
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. X, NO. Y, MONTH 2025 1

SANA-FE: Simulating Advanced Neuromorphic
Architectures for Fast Exploration

James A. Boyle, Mark Plagge, Suma George Cardwell, Frances S. Chance, and Andreas Gerstlauer

Abstract—Neuromorphic computing is concerned with design-
ing computer architectures inspired by the brain, with recent
work focusing on platforms to efficiently execute large spiking
neural networks (SNNs). Future designs are expected to im-
prove their capabilities and performance by incorporating novel
features such as emerging neuromorphic devices and analog
computation. There is, however, a lack of high-level performance
estimation tools to evaluate the impact of such features at the
architectural level, to evaluate architectural trade-offs, and to aid
with co-design and design-space exploration. Existing neuromor-
phic simulators either do not consider hardware performance,
only model abstract SNN dynamics or are targeted to a single
specific architecture.

In this work, we propose SANA-FE, a novel simulator that
can rapidly and accurately estimate performance and energy
efficiency of different SNN-based designs. Our simulator uses
a general and configurable architecture description format that
can specify a wide range of neuromorphic designs. Using such
an architecture description, SANA-FE simulates system activity
when executing a given spiking application at an abstract time-
step granularity, and it uses activity counts and per-activity per-
formance metrics to estimate energy and latency for each time-
step. We further show a calibration methodology and apply it to
model performance of Intel’s Loihi platform. Results demonstrate
that our simulator can predict Loihi’s energy and latency for
three real-world applications, within 12% and 25%, respectively.
We further model IBM’s TrueNorth architecture, simulating a
random network over 20× faster than existing discrete-event
based TrueNorth simulators. Finally we demonstrate SANA-
FE’s design-space exploration capabilities by optimizing a Loihi
baseline architecture for two applications, reducing run-time by
21% while increasing dynamic energy usage by only 2%.

Index Terms—neuromorphic computing, machine learning,
analytical tools, codesign

I. INTRODUCTION

NEUROMORPHIC computing uses neural-inspired ele-
ments to accelerate and efficiently execute a wide range

of applications, such as mimicking biological circuits [1]–[3],
solving NP-hard optimization problems [4], [5] and acceler-
ating machine-learning at the edge [6]. In particular, neuro-
morphic architectures have been implemented to efficiently
execute Spiking Neural Networks (SNNs). SNNs extend ar-
tificial neural networks (ANNs) by encoding information in
time as either rates or delays between spiking events, shared
between neurons via their weighted connections. SNN-based
platforms are event-driven, resulting in naturally sparse and
noise-tolerant computation.

J. Boyle and A. Gerstlauer are with The University of Texas at Austin,
TX, USA. M. Plagge, S. G. Cardwell and F. S. Chance are are with Sandia
National Laboratories, NM, USA.

Manuscript received June 5, 2024; revised October 28, 2024.

A range of different SNN-based architectures have been
proposed and implemented [7]. However, there are a number
of design choices when creating a spiking neuromorphic
architecture – both high-level, for example the numbers of
cores on the chip, and low-level, such as the features, hardware
device types and algorithms supported in the computational
neuron blocks. This design requires tools in early design
stages to rapidly explore corresponding design spaces. Existing
functional SNN simulators model the behavior of spiking
neural networks, but do not capture hardware details of any
underlying execution platform, such as performance or energy
consumption [8], [9]. By contrast, performance modeling of
SNN-based platforms using traditional hardware simulation
techniques e.g., at the RTL or cycle-accurate level, is too
slow to support rapid, early design-space exploration. Higher-
level simulators of SNN platforms exist, but they are based
on discrete-event models that simulate the precise timing of
every event [10], which generally is still too slow.

In this paper, we propose SANA-FE, a novel high-level
simulator of advanced neuromorphic architectures for fast
exploration. SANA-FE is flexible and extensible allowing
modeling of different architectures, and estimating the energy
consumption and timings of a design executing a SNN ap-
plication. We define generic and canonical file formats for
the simulator to describe both SNN-based hardware platforms
and SNNs mapped onto them. SANA-FE uses an abstract and
high-level execution model that groups and simulates hardware
events at a coarse time-step granularity. Activity collected
in each step is used by the simulator to estimate the total
performance and dynamic energy used per step.

We further introduce a method for calibrating SANA-FE
to accurately match performance and energy of existing hard-
ware. We propose a hierarchical approach to calibrate SANA-
FE at the functional unit, core, tile and whole chip level in
a bottom-up fashion. Using our methodology, we calibrate
SANA-FE against Intel’s Loihi SNN-based platform, and
compare energy and performance estimates against measured
values on three benchmark applications [11]–[13].

In prior work, we proposed an initial version of SANA-
FE [14]. However, our earlier simulator was only demon-
strated for small benchmark applications, and it did not accu-
rately track the latency impact of cross-core interactions and
network-on-chip (NoC) contentions. In this work we extend
our simulator with a scheduling algorithm to model cross-
core interactions, calibrate our simulator against real-world
hardware, showing that it can accurately track latency and en-
ergy for real-world architectures, and furthermore demonstrate
SANA-FE’s rapid design-space exploration capabilities.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. X, NO. Y, MONTH 2025 2

Our contributions are as follows:
• We introduce SANA-FE, a fast and accurate simulator

for estimating the performance and energy efficiency
of SNN-based hardware architectures. SANA-FE uses
a novel approach to simulate spiking hardware at an
abstract, coarse-grained time-step granularity while ac-
curately modeling chip activity including inter-core com-
munication and message scheduling effects.

• We define extensible file formats to generally describe
SNN-based hardware platforms and spiking neural net-
works mapped to these platforms.

• We introduce a simulator calibration methodology that
hierarchically and systematically characterizes and mod-
els the performance and energy of real-world hardware
from individual core pipeline stages all the way up to the
full on-chip network level.

• We demonstrate SANA-FE by calibrating against Intel’s
Loihi platform, demonstrating 11.7% and 24.3% average
absolute error predicting energy and latency, respec-
tively, of different applications. We further model IBM’s
TrueNorth architecture, showing over 20× speedup com-
pared to existing TrueNorth simulators. Finally, we ex-
plore design trade-offs for a Loihi-based architecture,
optimizing the number and size of cores for two applica-
tions.

This paper is organized as follows. Sections II and III
describe related work and design patterns of various spiking
architectures that our tool represents. Sections IV and V
then detail the simulator design and simulation algorithms,
including input formats and main functionality. Section VI
explains our bottom-up calibration methodology, and Section
VII details experiments to evaluate SANA-FE. Finally, Sec-
tion VIII concludes the paper with a summary and outlook.

II. RELATED WORK

There are a range of simulators that either model the func-
tional behavior or dynamics of biological SNNs, or behavior
of SNN-based hardware platforms. Simulators such as the
NEural Simulation Tool (NEST) [15], CARLsim [16], Brian
2 [17], and SuperNeuro [18] model SNNs at a biological
level, potentially in a high level of detail, e.g., using a system
of ordinary differential equations to describe properties of
a neuron cell. Such simulators do not model any details of
dedicated neuromorphic hardware, which generally execute
SNNs at an abstracted level far away from biological reality.

Simulators, such as Brian2Loihi [19] and those in the Nengo
[8] and Lava tools, model such abstracted, spiking hardware
behavior at a purely functional level [9]. Nengo, Brian2Loihi
and Lava are frameworks for designing and deploying SNNs.
They support compilation, mapping and execution of SNNs
on existing hardware platform such as CPUs, GPUs, or
Intel’s Loihi. In addition, they include functionally accurate
simulators to emulate target platform behavior on a host e.g.,
by emulating Loihi behavior on a CPU. These reproduce
the functionality of a spiking chip, modeling state variables
and accounting for implementation details such as hardware
counters, variable bit-widths and quantization. However, these

simulators do not model implementation specific behavior e.g.,
which functionality is executed on each core, or network
activity such as the number of packets sent by a core. There-
fore, these simulations are not detailed enough to estimate
performance or energy when considering architectural design
decisions.

More hardware-focused simulation tools exist as well, but
these either model one aspect of the design or are otherwise
limited. Approaches that focus on modeling of network behav-
ior on a spiking chip have used NoC simulators with traffic
patterns obtained from randomized spike generators [20],
real-world hardware measurements [21], or SNN application
simulators such as NEST [22] and CarlSIM [23]. These
approaches accurately emulate network effects but do not
model performance of other hardware components, such as
synaptic memory and neuron dynamics. ATHENA [24] is
an analytical tool that estimates energy for neuromorphic
crossbar-based data-flow accelerators, but is not easily extend-
able to other spiking architectures. NeMo [10] and SST [25]
both offer simulations of dedicated neuromorphic hardware
accelerators leveraging discrete-event simulation techniques.
SST is designed for simulation of large-scale and heteroge-
neous high-performance compute (HPC) clusters. SST has
limited support for neuromorphic accelerators, featuring one
primitive SNN processing element. By contrast, NeMo was
specifically designed to simulate spiking hardware accelerators
as part of a tool-chain that enables HPC traffic simulation as
well as application development. However, NeMo is focused
on a single hardware architecture (IBM TrueNorth) and does
not provide energy or performance estimation. Both SST and
NeMo simulate all hardware events by tracking their exact
timings. SANA-FE, by contrast, focuses on simulation at a
coarser time-step granularity, which enables significantly faster
speed and potentially more flexibility as individual events do
not need to be simulated and tracked.

