycle 
two-byte instructions, and (b) operand-based classification in Stage III, separating the accumulator and register operands for single-cycle-
one-byte instructions. Distance metric for fine-grained setup shows relatively sharp peaks, where the class envelopes can be clearly 
separated. By contrast, distance metric for the coarse-grained setup has broader peaks, with significant overlap of envelopes. 
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granularity of the disassembler enables detection of small-scale hardware trojans that are more challenging to address 

compared to malicious code [26].     

        The DUT used in this article simplifies the disassembly significantly because of its low-complex multi-cycle 

architecture; additional work is required to extend the proposed work to more complex embedded processors. For instance, 

in [27], randomized instructions were introduced based on the number of pipeline stages, while profiling individual 

instruction classes. A similar extension can be proposed for the fine-grained disassembler in this work; e.g., the feature-

selection phase in heavily-pipelined processors can be split into two sub-phases: The first sub-phase can implement the 

feature-selection methodology, using a few select instructions padded with NOPs (Section 4.2). Once a sufficiently small 

set of potent probe configurations are identified, the NOP instructions can be replaced with randomized instructions and 

operands for reduction, depending on the number of pipeline stages. Additional datasets can also be created for groups 

with a large number of instructions, to improve their disassembly, similar to [27].  

        The disassembly can be improved further by recovering data values of operands [9], in addition to instructions. There 

is also potential to improve disassembly with higher-resolution probes. A more optimal method of combining features from 

multiple configurations can also reduce misclassifications, with the potential to re-examine predicted results and observe 

anomalies. Further, differential signals are a novel quantity that requires further exploration, potentially being used to 

observe changes across multiple pipeline stages as the instruction is executed, adding a new dimension to the analysis. 

Finally, imposing more restrictions on evaluators in the classification phase, similar to generic black-box testing threat 

models, may necessitate the use of more potent post-processing techniques in combination with some of the 

aforementioned potential improvements to the setup. Code monitoring through instruction disassembly presents a non-

invasive pathway to detect intrusions, and therefore evaluate embedded hardware security. 
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