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Abstract—With ever increasing design complexities, traditional
cycle-accurate or instruction-set simulations are often too slow or
too inaccurate for system prototyping in early design stages. As
an alternative, host-compiled or source-level software simulation
has been proposed, but existing approaches have largely focused
on timing simulation only. In this paper, we propose a novel
source-level simulation infrastructure that provides a full range
of performance, energy, reliability, power and thermal (PERPT)
estimation. Using a fully automated, retargetable back-annotation
framework, intermediate representation code is statically an-
notated with timing, energy and resource accesses information
obtained from low-level references at basic block granularity. The
annotated model is natively compiled and combined with a cache
model and occupancy analyzer to provide target performance,
energy, soft-error vulnerability and power estimations. Finally,
generated power traces are fed into thermal models for further
temperature estimation.

Comprehensive evaluations of our source-level models for
PERPT estimations are performed. We applied our approach
to PowerPC targets running various industry benchmark suites.
Source-level simulations are evaluated for different PERPT met-
rics and with cache models at various levels of detail to explore
the speed and accuracy tradeoffs. More than 90% accuracy can
be achieved for timing, energy, reliability and power estimation,
and an average error of 0.05K exists in steady-state thermal
estimation. Simulation speeds range from 180 MIPS to 5740 MIPS
for different types of metrics at different abstraction levels.

Index Terms—Host-compiled and source-level simulation, vir-
tual platform prototyping.

I. INTRODUCTION

Embedded systems are usually designed under tight design
schedules and budgets. In early design stages, architectures
and applications have to be co-designed across a large hard-
ware/software space with multiple simultaneous optimiza-
tion objectives. Various implementation choices and multi-
dimensional evaluation metrics make the design space ex-
tremely large, and fast yet accurate evaluation methodologies
are required.

Simulations usually play a crucial role in the validation
process due to their ability to accurately capture the dynamic
behavior and interactions across the system stack. Designers
typically rely on executable models for accurate feedback
on various metrics of their candidate designs. Tradition-
ally, instruction set simulators (ISSs), cycle-accurate, micro-
architectural or RTL/gate-level descriptions have been used
to perform simulations of software applications executing on
a target platform. Their drawback is that they are either
inaccurate or slow, since they require the processor micro-
architecture to be either fully abstracted or modeled in detail.
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High-level software and processor models based on native,
so-called host-compiled or source-level software execution
have recently emerged as fast and accurate alternatives [1].
Such approaches model computation at the source code level
(typically in C-based form), which allows a purely functional
model to be natively compiled onto the host for fastest
possible execution. Execution statistics are added by prior
back-annotation of the source with estimated target metrics.
In complete host-compiled models, annotated source code
is then further wrapped into models of operating systems
and processors that integrate into standard transaction-level
modeling (TLM) backplanes.

Previous source-level approaches thus far have mostly fo-
cused on timing estimation only. However, continuously in-
creasing integration densities and physical limits of technology
scaling have made power, thermal and reliability concerns
crucial design metrics that also need to be considered. In this
paper, we propose a novel source-level software modeling and
simulation infrastructure that encompasses a full range of per-
formance, energy, reliability, power and thermal (PERPT) met-
rics. Our flow is fully automated and retargetable. It is built by
annotating the compiler generated intermediate representation
(IR) of the application source code with estimates obtained
from reference models. The annotated model is then executed
natively on a host machine to generate PERPT estimations.
In previous work, we developed basic timing and energy
estimation [2]. In this paper, we extend our prior work by con-
sidering additional micro-architecture effects, such as dynamic
cache behavior, while also providing a wider range of PERPT
metrics. To provide soft error vulnerability estimations, code
is back-annotated with information to trace accesses to micro-
architectural structures, and an online occupancy analyzer is
run along with the simulation. Furthermore, power traces for
each floorplan component are recorded periodically at a pre-
defined sampling rate. Finally, generated power traces are
forwarded to thermal models for temperature estimation and
hotspot identification [3].

Comparing with previous work, the specific contributions of
this paper are: (1) an extension of source-level timing, energy
and thermal models to incorporate cache and memory effects;
(2) a novel back-annotation based approach for fast and accu-
rate source-level reliability estimation of register file and data
cache vulnerabilities against soft errors; (3) an extension of the
back-annotation infrastructure for generating transient power
traces directly at the source level; and (4) a comprehensive
evaluation of source-level software models across all PERPT
metrics to explore speed and accuracy tradeoffs.