Tools for benchmarking of neuromorphic hardware have
been created at both the application and component level.
Some application-level frameworks such as NeuroBench [26]
can profile high-level performance metrics including spike
activity and synaptic connections without simulating hard-
ware. However, such operation-level metrics lack the de-
tail about low-level hardware activity required for accurate
energy and latency prediction. Other work has proposed a
micro-benchmark suite for Loihi-based architectures [27] that
uses Lava processes to characterize coarse-grain CPU and
neural core communication timings. However, their micro-
benchmarks do not characterize energy costs nor are they
detailed enough to break down latency into individual neural
hardware operations required for accurate simulation.

III. SPIKING NEUROMORPHIC ARCHITECTURES

In the following, we review the design-space of existing
spiking hardware platforms that we aim to model in this work.
A number of spiking hardware platforms have been proposed
and deployed. These designs all use a common architecture
(Fig. 1), but differ in their realization of basic processing units
and system-level topology. Table I summarizes the key features
and parameters of existing designs.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. X, NO. Y, MONTH 2025 3

TABLE I
COMPARISON OF LARGE-SCALE SNN-BASED HARDWARE ARCHITECTURES.

Name Neural Core Type Cores Per Tile Tile Count Neuron Model Interconnect
Loihi [28] Custom Digital 4 32 Leaky-Integrate-and-Fire (LIF) NoC Mesh

Loihi 2 Custom Digital 4 32 LIF & Microcode-programmable NoC Mesh
TrueNorth [29] Custom Digital 1 4096 Augmented Integrate-and-Fire NoC Mesh
SpiNNaker [30] CPU-based 18 1 Any software-based NoC
SpiNNaker2 [31] CPU-based 4 38 Any software-based NoC

Tianjic [32] Custom Digital 1 156 LIF / sigmoid, tanh NoC Mesh
Novena [33] Custom Digital 1 16 LIF NoC Mesh

Neurogrid [34] Custom Analog 1 16 Ion channel model Digital tree-based
BrainScaleS-2 [35] Custom Analog 1 1 Adaptive Exponential Digital bus

Fig. 1. Generic model of a spiking architecture.

Designs are generally organized as a set of tiles connected
over on-chip interconnect, such as cross-bars or a network-on-
chip (NoC). Each tile contains one or more cores that share
network resources, where each core computes the state of a
subset of neurons mapped onto it, and where neurons sharing
the same core access hardware in a time-multiplexed manner.
Different types of neuromorphic cores are implemented by
each platform, using either purely software-based, custom
digital or analog realizations, with a range of supported
functionalities. However, all designs follow a similar approach
to processing spikes.

Each core realizes a custom pipeline to process incoming
spikes and groups of spiking neurons mapped to that core.
Despite variations in implementation across designs, cores
process spikes using a common sequence of neural-inspired
operations. Spike messages are received over the network by
a core at the input of an axon unit. The axon unit performs a
lookup and generates a set of weight addresses. The synaptic
unit then loads and processes each weight, filtering them
according to a synaptic model before forwarding a current to
the dendrite unit. The dendrite unit uses the connectivity and
synaptic currents to accumulate and forward a single current to
the soma unit. The soma unit in turn performs calculations to
simulate behavior of a neuron’s membrane potential, applying
leaking and integrating the input current over time. If the
membrane potential meets a threshold condition, a spike is
sent to the axon output unit and the potential is reset. The
output axon unit triggers in turn a lookup of all destination
cores to send spike messages to. Finally, the core sends one

or more messages locally or globally, to be delivered to input
axons of connected neurons.

The large-scale SNN-based platforms considered in this
work operate in logical time, using a global time-step based
execution mechanism to ensure deterministic behavior. Within
each global time-step, cores execute a small increment of
network time in which each neuron may fire only once.
A global synchronization barrier ensures all processing and
communication in the current time-step has completed before
incrementing logical time and processing the next time-step.
This approach allows many neurons to be time-multiplexed
over shared hardware, allowing for scalability that is only
limited by storage requirements for neuron state. In this
approach, there must be a buffer before one of the hardware
units, where units before and after the buffer are processed
in different time-steps. Time-steps can either run at a fixed
rate using an external synchronization mechanism e.g., a low-
frequency clock, or dynamically adjust their length using
an internal barrier synchronization based on when all cores
have completed their computation. Dynamically adjusting the
time between synchronization allows computation to scale
depending on the amount of spiking activity, i.e., the latency
per time-step varies dynamically, limited by the slowest core
on the chip.

Another class of SNN-based architectures, not shown in
Table I, operates purely in the analog domain based on
physical time [36]. In such architectures, neurons cannot share
computing resources, limiting scalability. Such architectures
are out of the scope of what SANA-FE aims to model.

IV. SIMULATOR DESIGN

Fig. 2 shows an overview of SANA-FE. The simulator
requires a description of a hardware platform, a description
of an application, i.e. of an SNN mapped to the hardware
platform, and command line inputs such as the number of
time-steps to simulate. Using these, the kernel simulates the
performance of the design in an abstract and coarse-grain time-
step loop. In the following sub-sections, we describe each
component of the simulator in more detail.

A. Architecture Description Format

We have defined a hierarchical, YAML-based file format to
describe SNN-based platforms based on a general architecture
template that is derived from existing architectures discussed
in Section III. In our file-format, a SNN-based architecture
is generally described as a number of connected tiles, each

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. X, NO. Y, MONTH 2025 4

for all timesteps:
 get external inputs
 for all cores:
 process pipeline
 calculate latency
 calculate energy
 write results

Simulator Kernel

build architecture
initialize network

Configuration & Input Spikes

Performance Estimates

Architecture
Description

Mapped Spiking
Neural Network

Fig. 2. SANA-FE overview.

architecture:
name: demo
attributes:
width: 2
height: 1
link_buffer_size: 4

tile:
- name: demo_tile[0..1]

attributes:
energy_north_hop: 2.0e-12
latency_north_hop: 1.4e-9
...

core:
- name: demo_core[0..3]
attributes:

buffer_before: soma
axon_in:

- name: demo_in
synapse:

- name: demo_synapse
attributes:

model: current_based
energy_process_spike: 20.0e-12
latency_process_spike: 3.0e-9

dendrite:
- name: demo_dendrite

soma:
- name: demo_soma_default
attributes:

model: leaky_integrate_fire
energy_access_neuron: 20.0e-12
latency_access_neuron: 3.0e-9
energy_update_neuron: 10.0e-12
latency_update_neuron: 1.0e-9
energy_spike_out: 60.0e-12
latency_spike_out: 30.0e-9

- name: demo_soma_alt
attributes:

model: leaky_integrate_fire
...

axon_out:
- name: demo_out
attributes:

energy_message_out: 100.0e-12
latency_message_out: 5.0e-9

Listing 1. An SNN-based hardware platform specified in our architecture
description format.

containing one or more computational cores. Each core has
a fixed sequence of compute units to process spike messages.
The user specifies the tiles, cores and compute units in a design
as separate sections in the YAML file, and the implementation
details of these units using a set of attributes within their
sections.

An example of an architecture description is shown in
Listing 1. A particular platform is defined under the top-level

architecture section as one or more tile sections. Our
architecture description format has keywords that define sec-
tions, and all sections contain name and attributes fields.
The name is a string description which can optionally include
a range in square brackets, indicating multiple instances of a
section. Each attribute is a set of name-value pairs, describing
features of the hardware or cost metrics. Costs in particular
must be specified for the latency and energy of updating each
hardware unit.

In this example, there are two tiles defined under the
architecture section. At the tile level two energy and
latency costs specify the energy and latency required to send
spike messages one network hop in a given direction. Tiles
also specify the size (in messages) of their link buffers.
Each tile contains one or more core sections, specifying
the computational cores in a tile including their individual
compute units. Here, tiles have four cores each. The keyword
buffer_before sets the position of the time-step buffer.
The time-step buffer determines the boundary between pro-
cessing different stages of the pipeline in different time-steps.
In this example, the output of the dendrite unit is buffered to
be read by the soma unit in the next time-step.

Within each core, we then define the hardware units in
that core, starting with the axon_in unit which has no
attributes in this example. The synapse unit specifies a
current-based synaptic model, and has an energy and latency
cost for processing one inbound spike. The dendrite unit
realizes a default behavior of summing weighted inputs from
the synapse unit, and in this example also has no attributes.
The example defines a list with two alternative soma im-
plementations: example_soma and example_soma_alt.
The first unit in the list is the default, although mapped neurons
can optionally specify which soma unit to use in the SNN
description file. For both soma units, the example specifies
that a leaky-integrate-and-fire neuron model is used. The two
units differ only in their associated update costs, which include
a baseline energy and latency cost for accessing and reading a
neuron’s state in the soma, and four additional costs associated
with writing to a neuron’s membrane potential and generating
an output spike. Finally, the axon_out unit has cost metrics
for sending a spike message to the network.

B. Mapped SNN Format

We have further defined a file format to specify SNN
applications mapped onto a given architecture description for
execution in the simulator. The file format generally describes
an SNN as a graph of neurons connected by weighted edges,
where each neuron can have attributes controlling its dynam-
ics, and where neurons can be grouped to define common
attributes, e.g., per network layer. In addition to the SNN graph
itself, the file format also specifies a mapping associating each
neuron with a hardware core in the design.

An example is shown in Listing 2, corresponding to the
SNN in Fig. 3 mapped into the architecture defined in List-
ing 1. A mapped SNN file in general has four types of entries.
There is one entry per line and each entry is prefixed by a
single character denoting its type i.e., g (neuron group), n

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. X, NO. Y, MONTH 2025 5

g 3 threshold=1.0
g 3 threshold=2.0 soma_hw_name=demo_soma_alt
Neuron groups
n 0.0 bias=1.0 connections_out=1
n 0.1 bias=0.0 connections_out=1
n 0.2 bias=1.0 connections_out=1
n 1.0 bias=0.0
n 1.1 bias=1.0
n 1.2 bias=0.0
Edges
e 0.0->1.0 weight=-1.0
e 0.1->1.2 weight=-2.0
e 0.2->1.2 weight=3.0
Mappings
& 0.0@0.0
& 0.1@0.0
& 0.2@0.1
& 1.0@0.0
& 1.1@0.0
& 1.2@0.1

Listing 2. A mapped SNN described in SANA-FE.

n0.1Group 0

3.0-1.0 -2.0

Group 1

n0.0 n0.2

n1.1n1.0 n1.2

Core 0 Core 1

Fig. 3. The mapped SNN from Listing 2.

(neuron), e (edge), & (mapping) or # (comment). The example
in Listing 2 first defines two neuron groups containing three
neurons each. The group entry specifies the number of neurons
and their shared parameters, including the names of pipeline
hardware units to execute on. In the example, the threshold
potential is common between neurons, and the second group
executes on the demo_soma_alt soma unit. We then define
six neurons, which are indexed by a group number and group
offset e.g., 0.0 for the first neuron in group 0. Next, we define
three weighted edges, linking neurons in group 0 to neurons
in group 1, where each edge describes a weighted connection
between two neurons. Finally, we map the six neurons to two
cores, assigning four neurons to core 0 and two to core 1.

C. Simulation Kernel

Using input files, our simulator emulates functionality, la-
tency and energy of the mapped application executing on the
given architecture at an abstract time-step granularity. At the
core of the simulator is the simulation kernel, which loads
its input files and executes a loop that simulates each time-
step. During each time-step we simulate neuron behavior,
calculate per-step energy and latency estimates, and write these
estimates to a trace file.

During loading of the input files, SANA-FE uses the
architecture description to initialize class objects for each
hardware unit and loads a mapped SNN into a set of neuron
objects linked to their mapped core. Neuron objects track SNN
state, such as soma membrane potential, synaptic current and
outgoing weighted connections.

After initialization, the simulator enters the main time-
step loop. The time-step loop emulates the functionality and
models the activity in each cores’ hardware pipeline. Within
this pipeline, we model the updates to hardware units and

Core

axon in

Unit Activity Counter

packets in

message
processing

neuron
processing

synapse spikes in

packets out

neuron updates
spikes out

dendrite

buffer

soma

axon out

Fig. 4. A simulated core pipeline described in Listing 1.

increment hardware activity counters used later for energy
and latency estimation, e.g., the total spikes processed by
the synapse unit, or the number of neurons updated by the
soma. SANA-FE’s energy and latency predictions use these
dynamically simulated activity counts, which are integrated
with its functional simulation of hardware units. While energy
can be estimated purely analytically as a simple weighted
sum of hardware activity counts, accurate prediction of latency
requires modeling of pipelining and other timing effects.

A pipeline example corresponding to the design in Listing 1
is shown in Fig. 4. As previously discussed, there is a buffer
before one of the units in the pipeline. The buffer’s location
is given in the architecture description, and it defines the
time-step boundary. In this example, the time-step boundary
is defined between the dendrite and soma units. In the real
system, hardware units before the time-step buffer receive
and process messages from the network in incoming message
order, and then store intermediate updates in the pipeline
buffers. In parallel, hardware units after the buffer sequentially
read previously buffered values and process neurons in a fixed
order. At each time-step boundary, buffered values written
in the current time-step are copied into a double buffer for
reading as inputs in the following time-step. In the simulator,
we can emulate this pipeline behavior by generally estimating
time-step latency analytically as the maximum of message and
neuron processing delays [14]. However, message dependen-
cies and NoC contentions can introduce additional stalls that
need to be accounted for to achieve accurate latency estimates.

V. SIMULATION ALGORITHM

In the following, we describe the simulation algorithm of
SANA-FE in more detail. The core time-step loop of our
simulator kernel is shown in Algorithm 1. A complete list of
variables for the time-step and message scheduling algorithms
is given in Table II.

The time-step loop has three parts: a neuron processing
loop, a message processing loop and an event-based message
scheduling algorithm. The neuron processing loop first iterates
over all cores and neurons mapped into each core to execute
all stages after the time-step buffer, i.e., processing all neuron
updates and determining spikes to send for the current time-
step. In the example in Fig. 4, neuron processing models

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. X, NO. Y, MONTH 2025 6

Algorithm 1 Time-step Loop
1: for all timesteps do
2: update external inputs()
3: for all cores c do
4: Mc = {}
5: for all nc neurons mapped to c do
6: M = process neuron(nc)
7: Mc.append(M)
8: for all cores c do
9: for all m in Mc do

10: m.dmsg = process message(m)
11: estep = calculate energy()
12: dstep = schedule messages(∀c : Mc)
13: write estep, dstep to file

TABLE II
SIMULATION AND SCHEDULING ALGORITHM VARIABLES.

Variable Description
M A list of messages
Mc A list of messages sent by core c
dnrn The neuron processing delay
dmsg The message processing delay
src A message’s source (sending) core
dst A message’s destination (receiving) core
m A message 4-tuple ⟨dnrn, dmsg , src, dst⟩
estep The total time-step energy
dstep The total time-step delay
Mnet A list of messages sent to the network
tm The time at which message m is sent
t′m The time at which message m is received
t̂m The time at which processing of message m finishes
t̂c The time at which core c finishes processing its messages
mnext The next message to be scheduled
k A link between two adjacent network tiles
P A list of all links in a message’s path across the NoC
bk The expected buffer utilization for a single link k
bm The total buffer utilization for all links traversed by m

dhopk The hop delay for link k
dnet
m The network traversal delay for message m

b̂ The mean buffer capacity (messages per link)
d̄msg The mean message processing delay for in-flight messages

the behavior, state and activity counter updates of the soma
functionality and of producing messages at the output axon.
The neuron processing function internally updates activity
counters that track the updates in each hardware unit. Ad-
ditionally, the processing function returns a list M of spike
messages generated by neuron nc in the core c. Each message
m is defined as a tuple containing four elements: the neuron
processing delay to generate the message in the sending core
(m.dnrn), the message processing delay in the receiving core
(m.dmsg), and the source (m.src) and destination (m.dst)
cores. Note that the receive delay m.dmsg is zero-initialized
and will be assigned later. Also, if the destination field is null,
the tuple serves as a placeholder for any neuron processing
that does not result in a message being sent.

After all neurons have been processed, the message pro-
cessing loop processes all spike messages in Mc for each
core, which updates the time-step buffers in the receiving core
for the next time-step. In the given example, this includes all
axon input, dendrite and synapse processing including updates
of associated incoming packet and spike activity counters on
the receiving side. The processing of received messages is

performed in a loop across cores and messages. As part of
this, the time taken to process each message is calculated, and
the message tuple m is extended with the message processing
delay, dmsg . Messages are processed sequentially and without
accounting for message ordering across the chip. Ordering
effects are emulated by a separate message scheduling step as
part of calculating the final energy and latency estimates for
the time-step, estep and dstep. We will describe the message
scheduling algorithm next.

A. Message Scheduling

Time-step latency generally depends on the time taken to
process neuron updates as well as the time to send and process
spike messages. The latter may be affected by cross-core
interactions and contention in the on-chip network and related
hardware. In particular, if there is contention in the network
or in a receiving core, the sender of the message may be
stalled and its overall processing latency increased accordingly.
Whether senders will be stalled and for how long will in turn
depend on the precise ordering of messages across the chip.