The rest of the paper is organized as follows: After an
overview of related work and the back-annotation flow in the
following sections, techniques of back annotation and host-
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compiled simulation are discussed in Sections IV, V and VI.
Section VII then discusses the results of our experiments and
Section VIII presents the conclusions.

II. RELATED WORK

For timing estimation, functional or cycle-accurate ISS
models are widely used as a key component in virtual pro-
totyping platforms [4], [5], [6]. Such models either rely on
slow, detailed cycle-accurate micro-architecture simulation, or
provide inaccurate or no timing feedback when using purely
functional binary translation.

Many advanced simulation techniques have been introduced
as alternatives to such execution-driven approaches. Trace-
driven approaches [7] provide a flexible and scalable simu-
lation infrastructure by separating functional from timing sim-
ulations and reducing overhead when co-simulating multiple
system components. A trace-driven multi-core cache simulator
is proposed in [8]. By employing PIN as a trace generator, it
can characterize single-/multi-threaded applications at a speed
of 4-10 MIPS with 4% error. Sniper is another PIN-based sim-
ulator that combines trace-driven with interval simulation [9].
Compared with real hardware, it can achieve 89% accuracy
at speeds ranging from 450 KIPS to 5.5 MIPS under various
configurations for different speed-accuracy tradeoffs. In [10],
a trace-driven infrastructure for simulating parallel architec-
tures running multi-threaded applications is shown. Instead
of showing quantitative speed benefits, the paper emphasizes
its scalability from 8-128 host cores. [11] demonstrates a
framework for timing analysis of MPSoC architectures using
abstract-timed traces, providing a 4x speedup with 95% accu-
racy compared to a cycle-accurate full-system model. In [12],
a trace-driven MPSoC simulator with reduced synchronization
overhead is proposed, achieving up to 11x speedup with
5% estimation error compared to a commercial SystemC co-
simulation framework. In all cases, however, timing-accurate
simulation of software on a single core as targeted in this
work still requires large execution traces to be pre-generated
and replayed on detailed and slow micro-architecture models.
By contrast, source-level approaches statically derive a fast,
coarse-grain timing model that is driven by a high-level
functional simulation. Such source-level component models
can in turn be used as alternative trace generators in a trace-
driven system simulation framework.

Previous source-level works typically rely on complex
analysis using IR-level and debug information to establish
a mapping between the target binary and source code for
timing back-annotation [13], [14], [15], [16]. In our work, we
back-annotate IR code directly, which simplifies the mapping.
Furthermore, in the presence of optimizations, we have found
debug information alone to be unreliable. We therefore im-
plement an approach that combines a flow graph matching
algorithm with debug information as fall-back only when
needed. A similar graph matching is described in [17]. To
further increase accuracy compared to existing approaches,
we perform pairwise characterization of basic blocks across
all possible predecessors using execution on a cycle-accurate
reference model. Similar approaches for path-dependent tim-
ing characterization can be found in [18], [19]. Finally, in

order to consider memory effects and drive a high-level cache
model [20], we reconstruct target memory traces solely based
on IR and debugger information. Similar works [21], [22], [23]
usually require binary analysis and are not fully retargetable.
Our approach is comparable in speed and timing accuracy
to previous works. In [13], more than 80% accuracy can
be achieved for different optimization options and model
details, where throughputs of 520-2500 MIPS are reached
for simulations with and without cache. In [14], a WCET
analyzer is integrated for binary timing profiling. 5-400 MIPS
simulation throughput is achieved with errors reaching up
to 15%. In [24], results show up to 13% error for non-
optimized code at 10x-1000x speedup compared to a cycle-
approximate multicore reference simulator. In [19], speeds of
400-1000 MIPS at errors of less than 2% are reported. None of
these approaches consider energy, reliability, power or thermal
metrics, however.

For power estimation, popular approaches rely on detailed,
low-level macro models for micro-architectural functional
blocks [25], [26]. At higher levels, existing power estimation
approaches employ coarse-grain models that assume a con-
stant or statistical energy consumption at the granularity of
complete instructions, source-level operations, program phases
or processor states [27], [28], [29], [30]. The authors in [29]
rely on static characterization of a target ISA to perform IR-
level energy estimation with up to 13% error at 400x speedup
compared to a target ISS. By contrast, we make use of existing
low-level reference models that operate at detailed micro-
architectural granularity to back-annotate high-level IR code.
By characterizing blocks in static pairs, we are able to maintain
the accuracy of such low-level models while achieving fast
estimation and simulation times.