Fig. 5 shows three scenarios of cores interacting and affect-
ing each other’s timing. Fig. 5(a) shows two cores processing
neurons and messages without contention. At time tstart,
Cores 1 and 3 start by processing their first neurons in parallel.
After Core 1 processes its neuron 1.1, it sends message m1

to Core 3 at time tm1
. Message m1 is received after some

network delay at time t′m1
, and Core 3 finishes processing m1

at time t̂m1 . In parallel, Core 1 processes its second and last
neuron 1.2. This is the simplest case, and for this example,
the time-step latency is simply the sum of Core 1’s neuron
processing delays.

Fig. 5(b) shows another example where resource contention
in the receiving core may delay a message’s processing. Core
1 behaves the same as in Fig. 5(a), but Core 2 also sends
a message m2 to Core 3 at time tm2

. Since the message
processing pipeline at Core 3 is busy (shown in red), message
m2 must wait in an internal buffer in Core 3 until m1 is
processed at time t̂m1 . In this case, we must consider the
message processing order to accurately calculate latency.

Finally, Fig. 5(c) shows an example where contention in the
network can delay both neuron and message processing. Here,
Core 2 sends message m1 before Core 1 tries to send m2.
Assuming that the network can only transfer a single message
simultaneously, while the network is busy transporting m1,
message m2 is blocked by the network from being sent (shown
in red). Consequently, Core 1 is stalled until tm2

= t′m1
before

sending m2 and then processing neuron 1.2. Such cases require
modeling of network contention to predict latency.

As the examples show, time-steps may include a combina-
tion of such scenarios, leading to complex cross-core depen-
dencies. Acurately estimating the total time-step latency thus
requires modeling the order of messages and determining how
long the network will delay messages and stall cores, which
in turn depends on network parameters such as router buffer
sizes. Existing NoC performance models generally either use
detailed event-based or cycle-accurate simulations or analyti-
cal methods based on queuing theory [37]. Simulation-based

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. X, NO. Y, MONTH 2025 7

Fig. 5. Example of cross-core interactions on an SNN-based platform.

approaches will accurately predict network timings but are
prohibitively slow for design-space exploration. By contrast,
queuing-based analytical models can be faster but only predict
long-term, steady-state and average behavior of the network,
i.e., do not account for short-term transient effects, such as
the small bursts of messages in spiking-based platforms that
occur between frequent time-step synchronizations barriers.

We propose a semi-analytical model for use in SANA-
FE that combines concepts from event-based simulation and
queuing-based models to efficiently predict timing interac-
tions. To model timing interactions between cores when ex-
changing messages and processing neuron updates, we simu-
late the exact timing of messages using a global scheduling
model. Our message scheduling algorithm assigns a global
order to all spike messages using latency values previously
calculated in the neuron and message processing stages, and
uses an analytical model to approximate network delays. In the
process, message scheduling determines the timing across the
chip and hence the overall time-step latency. Our scheduling
algorithm and timing model are described in detail below.

B. Scheduling Algorithm

Algorithm 2 shows our message scheduling algorithm. It
takes a list of messages for cores Mc, created previously in the
time-step loop, and returns the total time-step latency, dstep.
Our scheduler maintains a queue of message events and their
time-stamps, and it processes events in time-stamp order to
determine dependent events and the global event order. The
algorithm starts by initializing time-stamp variables for all
cores that will track the times at which they finish processing
their last received messages (t̂c). In a loop over all cores,
we then initialize the priority queue of time-stamped events
such that all cores schedule their first messages after the
corresponding delay for processing their first neuron (line 6).

After initialization, we loop over the event queue in time-
stamp order until all message events ⟨tm,m⟩ have been
processed. As described in Section IV-C, each message m is
a 4-tuple containing message timings, a source core and an
optionally set destination core. An unset destination core, i.e.,
∅, acts as a placeholder event to indicate the time when pro-
cessing of a neuron ends that does not produce any message.

Algorithm 2 Message scheduling
Input: List of messages per core Mc

Output: Total time-step delay dstep

1: Mnet = {}
2: priority queue = {}
3: for all cores c do
4: t̂c = 0
5: if m = pop(Mc) then
6: priority queue.push(⟨m.dnrn,m⟩)
7: while len(priority queue) > 0 do
8: ⟨tm,m⟩ = priority queue.pop()
9: if m.dst ̸= ∅ then

10: ⟨dsndm , dnetm ⟩ = net delays(m, tm, Mnet)
11: tm = tm + dsndm

12: t′m = tm + dnetm

13: Mnet.append(⟨t′m,m⟩)
14: t̂m.dst = max(t′m, t̂m.dst) +m.dmsg

15: if mnext = pop(Mm.src) then
16: priority queue.push(⟨tm +mnext.d

nrn,mnext⟩)
17: return max(tm,∀c : t̂c)

The algorithm first checks whether the event is a placeholder
or a real message (line 9). If it is an actual message, we
estimate and adjust for network delays as follows. We first
call a model to calculate the network blocking dsndm and the
network transmission delay dnetm . The model will be later
described in Algorithm 3. The message’s timestamp is then
increased by the blocking delay dsndm , which estimates how
long the network is busy and blocks messages from being sent
(line 11). Next, using the estimated network transmission delay
dnetm , the time t′m at which the message is delivered by the
network and arrives at the destination core is determined (line
12). Using this arrival time t′m and the message processing
delay m.dmsg , the time-stamp t̂ of the receiving core m.dst
is updated to record when it finishes receiving and processing
the message, after handling any existing messages (line 14). In
addition, the message and its arrival time-stamp are added to
a list of messages Mnet injected into the network, needed by
the analytical network delay model as described below. After
handling the current message m, we pop the next message

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. X, NO. Y, MONTH 2025 8

mnext of the sending core (if applicable) and schedule mnext

after its processing delay i.e., at the point the message is ready
to be sent to the network (line 16). Once the event queue is
empty and all messages have been scheduled, the total time-
step latency is then given as the maximum of the time-stamp
tm of the last message or placeholder event and of the time t̂c
when all cores finishing processing their last received message.

C. Network Model

Algorithm 3 describes our analytical model used to estimate
network congestion and congestion-induced network delays,
i.e., the network blocking time dsnd and network traversal
latency dnet for a given message m. The network model takes
as input the message m to be sent, the time at which m is ready
to be sent, and the list of previously sent messages passed by
the scheduler. In addition, the algorithm takes the maximum
link buffer size b̂ and the per-link hop delays dhop as fixed
calibrated network parameter values that are read from the
architecture description file.

The algorithm first determines a subset, M , of sent mes-
sages in Mnet that have not been received by time tm. These
messages are in-flight in the network (line 1). Using the infor-
mation about in-flight messages, the expected buffer utilization
i.e., the expected buffer queue length bk is calculated for each
router link k. To calculate bk, each current in-flight message in
M contributes some proportional utilization to all links along
its path P , where P is determined by a given dimension-
order routing scheme. Each message is assumed to contribute
an equal amount of utilization across all links in its path, and
its receiving core i.e., across |P |+ 1 buffers.

Once bk are calculated, we estimate the total amount of
buffer space bm expected to be used by message m as sum
of the bk over all links k in the message’s path. We further
compute the mean processing delay d̄msg of all in-flight
messages (line 9) as the expected service time per message and
hence per network buffer element. Using bm and d̄msg , we first
estimate the network back-pressure to calculate the expected
delay dsndm for which message m is stalled in its sending
core. Back-pressure and blocking occurs when the buffers
along a message’s path are full. We compute the difference
between the total buffer utilization bm and the available buffer
capacity along message m’s path P , and we multiply a positive
difference by the expected service time d̄msg to get the delay
due to back-pressure (line 10). Finally, the message’s network
traversal latency dnetm is calculated as the maximum of the total
network hop time (assuming no network congestion), and the
total expected queuing delay along the message’s path, where
the expected queuing delay is estimated as the average queue
utilization along the message’s path multiplied by the mean
service time (line 11).

VI. SIMULATOR CALIBRATION

SANA-FE is designed to accurately model a wide range
of neuromorphic system architectures that can be rooted in
existing designs serving as exploration baseline. We propose
a methodology to calibrate SANA-FE to closely match its
energy and latency estimates to real hardware. Our calibration

Algorithm 3 Network blocking and message latency
Input: Message m
Input: Time at which m is sent tm
Input: Messages sent to the network Mnet

Output: Network blocking time dsndm

Output: Message network latency dnetm

1: M = {∀⟨t′n, n⟩ ∈ Mnet : t′n > tm}
2: ∀k : bk = 0
3: for all messages n in M do
4: P = message route(n)
5: for all links k in path P do
6: bk = bk + 1

|P |+1
7: P = message route(m)
8: bm =

∑
k∈P bk

9: d̄msg = mean(∀n ∈ M : n.dmsg)
10: dsndm = d̄msg ×max(0, bm − b̂× |P |)
11: dnetm = max(

∑
k∈P dhopk , d̄msg × bm

|P |)

12: return ⟨dsndm , dnetm ⟩
...

N

(a) Synapse

... N

(b) Soma

N...

(c) Axon

N

M

R

... ...

...

(d) Neuron scheduling

Fig. 6. Four micro-benchmark SNNs to isolate (a) synapse unit, (b) soma
unit, (c) axon unit activity and (d) the neuron processing order. Dashed boxes
represent cores and circles represent mapped neurons.

methodology follows a systematic and hierarchical approach.
We first characterize the performance of each pipeline hard-
ware unit and set metrics for energy and latency described
in the architecture description file. We then calibrate the
neuron processing pipeline in each hardware core. Finally, we
calibrate network-level parameters, such as the size of buffers
across the network-on-chip. In the following, we describe the
steps of our calibration methodology in more detail.

A. Core-Level Calibration

SANA-FE uses average cost metrics for each hardware
pipeline unit to estimate their unit energy and latency at the
individual operation level. To calibrate the simulator, these
metrics must be set based on measurements of each unit op-
eration in isolation. This can be done by simulating each unit
in a low, e.g., circuit-level detailed simulation, which is only
feasible if detailed implementation-level (e.g., RTL) hardware
models are available. Alternatively, micro-benchmarks can be
used to isolate and measure unit-specific activities [27].

Fig. 6(a)–(c) shows three SNN micro-benchmarks we use
to characterize the energy and latency of each pipeline unit
from hardware measurements.

1) Synapse stage calibration: We first isolate and calibrate
synaptic reads by varying the intra-core connectivity while
keeping all other activity constant (Fig. 6(a)). In this case, the
number of neurons sending spike packets is fixed and each
connected to N receiving neurons within the same core. As
such, once a spike packet is received within the same core, it is
expanded into N synaptic look-ups via weighted connections.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. X, NO. Y, MONTH 2025 9

N

...

...

...

(a)
H

N

N ...

(b)

Fig. 7. Micro-benchmark SNNs for measuring network hop costs and link
buffer capacity.

The time-step latency and energy usage for varying N are
measured by executing this micro-benchmark on a given
platform, and linear regression analysis is used to estimate
the average incremental cost per synaptic look-up (regression
slope). Note that the cost of a synaptic read depends on
configurable parameters such as the number of bits per weight,
weight sharing in convolutional kernels, or the compression
scheme used. Therefore, it is important to characterize the
synaptic look-up costs of all the possible synapse types that
can be used by simulated applications.

2) Soma stage calibration: Soma updates are isolated using
SNNs as shown in Fig. 6(b), where the number of neurons N
in all cores is varied from zero to the maximum supported by
the core. We measure and calibrate types of soma updates: 1)
a neuron that is initialized but does not update its potential,
2) a neuron that updates and writes its membrane potential,
and 3) a neuron that generates a spike. Each type of neuron
update uses different hardware logic and therefore has different
energy and latency costs. These update costs can be mea-
sured in separate experiments by using one of three different
neuron configurations. Configuration (1) requires neurons to
remain idle and have no input stimuli or output spikes i.e.,
a zero membrane potential and a positive threshold voltage.
Configuration (2) requires neurons to update their potential
every time-step, but this must remain less than the threshold
voltage. For example, a leaky-integrate-and-fire neuron could
be configured by setting its threshold and leak to the maximum
positive value, and adding some input current every time-
step. If possible, neuron processing should be triggered by
internally biasing neurons rather than receiving spikes. For
example, Loihi supports a configurable bias potential added to
neurons every time-step and TrueNorth implements a reverse
leak voltage. In configuration (3) neurons’ thresholds and reset
potentials are set to zero, triggering neurons to fire every time-
step.

3) Axon stage calibration: Finally, axon reads are charac-
terized by varying core-to-core connectivity, where one core
has all of its supported neurons configured to be spiking,
and each of these neurons is connected to one neuron in N
other cores (Fig. 6(c)). Every connection adds another axon
operation per neuron, but also another synaptic read. To isolate
the cost of an axon transmitting a spike, we measure the total
energy and latency for varying N and subtract the previously
characterized cost of the synaptic read.

4) Neuron pipeline calibration: In addition to the individual
pipeline units, we also calibrate the overall pipeline processing
logic using a micro-benchmark as shown in Fig. 6(d). In partic-
ular, the neuron processing order is calibrated by configuring
two neuron groups of sizes N and M . The first neuron group
has N connected neurons that send spikes to R neurons on
another core. The second neuron group has M neurons that are
updated but do not send spikes. The two groups are mapped to
the same core in two configurations: group N is passed to the
compiler either before group M or after group M . If group
M is executed first, spike messages from N are sent only
after all neurons in M are processed. If group N is executed
first, spikes are sent immediately and then neurons in M are
processed in parallel to message processing, leading to faster
run-time than the first execution case. Because of this effect,
the order that neurons are processed can be determined by
observing the run-time of both configurations and observing
which neuron mapping executes faster.

B. Network-Level Calibration

Calibrating at the network level requires measuring network
unit latency and energy costs per hop and configuring buffer
sizes across the NoC.

1) Network hop costs: To measure network hop costs, one
neuron in one or more cores is connected to another neuron in
a core N hops away in the x or y direction (Fig. 7(a)), where
pre-synaptic neurons spike every time-step and destination
neurons only receive spikes. By measuring the energy and
latency for N between 0 and the maximum hops, we can
estimate the minimum cost per network hop for each spike.

2) Buffer sizing: To calibrate the average router buffer
size or queue depth, we measure the maximum messages
buffered between two tiles for varying hop counts (Fig. 7(b)).
To record the maximum buffered messages, we use SNNs
where the number of spiking neurons and hence spike packets
being created can be configured between 0 to the maximum
supported neurons. We map all the spike generating neurons
to a core on the source tile, and these neurons send spikes
over the network to a core in another tile. Sending neurons
are connected to multiple receiving neurons in the destination
cores so that the message processing delay in the receiver is
much larger than the neuron processing and network delays
i.e., the rate at which messages are generated, ensuring that
messages will fill up buffers.

The source core on the source tile is configured to first
send N spike packets to a destination core on a destination
tile that is H hops away from the source tile, where every
router hop has its own message buffer of size B and the
total buffer capacity between the tiles is H × B. Then, N
messages are sent locally to another core on the source tile.
By recording when these messages finish processing i.e., the
end of the time-step, we can determine if and for what N
buffer capacity is exceeded. Specifically, if N ≤ H × B,
the second set of messages can be sent and processed within
the source tile without ever being blocked. By contrast, if
N > H × B, messages injected into the network will fill
up the buffers between the source and destination tiles, and
sending of messages within the source tile will be delayed,

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. X, NO. Y, MONTH 2025 10

TABLE III
NEUROMORPHIC BENCHMARKS

Benchmark Net. Sizes
(Min.–Max. Neurons)

Cores Used
(Min.–Max.)

Net. Type Platforms
Supported

Time-steps per run

Bio-inspired SNN [13] 98–1682 1–4 Connected layers Loihi 105

Latin Square Solver [12] 512–3375 1–4 Winner-takes-all Loihi 104

Gesture Categorization [11] 18678 49 2D-convolutional (4) &
connected (1) layers

Loihi 128

Randomly Generated 64–262144 1–1024 Random sparse Loihi, TrueNorth 105 (Loihi), 10 (TrueNorth)

extending the end of the time-step. During calibration, we find
the minimum value of N at which the time-step delay starts
increasing due to additional blocking.

VII. EXPERIMENTS AND RESULTS

We implemented SANA-FE in C and open-sourced all
code at [38]. We applied SANA-FE to model Intel’s Loihi
and IBM’s TrueNorth neuromorphic platforms. We validated
functional accuracy by comparing spike traces from SANA-
FE and Loihi, using Intel’s Nahuku platform, which was ac-
cessed through Intel’s Neuromorphic Research Cloud [12]. We
also calibrated SANA-FE’s Loihi model against the Nahuku
platform using the methodology described in Section VI. For
TrueNorth, since hardware was not available, we compared
spike traces from NeMo [10], an existing and previously
validated TrueNorth simulator. We demonstrated SANA-FE
executing both real-world applications and randomized SNNs,
which we will now describe in more detail. We will then
discuss results for energy and latency prediction, simulator
speed and design-space exploration.

A. Experimental Setup

To first calibrate the simulator, we executed the four micro-
benchmark setups on Loihi for 105 time-steps and measure
energy usage and total latency. These micro-benchmarks were
executed in parallel across multiple cores and results aver-
aged to improve measurement noise. The neuron scheduling
benchmark was executed, with N = 256, M = 768, and
R = 128. We then used both real-world neuromorphic appli-
cations and randomly generated SNNs, summarized in Table
III. We mapped and simulated three real-world neuromorphic
benchmarks for Loihi with different network sizes, network
topologies and spiking behavior. These included a simplified
network inspired by the Dragonfly prey interception neural
network [13], a constraint satisfaction problem (CSP) solver
mapped to the Latin squares problem [12], and an application
that classifies hand-gestures captured from a dynamic vision
sensor (DVS) based camera [11].