For reliability modeling, we make use of the Architectural
Vulnerability Factor (AVF) concept, which was introduced as
a metric for measuring architecture-level soft-error reliabil-
ity [31]. AVF is defined as the probability of an error occurring
in a particular architecture component resulting in explicit ex-
ecution errors. By its definition, AVF can be obtained through
profiling of the occupancy of so-called Architecturally Correct
Execution (ACE) bits, for which any error will manifest itself
as a fault at the program output. Fu et al. [32] characterize AVF
using cycle-accurate simulations across the entire program
execution. Machine learning based and analytical approaches
have been proposed to deal with the simulation time prob-
lem [33], [34], [35]. Such approaches, however, fail to capture
many of the dynamic complexities introduced by modern
software and hardware. Different from previous work, we
estimate the AVF without the need for expensive instruction set
simulation by leveraging fast source-level software execution
and high-level processor model abstraction. Back-annotation
of statically profiled target occupancy characteristics ensures
estimation accuracy, while host simulation accurately captures
all dynamic application/architecture interactions.

For thermal modeling, HotSpot [36] is widely used. How-
ever, this usually requires a previously collected power trace
generated by execution of applications on cycle-accurate
simulators and power estimation tools [37]. Alternatively,
lightweight and approximate models for thermal estimation
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Fig. 1. Retargetable back-annotation (RBA) flow for source-level PERPT
simulation.

can speed up early design space exploration significantly,
albeit at the cost of accuracy [38], [39], [40]. However,
these methodologies do not provide an integrated approach
for thermal analysis, and the input is primarily some existing
power trace. Thiele et al. [41] approximate the complex
system of differential equations for temperature evaluation to
linear equations using a Discrete-Time Temperature Evaluation
Model (DTTEM) [42] for small and constant time intervals.
Nevertheless, parameters for thermal analysis are again ob-
tained using slow low-level simulation methods. In our work,
we instead rely on the host-compiled source level model
annotated with basic block energy consumptions to generate
the power traces for each floorplan component. These power
traces are then further fed into thermal models to provide quick
feedback.

III. FLOW OVERVIEW

Fig. 1 shows our flow for host-compiled performance,
energy, reliability, power and thermal (PERPT) modeling. The
application C code is passed through a generic cross-compiler
front end (gcc in our case) to produce an IR, which is then
further massaged back into compilable C form. Working at
the IR allows typical compiler front-end optimizations to be
taken into account with little or no penalty in execution speed.
Moreover, the IR inherently provides a close representation of
the final control flow graph (CFG) of the target code. Hence,
it is able to accurately reflect all data-dependent execution
behavior. In addition, the IR allows us to accurately observe
effects of target-dependent behavior, such as overflows in
the original C code. For this, the IR-to-C conversion maps
all variables and constants into a host data type of target-
equivalent size and alignment. During this process, global and

stack variables are extracted and corresponding target memory
access traces are reconstructed based on available information
from the IR and target debugger. These memory traces are
then used to drive a high-level cache model that accurately
emulates dynamic cache effects for estimation of cache- and
memory-access related target metrics.

During following back annotation, the IR’s CFG is then
further augmented with timing, energy and architectural occu-
pancy information. The IR is first passed to the generic cross-
compiler backend of the chosen target processor (again, gcc in
our case). The generated binary is then analyzed to extract its
CFG and establish the mapping between basic blocks in the IR
and the binary. This mapping is needed to accurately determine
annotation points in the IR. Basic blocks (BBs) in the binary
are characterized by executing them pairwise on a retargetable,
cycle-accurate ISS, which is automatically generated from an
open-source ADL infrastructure [5]. Execution statistics from
the simulation are further fed to a retargetable reference power
model [26] as well as related analysis scripts. Finally, result-
ing timing, energy and architectural access and occupancy
information is back-annotated into the compilable IR, aided
by the mapping. This creates the host-compiled model. In
host simulation, timing and energy numbers for each basic
block are accumulated to estimate the overall performance and
energy. At the same time, dynamic register accesses and target
memory traces are generated, while the occupancy information
of the register files and data caches are recorded and their
AVFs are further calculated.