The bio-inspired benchmark consists of two connected
layers of neurons scaled to different numbers of neurons (N)
using the equations described in [13]. In this benchmark,
the first layer of neurons spikes every time-step and sends
messages to a second layer of receiving neurons. We generated
networks with N between 98 and 1682, and measured energy
and latency over 105 time-steps. We tested three mappings of
neurons to cores to exercise different core and NoC behavior
(Fig. 8). In the first mapping shown in Fig. 8(a), we used Intel’s
NxSDK framework and compiler for its Loihi platform to

Core 1 Core 2

(a) Default mapping

Core 1

Core 3

Core 2

(b) Three core mapping

Core 1

Core 4

Core 3

Core 2

(c) Four core mapping

Fig. 8. Three mappings of the bio-inspired benchmark from [13].

generate a default assignment that sequentially maps neurons
from both layers to fill the first core, and spills neurons
onto a second core once the first core is full. In the second
configuration (Fig. 8(b)), we mapped all spiking neurons to the
first core and receiving cores to the second and third cores.
In the third and final configuration (Fig. 8(c)), we mapped the
SNN across four cores.

For the CSP solver, we generated a set of SNNs to solve
Latin squares problems for N digits on an N ×N grid, using
the stochastic SNNs described in [12]. In this benchmark, the
solver was run 8 times, ranging the problem size, N , from 8
to 15 digits. We executed the solver for 104 time-steps using
NxSDK’s default mapping, for each value of N .

For the DVS gesture classification, we used a previous
implementation for Loihi [11] which uses Intel’s neuromorphic
deep-learning framework NxTF [39]. It uses a 5-layer convo-
lutional SNN with a final dense layer, which is mapped to 49
cores by the NxTF compiler. We ran 100 test-case inferences
for 5 different gestures, where each inference took 100ms of
DVS camera data and was processed for 128 time-steps.

In addition to real-world benchmarks available for the Loihi
platform, we also generated randomized SNNs for both Loihi
and TrueNorth using a range of network sizes, connectivity and
spiking probabilities. Randomized networks were generated
using a fixed seed, varying the number of cores, neurons per
core, probability of each neuron spiking, packets per neuron
and spikes per packet. For every SNN we used a fixed spiking
pattern, where every neuron designated as spiking fired every
time-step. For Loihi, the number of cores were ranged from
1 to 128, with 64 or 128 neurons instantiated per core and
the other parameters varied. The networks were executed for
105 time-steps. For TrueNorth, we replicated the randomized
SNNs in [10], with up to 1024 cores with 256 neurons per
core and with 80% of spikes sent intra-core and 20% of spikes
inter-core. SNNs were executed for 10 time-steps.

B. Energy and Latency Estimation

To demonstrate the accuracy of energy and latency predic-
tions in SANA-FE, we executed the three real-world applica-

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. X, NO. Y, MONTH 2025 11

0 500 1000 1500
Neurons

0

1

2

3

En
er

gy
 (

J)
Measured
SANA-FE

(a) Energy

0 500 1000 1500
Neurons

0.0

0.1

0.2

0.3

Ti
m

e-
st

ep
 L

at
en

cy
 (m

s) Measured
SANA-FE
Analytical model

(b) Latency for default mapping

500 1000 1500
Neurons

0.0

0.1

0.2

0.3

Ti
m

e-
st

ep
 L

at
en

cy
 (m

s) Measured
SANA-FE
Analytical model

(c) Latency for three-core mapping

0 500 1000 1500
Neurons

0.00

0.05

0.10

0.15

0.20

0.25

Ti
m

e-
st

ep
 L

at
en

cy
 (m

s) Measured
SANA-FE
Analytical model

(d) Latency for four-core mapping

Fig. 9. Predicted average energy and latency per time-step for different sized SNNs from a bio-inspired benchmark.

(a) Energy (b) Latency

Fig. 10. Comparison of estimated average energy and latency per time-step
against Loihi measurements for a Latin square solver executing different sized
problem sets. Points represent values predicted by SANA-FE for different
executed runs, and the dashed line represents a perfectly accurate prediction.

(a) Energy (b) Latency

Fig. 11. Comparison of estimated average energy and latency per time-step
against Loihi measurements for different gesture categorizations.

tions on SANA-FE’s calibrated Loihi model, and compared
predictions against measurements taken on Loihi. All energy
and latency measurements were taken using built-on probes on
Intel’s Nahuku platform. Latency measurements were recorded
and compared at a time-step granularity. Energy measurements
were taken using coarse-grained power probes and were aver-
aged over the entire application execution to obtain per-time-
step estimates.

Fig. 9 shows the estimated average energy and latency per
time-step for different instances of the bio-inspired benchmark,
showing that SANA-FE accurately captures both trends for
different SNN sizes and mappings. For this application, the
energy consumption does not depend on mappings as all
cores are within the same network tile, and therefore the
hardware mapping does not affect the total activity counts
across the chip. Also, in this experiment, we only model
dynamic energy, i.e. we do not model the change in static
power due to potential power-gating of cores that are ‘turned-
off’. There is a dip in time-step latency for the default mapping

around 1000 neurons, where the compiler switches from a
single to two core mapping. Mapping across more cores results
in more parallelization of neuron and message processing
leading to faster execution times. However, partitioning across
more cores also increases communication costs and network
blocking delays. SANA-FE’s scheduling algorithm is able
to capture the effects of parallelization and communication
delays, and can accurately predict the performance of different
SNN mappings.

Fig. 9 includes a comparison of latency estimates using a
simpler analytical timing model that is based on aggregated
hardware activity counts [14]. As results show, such an ana-
lytical model is not able to account for cross-core and NoC
timing effects in multi-core mappings.

Fig. 10 and Fig. 11 show the correlation of the estimated
and measured average energy and latency per time-step, over
different executions of the Latin square solver and DVS
gesture categorization applications, respectively. The total en-
ergy and latency are generally predicted accurately for both
applications. SANA-FE consistently underestimates average
latency for the DVS gesture application.

Fig. 12 shows a trace of simulated vs. measured DVS la-
tency over time. The simple analytical timing model from [14]
does not replicate timing trends and overestimates latency in
some cases. By contrast, SANA-FE’s scheduling algorithm
more reliably tracks latency trends, but is not able to accurately
replicate all peaks. Inaccuracies are due to design details not
captured by simulation. In particular, we would have to model
the NoC in more detail than the semi-analytical model used
by SANA-FE. To explore this, we implemented a custom,
event-based network model that loads SANA-FE message
traces and accurately tracks messages traversing the network,
including arbitration, buffer queues and back-pressure at every
router link. The dotted line in Fig. 12 shows the trace of a
SANA-FE version using this NoC model. As can be seen,
our semi-analytical model performs comparably to the detailed
event-based model, despite only processing a single event per
spike message. The event-based NoC model generates tens to
hundreds of events per-message and is orders of magnitude
slower with only a limited gain in accuracy. To improve
accuracy further, an even more detailed, e.g., cycle-accurate
NoC model would be needed, which would, however, likely
be too slow for rapid exploration.

Finally, Fig. 13 compares predictions and measurements
for the randomized networks. Fig. 13(a) shows that energy

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. X, NO. Y, MONTH 2025 12

Fig. 12. Results from a time-series comparing simulated vs. measured time-step latency for a single gesture categorization from the DVS gesture data-set.
The dotted line shows simulated results for a version of SANA-FE using an event-based NoC model.

(a) Energy (b) Latency

Fig. 13. Comparison of estimated average energy and latency per time-step
against Loihi measurements different randomized SNNs. The color of each
point indicates the number of neurons in that SNN.

TABLE IV
PREDICTION ERROR.

Benchmark Energy Latency
Avg. Abs. Avg. Avg. Abs. Avg.

Bio-inspired SNN 5.0% −4.1% 3.0% −3.0%
Latin Square Solver 11.7% 10.7% 7.6% 7.5%
Gesture Categorization 2.7% 2.0% 24.3% 24.3%
Randomly Generated 3.9% 1.6% 15.4% 5.9%

is accurately predicted across a range of operating conditions,
while Fig. 13(b) shows that latency trends are generally cap-
tured. Some of these random networks exercise scenarios that
are unlikely in real-world applications e.g., fully connected
neurons that are all spiking. Furthermore, each measurement
represents only a single spiking pattern repeated over multiple
time-steps – the effect of outliers would be averaged out in a
real application that has many different spiking patterns during
its execution.

SANA-FE’s prediction error for different benchmarks is
summarized in Table IV. Both the average absolute error and
the average error were calculated across different executions of
each benchmark. SANA-FE predicts energy and latency with
an error margin of 11.7% and 24.3%, respectively.

C. Simulator Speed

To demonstrate simulator speed, we simulated all bench-
marks on an Intel i7-13700 and recorded run-times (Table V).
We calculated the throughput, i.e., the number of simulated
time-steps per second, and show the range of run-times,
throughput results and real-time speeds for the smallest and
largest SNN sizes. We also compared randomized benchmarks
run on SANA-FE against NeMo, an existing TrueNorth simu-
lator (Fig. 14). Due to its abstract, time-step based simulation
model SANA-FE executes the random application orders-of-
magnitude faster than a discrete event-based simulator such

TABLE V
SIMULATOR SPEED.

Benchmark Run-time Throughput Real-time
Bio-inspired SNN 7–255 s 390–14k steps/s 129–131 ms/s
Latin Square Solver 1–161 s 64–72k steps/s 2–54 ms/s
Gesture Categorization 0.3–2.1 s 61–427 steps/s 2–5 ms/s
Randomly Generated 4–4278 s 23–23k steps/s 2–71 ms/s

Fig. 14. Simulator speed of SANA-FE compared to the TrueNorth simulator
NeMo executing randomized SNNs.

as NeMo for all network sizes. For 1024 out of 4096 cores
SANA-FE simulated the random application over 20× faster
than NeMo.

D. Design-Space Exploration

To demonstrate SANA-FE’s capability for rapid, early
design-space exploration, we performed a design-space sweep
to predict the effect of design choices, and optimize architec-
tures for gesture categorization and CSP solver applications.
We generated a set of designs with different numbers of cores,
scaling per-core resources, i.e., the number of neurons per
core, synaptic memory and axon memory, such that the total
resources in the design remained constant. For example, if
the core count was doubled, the synaptic memory, neurons
supported and axons per core were halved. We assumed that
per-operation energy and latency costs remained the same,
using previously calibrated values. For the gesture categoriza-
tion application, we mapped the SNN from Section VII-B by
modifying the SNN mapping code in Intel’s NxTF framework.
For the Latin square SNNs, we adopted a greedy algorithm that
maps neurons to cores until they are full. We executed the
mapped SNNs on their corresponding design for 128 time-
steps for gesture categorization and 3000 time-steps for the
Latin square solver (for a problem size of N = 15), measuring
the dynamic energy and run-time. The design-space sweep
took 29 s for gesture categorization and 473 s for the Latin
square solver on an Intel i7-13700.

Fig. 15 and Fig. 16 show performance and energy usage for
gesture categorization and the Latin square solver respectively,

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. X, NO. Y, MONTH 2025 13

Fig. 15. Energy and latency executing the DVS gesture benchmark on
different Loihi-based architectures. Each architecture is labeled by a tuple
specifying (c) the number of cores and (n) the maximum neurons per core.

with designs labeled ⟨cores, neurons per core⟩. Loihi’s con-
figuration of 128 cores with 1024 neurons each is highlighted
in bold. Results show that latency decreases while dynamic
energy usage increases with higher core counts, as adding
cores requires more tiles and incurs higher communication
costs. Latency trends are different for the two applications,
as the network connectivity is different for convolutional
SNN used by gesture categorization and the sparse SNN for
constraint solvers. Fig. 15 shows that DVS run-time drops
as cores are increased, before plateauing around 170 cores.
While Loihi is close to the optimal run-time for gesture
categorization, the design with 170 cores executes the gesture
benchmark 21% faster than Loihi but with only a 2% increase
in dynamic energy. For the Latin square solver (Fig. 16),
designs with cores supporting fewer than 4096 neurons are
forced to map their SNN across multiple cores, leading to
a significant reduction in run-time. Run-time plateaus for
designs with core counts between 64 and 170, but is reduced
further in designs with more than 170 cores. For designs with
more than 170 cores, run-time could be traded off against
increased energy usage depending on the needs of the user.
Overall, design-space exploration results show that the Loihi
base architecture provides a good balance, but there is room for
application-specific optimization of latency-energy trade-offs.
SANA-FE allows system architects to perform such trade-off
analyses and explorations in a very short amount of time at
early design stages.

VIII. SUMMARY, CONCLUSION AND FUTURE WORK

In this paper we presented SANA-FE, a novel configurable
simulator of advanced neuromorphic architectures for fast
exploration. SANA-FE uses an architecture description file
and a mapped SNN model to simulate activity in different
parts of the design. We described a methodology to calibrate
SANA-FE against real hardware to accurately estimate real-
world hardware energy and latency. On a Loihi platform,
SANA-FE estimates energy within 12% for four benchmark
applications. Finally, we have developed a timing model that
can predict time-step latency within 25%. Using energy and la-
tency estimates from SANA-FE, system architects can rapidly
and effectively explore design-spaces and make energy-latency
trade-offs for future SNN-based platforms.

In future work, we plan to further improve accuracy and
simulation speed of SANA-FE, e.g., by incorporating more

Fig. 16. Energy and latency executing the Latin squares benchmark on
different Loihi-based architectures with labels ⟨cores, neurons per core⟩.

advanced NoC models and parallelizing the simulator to run
on many-core and cluster platforms. Furthermore, we plan
to extend SANA-FE to support analog and mixed-signal
components, and to analyze the impact of using such design
elements including emerging neuromorphic devices [40] in
large-scale neuromorphic designs. Finally, we plan to integrate
SANA-FE with other neuromorphic application development
frameworks, such as Lava [9], Fugu [41], and SNNTorch [42].
SANA-FE was primarily designed for hardware design-space
exploration, but within this context, it could also be useful
for development of neuromorphic compilers and application
optimization frameworks.

ACKNOWLEDGMENTS
This article has been authored by an employee of National Technology &

Engineering Solutions of Sandia, LLC under Contract No. DE-NA0003525 with the
U.S. Department of Energy (DOE). The employee owns all right, title and interest in and
to the article and is solely responsible for its contents. The United States Government
retains and the publisher, by accepting the article for publication, acknowledges that
the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide
license to publish or reproduce the published form of this article or allow others to do
so, for United States Government purposes. The DOE will provide public access to
these results of federally sponsored research in accordance with the DOE Public Access
Plan https://www.energy.gov/downloads/doe-public-access-plan.

REFERENCES

[1] C. Mead, Analog VLSI and Neural Systems. Reading, MA: Addison-
Wesley, 1989.

[2] G. Indiveri et al., “Neuromorphic silicon neuron circuits,” Front. Neu-
rosci., vol. 5, p. 73, 2011.

[3] C. S. Thakur et al., “Large-scale neuromorphic spiking array processors:
A quest to mimic the brain,” Front. Neurosci., vol. 12, p. 891, 2018.

[4] J. D. Smith et al., “Neuromorphic scaling advantages for energy-efficient
random walk computations,” Nat. Electron., vol. 5, no. 2, pp. 102–112,
2022.

[5] J. Aimone et al., “A review of non-cognitive applications for neuromor-
phic computing,” Neuromorphic Comp. Eng., 2022.

[6] C. D. Schuman, S. R. Kulkarni, M. Parsa, J. P. Mitchell, P. Date, and
B. Kay, “Opportunities for neuromorphic computing algorithms and
applications,” Nat. Comput. Sci., vol. 2, no. 1, pp. 10–19, 2022.

[7] A. Basu, L. Deng, C. Frenkel, and X. Zhang, “Spiking neural network
integrated circuits: A review of trends and future directions,” in IEEE
Custom Integr. Circuits Conf. (CICC), 2022.

[8] T. Bekolay et al., “Nengo: a Python tool for building large-scale
functional brain models,” Front. Neuroinform., vol. 7, p. 48, 2014.

[9] Intel’s Lava Software Framework for Neuromorphic Computing.
[Online]. Available: github.com/lava-nc/lava

[10] M. Plagge, C. D. Carothers, E. Gonsiorowski, and N. Mcglohon, “NeMo:
A massively parallel discrete-event simulation model for neuromorphic
architectures,” ACM Trans. Model. Comput. Simul. (TOMACS), vol. 28,
no. 4, sep 2018.

[11] R. Massa, A. Marchisio, M. Martina, and M. Shafique, “An efficient
spiking neural network for recognizing gestures with a DVS camera
on the Loihi neuromorphic processor,” in Int. Joint Conf. Neural Netw.
(IJCNN), 2020.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. X, NO. Y, MONTH 2025 14

[12] M. Davies et al., “Advancing neuromorphic computing with Loihi: A
survey of results and outlook,” Proc. IEEE, vol. 109, no. 5, pp. 911–934,
2021.

[13] L. Parker, F. Chance, and S. Cardwell, “Benchmarking a bio-inspired
SNN on a neuromorphic system,” in Neuro-Inspired Comp. Elements
Conf., 2022.