In order to model thermal profiles, temperature estimation
models, such as HotSpot and DTTEM, are incorporated into
our flow. We extend back-annotation such that the energy
dissipation estimates in the IR can be used to generate a
structurally accurate power trace for each floorplan compo-
nent. In order to model the spatial distribution of temperatures,
thermal estimation tools also require the floorplan of a chip.
Necessary area and placement estimates of various blocks
can be obtained using McPAT and the hotfloorplan utility.
Combined, the power trace and the floorplan can be utilized
by the integrated thermal model to generate an online thermal
profile during simulation.

Overall, our work focuses on providing a lightweight sim-
ulation infrastructure for comprehensive PERPT profiling and
estimation. To the best of our knowledge, this is the first
work aimed at providing a multi-metric source-level software
simulation framework. The automated back-annotation and
host-compiled model generation process is the core of our
infrastructure. As illustrated in Fig. 1, our retargetable back-
annotation (RBA) tool consists of three main steps: (1) binary-
to-IR mapping, (2) basic block characterization, and (3) anno-
tation of target models into the compilable IR. In the following
subsections, we will describe these steps in more detail.

IV. BINARY-TO-IR MATCHING

The first step in our back annotation flow is to establish
a mapping between target binary and compilable IR. This
includes CFG matching and target memory access reconstruc-
tion, which ultimately allow target basic block metrics to be
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Fig. 2. Memory access trace reconstruction.

annotated back into the IR at correct insertion points while also
taking cache- and memory-related effects into consideration.

A. Control Flow Graph Mapping

The first step in constructing a binary-IR mapping is to
build the CFGs of the compilable IR and the binary generated
from it. Using extracted CFGs, a valid graph mapping needs to
be established in the presence of variations between the two
graphs due to compiler backend optimizations. We perform
a synchronized depth-first traversal of both CFGs to identify
legal matches based on a control flow representation using
both loop and branch nesting levels. Debugger information is
used when multiple equally likely matches are possible, as is
the case in branches of if-then-else statements. Details of this
mapping process can be found in [2].

B. Target Memory Trace Reconstruction

Caches can have a large effect on overall PERPT metrics. At
the same time, cache behavior is highly dynamic and strongly
depends on the actual sequence of memory accesses made by
the application, which can not be fully determined statically
during basic block characterization. We instead annotate the
IR with the types and addresses of memory accesses made
by the target in each basic block. Based on this information
and the sequence of basic blocks traversed during program
execution, memory access traces are generated during host
simulation and fed into a lightweight, online cache model for
estimation of related metrics. In our work, we only consider
memory accesses to global and stack data. Heap accesses
can be taken into account by incorporating a heap manager
model that emulates the target’s dynamic memory allocation
and deallocation [23]. Given that most embedded applications
do not employ dynamic memory, however, this is out of the
scope of this paper and part of our future work.

In order to identify global or stack accesses in the IR,
we parse the IR code to extract a list of all global and
local variable names. For local variables, the target debugger
(GDB) is invoked (using the info address symbol command)
to further check whether they are allocated in registers or
on the stack. Variables in registers are excluded from the
list. We thereby assume that the IR already incorporates
corresponding memory optimizations, and that local variables
live exclusively on the stack or in a register. We further
assume that all expressions in the IR involving accesses to

global and local variable names will correspond to memory
accesses in the target binary. We thus back-annotate matching
memory/cache model calls at all such access points. For both
global and stack accesses, the memory operation type (read
or write) is identified by further analyzing these expressions.
The addresses reconstruction process is described below:

1) Memory Access on Global Data: In order to reconstruct
the addresses of global data accesses, their base addresses and,
in case of non-scalars, their access offsets are required. A key
observation is that access offsets in the IR are the same as
in the target binary, while only base addresses differ. Base
address information of global data can easily be obtained
from the symbol table of the target ELF file by querying the
debugger. By contrast, access offsets are extracted from the
IR code by parsing corresponding C variables or expressions.
We analyze and extract such offset information during the IR-
to-C conversion stage. As shown in the example of Fig. 2, the
base address of global array gArr is obtained from debugger
as 0x1000085c. The name of the local variable ivtmp 71
used as index into the gArr array is extracted by parsing the
corresponding MEM[] access operation in the IR. The memory
access is translated into C syntax by the IR-to-C conversion
script, and the base and offset information is used to annotate
a matching invocation of the data cache model into the IR.
For the latter, the base address of gArr is converted into its
proper target value and combined with the dynamic value of
ivtmp 71. With this, correct target addresses are calculated and
reconstructed in the source-level model at runtime.