[14] J. Boyle, M. Plagge, S. G. Cardwell, F. S. Chance, and A. Gerstlauer,
“Performance and energy simulation of spiking neuromorphic architec-
tures for fast exploration,” in Int. Conf. Neuromorphic Syst. (ICONS),
2023.

[15] M.-O. Gewaltig and M. Diesmann, “NEST (NEural Simulation Tool),”
Scholarpedia, vol. 2, no. 4, p. 1430, 2007.

[16] L. Niedermeier et al., “CARLsim 6: An open source library for large-
scale, biologically detailed spiking neural network simulation,” in Int.
Joint Conf. Neural Netw. (IJCNN), 2022, pp. 1–10.

[17] M. Stimberg, R. Brette, and D. F. Goodman, “Brian 2, an intuitive and
efficient neural simulator,” eLife, vol. 8, p. e47314, Aug. 2019.

[18] P. Date, C. Gunaratne, S. R. Kulkarni, R. Patton, M. Coletti, and
T. Potok, “SuperNeuro: A fast and scalable simulator for neuromorphic
computing,” in Int. Conf. Neuromorphic Syst. (ICONS), 2023.

[19] C. Michaelis, A. B. Lehr, W. Oed, and C. Tetzlaff, “Brian2Loihi: An
emulator for the neuromorphic chip Loihi using the spiking neural
network simulator Brian,” Front. Neuroinform., vol. 16, pp. 1–13, 2022.

[20] R. Kleijnen, M. Robens, M. Schiek, and S. van Waasen, “A network
simulator for the estimation of bandwidth load and latency created
by heterogeneous spiking neural networks on neuromorphic computing
communication networks,” J. Low Power Electron. Appl., vol. 12, no. 2,
p. 23, 2022.

[21] R. Kleijnen, M. Robens, M. Schiek, and S. Van Waasen, “Verification of
a neuromorphic computing network simulator using experimental traffic
data,” Front. Neurosci., vol. 16, p. 958343, 2022.

[22] M. Robens, R. Kleijnen, M. Schiek, and S. van Waasen, “NoC simulation
steered by NEST: McAERsim and a Noxim patch,” Front. Neurosci.,
vol. 18, p. 1371103, 2024.

[23] A. Balaji, P. Adiraju, H. J. Kashyap, A. Das, J. L. Krichmar, N. D. Dutt,
and F. Catthoor, “PyCARL: A PyNN interface for hardware-software
co-simulation of spiking neural network,” arXiv:2003.09696, 2020.

[24] M. Plagge et al., “ATHENA: Enabling codesign for next-generation
AI/ML architectures,” in IEEE Int. Conf. Rebooting Comput. (ICRC),
2022.

[25] A. F. Rodrigues et al., “The structural simulation toolkit,” ACM SIG-
METRICS Perform. Eval. Rev., vol. 38, no. 4, pp. 37–42, 2011.

[26] J. Yik et al., “NeuroBench: A framework for benchmarking neuromor-
phic computing algorithms and syst.” arXiv:2304.04640, 2023.

[27] W. G. Gomez, A. Pignata, R. Pignari, V. Fra, E. Macii, and G. Urgese,
“First steps towards micro-benchmarking the Lava-Loihi neuromorphic
ecosystem,” in IEEE 16th Int. Symp. Embedded Multicore/Many-core
Systems-on-Chip (MCSoC), 2023, pp. 462–469.

[28] M. Davies et al., “Loihi: A neuromorphic manycore processor with on-
chip learning,” IEEE Micro, vol. 38, no. 1, pp. 82–99, 2018.

[29] M. V. DeBole et al., “TrueNorth: Accelerating from zero to 64 million
neurons in 10 years,” Computer, vol. 52, no. 5, pp. 20–29, 2019.

[30] S. B. Furber, F. Galluppi, S. Temple, and L. A. Plana, “The SpiNNaker
project,” Proc. IEEE, vol. 102, no. 5, pp. 652–665, 2014.

[31] C. Mayr, S. Hoeppner, and S. Furber, “SpiNNaker 2: A 10 million
core processor system for brain simulation and machine learning,”
arXiv:1911.02385, 2019.

[32] J. Pei et al., “Towards artificial general intelligence with hybrid tianjic
chip architecture,” Nature, vol. 572, no. 7767, pp. 106–111, 2019.

[33] V. P. Nambiar et al., “0.5V 4.8 pJ/SOP 0.93µW leakage/core neuromor-
phic processor with asynchronous NoC and reconfigurable LIF neuron,”
in IEEE Asian Solid-State Circuits Conf. (A-SSCC), 2020.

[34] B. V. Benjamin et al., “Neurogrid: A mixed-analog-digital multichip
system for large-scale neural simulations,” Proc. IEEE, vol. 102, no. 5,
pp. 699–716, 2014.

[35] C. Pehle et al., “The BrainScaleS-2 accelerated neuromorphic system
with hybrid plasticity,” Front. Neurosci., vol. 16, p. 795876, 2022.

[36] C. D. Schuman, T. E. Potok, R. M. Patton, J. D. Birdwell, M. E. Dean,
G. S. Rose, and J. S. Plank, “A survey of neuromorphic computing and
neural networks in hardware,” arXiv:1705.06963, 2017.

[37] Z. Qian, P. Bogdan, C.-Y. Tsui, and R. Marculescu, “Performance
evaluation of NoC-based multicore systems: From traffic analysis to
NoC latency modeling,” ACM Trans. Des. Automat. Electron. Syst.
(TODAES), vol. 21, no. 3, pp. 1–38, 2016.

[38] SANA-FE. [Online]. Available: github.com/SLAM-Lab/SANA-FE

[39] B. Rueckauer, C. Bybee, R. Goettsche, Y. Singh, J. Mishra, and A. Wild,
“NxTF: An API and compiler for deep spiking neural networks on Intel
Loihi,” ACM J. Emerg. Technol. Comput. Syst. (JETC), vol. 18, no. 3,
pp. 1–22, 2022.

[40] J. Tang et al., “Bridging biological and artificial neural networks
with emerging neuromorphic devices: fundamentals, progress, and chal-
lenges,” Adv. Mater., vol. 31, no. 49, p. 1902761, 2019.

[41] J. B. Aimone, W. Severa, and C. M. Vineyard, “Composing neural
algorithms with Fugu,” in Proc. Int. Conf. Neuromorphic Syst. (ICONS),
2019, pp. 1–8.

[42] J. K. Eshraghian et al., “Training spiking neural networks using lessons
from deep learning,” Proc. IEEE, 2023.

James A. Boyle is a Ph.D. student in the Chandra
Department of Electrical and Computer Engineering
at The University of Texas at Austin, USA. He
received his Masters of Engineering (M.Eng.) in
electronic engineering with computer systems from
the University of Southampton, UK in 2016.

Mr. Boyle has five years of industry experience,
working with the CPU pre-silicon validation team at
Arm, Cambridge, UK. His research interests include
computer architecture and neuromorphic computing.

Mark Plagge is a postdoctoral researcher in the
Center for Computing Research at Sandia National
Laboratories. He received his PhD in computer sci-
ence from Rensselaer Polytechnic Institute, where he
focused on parallel discrete event simulations. Cur-
rently, Mark’s research involves the application of
novel neural networks, optimizing machine learning
on advanced hardware, and exploring spiking neural
networks. His work aims to push the boundaries
of AI and optimization techniques on cutting-edge
computational platforms.

Suma George Cardwell is a Principal Member
of Technical Staff in the Center for Computing
Research at Sandia National Laboratories. She com-
pleted her PhD and MS in Electrical and Computer
Engineering at Georgia Tech, Atlanta in 2015 and
2011 respectively. Her current research focuses on
neuromorphic computing, brain-inspired algorithms,
event-based processing, co-design of machine learn-
ing hardware and algorithms, AI-guided microelec-
tronics design, and applications of heterogeneous
systems from HPC to the edge.

Frances S. Chance is a Principal Member of the
Technical Staff in the Department of Cognitive and
Emerging Computing of the Center for Comput-
ing Research at Sandia National Laboratories. Her
research applies knowledge of biological nervous
systems and neural circuit operations to develop
and constrain novel neural-informed algorithms and
brain-based technologies. She received her PhD and
MS in Computational Neuroscience from Brandeis
University.

Andreas Gerstlauer (SM’11) is a Cullen Trust for
Higher Education Endowed Professor and Associate
Chair in the Electrical and Computer Department at
The University of Texas at Austin. He received the
Ph.D. degree in Information and Computer Science
from the University of California at Irvine (UCI) in
2004. Prior to joining UT Austin in 2008, he was
an Assistant Researcher in the Center for Embedded
Computer Systems (CECS) at UCI. His research
interests cover system-level design and embedded
systems. His work was recognized with several best

paper awards, and he serves or has served as Editor for ACM TECS and
TODAES journals as well as General or Program Chair for major international
conferences such as ESWEEK.