2) Memory Access on Stack Data: Different from the global
data, stack accesses are more complicated to back annotate.
Their base addresses change dynamically depending on the lo-
cal and global execution context. This requires reconstructing
both the target stack frame layout as well as the dynamic value
of the stack pointer during program execution. Previous work
relying on parsing the original C code does not clearly resolve
this problem [22]. The precise allocation of stack frames is
only decided after the compiler backend optimization stage.
Thus, one can not rely on the application’s IR or C code
to deduce the stack layout. Instead, we reconstruct the base
addresses of local variables using information back-annotated
from the target binary. We introduce a SP variable to track the
target stack pointer in the IR. During characterization of basic
blocks, stack pointer changes are recorded and back-annotated
into the IR. In this manner, the SP variable accurately reflects
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the value of the target stack pointer at any point during host-
compiled execution. Similar to global variables, we then rely
on the debugger to obtain the base address offset of local
variables relative to the current stack frame and stack pointer.
In the example shown in Fig. 2, the base address offset of
localArr is determined to be -8, the variable used to index into
the array is ivtmp 72, and the annotated target address value
becomes SP - 8 + ivtmp 72.

V. BASIC BLOCK CHARACTERIZATION

The second step in the back annotation process is the char-
acterization of block-specific target metrics. Accurate charac-
terization is complicated by the fact that PERPT metrics of a
basic block can be significantly affected by pipeline effects,
such as stalls, which depend on the state of the processor at
the start of execution of the block. In other words, in a real
execution flow, the processor state at the beginning of a basic
block, and hence the performance metrics for the whole block
are determined by code that has previously executed.

To approximate this effect, we characterize each block
through pairwise execution with all of its possible prede-
cessors. Such an approximation of the actual path history
represents a tradeoff between accuracy and characterization
complexity. The possible extent of history effects depends on
the basic block length and pipeline depth of the target proces-
sor [19]. Including additional levels of predecessors increases
characterization time exponentially. As results will show, a
two-level characterization incurs only a slight accuracy loss
in a few cases while providing a reasonable characterization
runtime.

A. Timing Characterization

To calculate the execution time of a basic block for a certain
predecessor, the detailed trace generated from its pair-wise
ISS execution is analyzed [2]. We rely on the difference in
the fetch time instants of the first and last instructions in a
characterized block to determine its execution time. This is
equivalent to recording commit and hence overall execution
times. In addition, we adjust for gaps triggered by stalls or
multiple-issue overlaps in fetch times of successive blocks.
Overall, intra- and inter-block pipeline effects are accurately
accounted for. Note that our pairwise characterization is also
able to accurately account for effects of static branch predic-
tors. In static predictors, either the branch target or the fall-
through block will always suffer a misprediction penalty at the
beginning of its execution. This is handled in the same way
as other basic blocks suffering a stall in their first instructions.
For dynamic branch predictors, the IR code can be augmented
with a simulation model of the predictor [43]. This is, however,
outside of the scope of this paper.

We characterize basic blocks under the assumption that
every memory access is a cache hit. Before each pairwise
execution, all cache lines are initialized to be valid, and
best-case execution times are back-annotated. We later ac-
count for variations in memory access delays by adding
an optional penalty to the overall execution time for ev-
ery back-annotated memory access. In typical embedded in-
order pipelines, memory-related stalls manifest themselves

as additive cycles that directly correspond to dynamically
varying memory access latencies. In order to later compute
such access latencies, the target cache access outcome (hit
or miss) will be calculated in the online cache model, and
a corresponding dynamic miss penalty will be added during
source-level simulation (see Section VI).

B. Energy and Power Characterization

Energy estimation requires activity statistics to estimate the
dynamic power dissipation of each component in the target
processor micro-architecture. These statistics are extracted
from the detailed trace emitted during ISS execution. When
characterizing a selected block with any of its predecessors,
corresponding instruction and operation statistics are collected
only for instructions contained in the characterized block itself.
Statistics are then fed into a micro-architectural energy model
such as McPAT to compute predecessor-dependent power
estimates for each block. Combining these estimates with the
block’s characterized execution timing, the power consumption
obtained for each block and each floorplan component is
converted into corresponding energy consumption figures.

C. Architectural Occupancy Characterization

For AVF modeling, we collect the time stamps of accesses
to micro-architecture structures during basic block character-
ization. These access times will in turn be used to compute
actual occupancy information at source-level simulation time.
Access time stamps are computed as the offsets relative to the
start of the current basic block.

For register files, the ISS traces are analyzed to obtain the
register ID and access offset during pairwise characterizations.
As shown in Fig. 3 for register r29 in block BBG, together
with the duration of each block obtained from timing charac-
terization, the actual access times will be calculated as the sum
of the accumulated execution time at the entry of the current
block plus the characterized access offset.

The cache occupancy analysis is performed separately in the
cache model. Different from register files, the time stamps for
data cache accesses are lumped together and estimated at the
granularity of basic block boundaries, i.e. all memory accesses
are assumed to occur at the beginning/end of a basic block.
This avoids the need for target-dependent memory instruction
trace analysis, but leads to inherent inaccuracies. Nevertheless,
as results will show, such simplifications do not significantly
increase AVF estimation errors for caches as compared to
register files.

VI. BACK-ANNOTATION

Metrics gathered during the characterization step are
recorded in a mapping table. As the last step in our flow,
this mapping table is then used for directing the annotation
of target metrics into the compilable IR at correct insertion
points.

A summary of our PERPT annotation flow is shown
in Fig. 3. For timing and energy estimation, the annotations
into the compilable IR are in the form of global time and
energy counters (CycleCnt and EnergyCnt), global constant
arrays (Delay[][] and Energy[][]) containing delay and energy
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estimates for all possible basic block pairs, and corresponding
table lookups in each block to increment counters based on
the ID of the current block and its runtime predecessor.
Counter increments are thereby encapsulated in incrDelay()
and incrEnergy() functions. For any cache access, the latency
and energy consumption of a specific access type (read/write)
is provided by an annotated cache model. During source-level
simulation, data cache latency and energy consumption are
added to the global time and energy counters in each call to the
DCache() function. Timing and energy effects of instruction
caches are considered by inserting a similar ICache() function
call at the beginning of each block. The instruction address
trace of the current basic block (InstrAddressList[]) is thereby
extracted during prior characterization. During simulation, this
trace is passed into and interpreted by the ICache() model
as a trace of consecutive access addresses. Note that since
we currently do not estimate instruction cache occupancy, and
since all accesses are reads, the access time stamp and type is
not needed for ICache() calls.

To generate detailed power traces for thermal models,
energy consumption of each floorplan component is recorded
separately as an array of global energy counters EnergyCnt[C]
and back-annotated pair-wise energy estimates Energy[][][C]
over C floorplan components. Using these energy estimates,
power numbers are calculated and recorded every sampling
period (Calculate power()) and fed into a thermal model for
temperature estimation (Calculate thermal()). For reliability
modeling, register and cache access time stamps and types
are annotated with corresponding RecordReg() and DCache()
function calls, which internally invoke an occupancy analyzer
for AVF calculation (see Section VI-A).

For the example of annotated code shown in Fig. 3, BBG is
characterized with each of its immediate predecessors, BBE

and BBF , and two sets of execution metrics are both annotated
into the IR. The choice of picking the correct set of annotated
metrics is made dynamically during host execution. In this
example, if a particular execution of block BBG follows
execution of block BBF , profiling metrics for predecessor
BBF are picked. As such, a corresponding timing delay and

Reliability

Timing

Energy

Timing

Energy

int  DCache( int Addr, int AccessCycle, enum AccessType T){
   OutCome = IsCacheHit(Addr);
   UpdateCacheStatus(Addr);

   if (OutCome==MISS){
      CycleCnt += MISS_LATENCY; 
      if (T==W) EnergyCnt[DCACHE] += W_MISS_ENERGY;
      if (T==R) EnergyCnt[DCACHE] += R_MISS_ENERGY;
   }
   else if (OutCome==HIT){
      CycleCnt += HIT_LATENCY;
      if (T==W) EnergyCnt[DCACHE] += W_HIT_ENERGY;
      if (T==R) EnergyCnt[DCACHE] += R_HIT_ENERGY;
   }

   RecordCache(Addr, AccessCycle, T, OutCome)
}

Fig. 4. Lightweight cache model.

energy number is accumulated, optionally for each floor plan
component. For register AVF modeling, the access time for
R29 is estimated as an offset of 4 cycles on top of the current
CycleCnt. The access type is a register write. The cache model
is further invoked with reconstructed target addresses at each
point of global and stack accesses.

In the following, we will discuss the cache, reliability and
thermal sub-models in more detail.

A. Lightweight Cache Model

Since cache behavior is highly dependent on the dynamic
execution context, cache-related PERPT estimation and anal-
ysis is encapsulated in an online cache model instead of being
statically annotated during basic block characterization. Our
basic cache mode is similar to previous work [20], [21], [22],
[23]. An example is shown in Fig. 4. The cache model is purely
behavioral and does not store any actual data. During simula-
tion, it is invoked upon each cache access, and cache hit/miss
outcomes are calculated based on the reconstructed address
trace and reference cache configuration (IsCacheHit(Addr)).
With this information, the global timing and energy counters
are incremented by corresponding latency and energy values.
Cache access latency and energy consumption for different
access types are extracted from the ISS description and
CACTI/McPAT. Finally, we extend the basic cache model with
an occupancy analyzer that is invoked for AVF estimation,
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Fig. 5. Producer and Consumer Pair Analysis.

shown as a call to a RecordCache() function. Details of the
occupancy analyzer will be discussed next.

B. Reliability Modeling

The AVF of a particular data storage structure can be
obtained by estimating the occupancy of all the variables
waiting to be eventually consumed. A soft error will manifest
itself when faulty data is read out of a particular location.
The estimation of AVF can be converted into the problem of
capturing the variable lifetimes of all resident data. In order
to estimate the AVF for data storage structures, we apply a
producer-consumer analysis and dynamically re-construct such
variable lifetimes during source-level simulation.

1) Register File Analysis: The AVF of each register can be
estimated as the ratio of the total sum of time periods when
the register is occupied relative to the execution time of the
whole program. The overall AVF of the register file can be
further calculated as the average occupancy of all its registers
over the entire program execution.

Sample register access traces for registers R0, R1 and R2
are shown in Fig. 5. The key idea in our analysis is to
capture the time stamp at the end of each variable’s lifetime,
which we call checkpoint in our following explanation. A
checkpoint can either be a write operation to an occupied
storage location or the end of the entire program execution.
In both cases, the existing data in the access location is
guaranteed to not be consumed again, and the variable lifetime
can be calculated. In this way, the architectural occupancy of a
certain storage structure is divided into atomic variable lifetime
periods defined by these check points.

An example of our producer-consumer analysis is shown
in Fig. 5. The execution begins with initial write operations
to registers R0, R1 and R2. During execution, R1 and R2
are written again at times t2 and t3, respectively, which are

highlighted in red as the checkpoints for both registers. Finally,
the end of the execution at time t4 will be the checkpoint for
all registers. During simulation, latest access times of all write
and read operations are continuously recorded and updated.
For each storage unit, whenever a checkpoint is reached, the
time difference between the latest read and write will be
calculated and accumulated as the occupancy duration. At the
final checkpoint at the end of simulation, occupancy times of
all storage cells can be obtained and used for AVF estimation.

In Fig. 5, the start time t0 is first recorded as the latest
write time stamp for all registers. At t1, the latest read
time for all registers is recorded as t1. At time t2, R1 then
reaches its checkpoint, and the difference between t1 and t0
is accumulated as R1’s occupancy duration, represented as
shaded bar in Fig. 5. At time t3, R2 reaches its checkpoint
and the difference between t1 and t0 is accumulated as its
occupancy time. Furthermore, the latest read time for R0 and
R1 is updated to t3. At the end of the execution, all registers
hit their checkpoint. The period between t0 and t3 is recorded
as R0′s occupancy duration, and the period between t2 and
t3 is added to R1’s occupancy. For R2, since there is no
subsequent read operation after t3, the write operation at t3
is discarded. In this way, as shown by the shaded bars in the
figure, the occupancy periods of all registers are captured at
the end of execution.

2) Data Cache Analysis: For registers, checkpoints include
all writes and the end of the program execution. By contrast,
for caches, there are four different access types from the
processor’s perspective: write miss, write hit, read miss and
read hit. Besides write operations, a cache miss on read can
also mark the beginning of a new cache data lifetime, since a
new cache line will be filled into the cache. Hence, checkpoints
for the producer-consumer analysis of data caches include
write hits and misses, read misses, and the end of program
execution. Upon each such event, the occupancy of each cache
entry can be calculated and accumulated. The data resident in
the access location is either overwritten or evicted, and the old
data is guaranteed to not be consumed again. After identifying
all such checkpoints, a similar analysis as for register files is
applied to cache AVF estimation.

3) AVF Estimation: The implementation of producer-
consumer analysis within our overall source-level simulation
framework is shown in Algorithm 1. For register files, a
global RegFile array is introduced to record the register file
access history. For each register, the array is used to store
the latest write time, the latest read time and the total accu-
mulated occupancy time. As discussed earlier in Section VI,
the function RecordReg() is inserted into each basic block
during back annotation. During simulation, RecordReg() will
be called to monitor and record each register access. Internally,
the function applies the aforementioned producer-consumer
analysis to update corresponding access and occupancy time
information in the global RegFile array. Finally, at the end of
execution and hence the final checkpoint, all the remaining
occupancy times for every register are collected.

For the data cache, a global DCArr array is used to record
the latest cache read and write miss time, the latest read
hit time and the total accumulated occupancy time for each
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Algorithm 1 Occupancy analyzer.
1: function RECORDREG(RegID, Cycle, Type)
2: if Type == W then
3: RegFile[RegID][ACC]+=
4: (RegFile[RegID][LAST R]-RegFile[RegID][LAST W]);
5: RegFile[RegID][LAST R] = Cycle;
6: RegFile[RegID][LAST W] = Cycle;
7: return
8: end if
9: if Type == R then

10: RegFile[RegID][LAST R] = Cycle;
11: end if
12: end function
13:
14: function RECORDCACHE(Addr, Cycle, Type, Outcome)
15: if (Type == W) or (Type == R and Outcome == Miss) then
16: DCArr[Addr][ACC]+=
17: (DCArr[Addr][LAST R]-DCArr[Addr][LAST W]);
18: DCArr[Addr][LAST R] = Cycle;
19: DCArr[Addr][LAST W] = Cycle;
20: return
21: end if
22: if Type == R and Outcome == Hit then
23: DCArr[Addr][LAST R] = Cycle;
24: end if
25: end function

word in the cache. During execution, memory access traces
generated by the source-level model are fed into a cache
access recorder, shown as RecordCache() in Algorithm 1. As
discussed before, checkpoints in the cache analysis are also
dependent on cache hit and miss information. Before perform-
ing the producer-consumer analysis, using the cache model,
the cache access outcome therefore needs to be computed
and passed into the RecordCache() function. Upon each cache
write and read miss, i.e. on every checkpoint, the occupancy
time will be accumulated. Otherwise, if a cache access is a
read hit, the latest read time will be updated.

C. Thermal Modeling

We support integration of two thermal models, HotSpot and
DTTEM, into our source-level simulation to generate transient
and steady-state thermal profiles.

1) HotSpot: HotSpot [36] dynamically builds a represen-
tative RC model of the chip based on a given floorplan,
and it computes the temperature profile over a sequence of
time stamps (called sampling periods) based on a given trace
of power dissipation values. HotSpot requires a structurally
accurate power trace over all components in the floorplan
at the chosen sampling granularity. We generate these traces
using the extended characterization approach described in the
previous section (shown as calls to the Calculate power()
function). Within the Calculate thermal() function, the power
values are written to a Unix pipe created at the start of
simulation. We have modified HotSpot to accept data streamed
through a pipe and interpret the written power values to
calculate the temperature.

2) DTTEM: DTTEM [41] [42] uses similar concepts as
HotSpot for temperature estimation. This model requires
conductance (G) and capacitance (C) matrices, which are
characteristic of a chip floorplan. To maintain consistency

between DTTEM and HotSpot thermal models, and without
loss of generality, we extract RC representations from HotSpot
and use MATLAB to generate the parameters required by
DTTEM. Any assumptions or approximations made during
generation of RC models in HotSpot are thus retained by
DTTEM.

The primary difference between DTTEM and HotSpot is
the temperature evaluation mechanism. DTTEM assumes that,
with sampling of power values at small and constant time
intervals, transient temperature evaluation can be discretized.
This assumption leads to a simplified solution of the basic
first-order heat transfer differential equation. We integrate this
solution into our flow to achieve faster temperature estima-
tion [3].

VII. EXPERIMENTAL RESULTS

We implemented our automated, retargetable back-
annotation (RBA) flow in Python using the uADL ISS [5],
McPAT [26] and HotSpot [36] as PERPT references. The
RBA tool is available for download in open-source form
at [44]. To evaluate our flow, we applied it to several standard
benchmarks running on two generic PowerPC based targets.
Back annotations and simulations were performed on a quad-
core Intel i7 workstation running at 2.6 GHz.

Six benchmarks from the MiBench suite [45] with both
small and large data sets were selected for validation. Among
those, FFT followed by SHA have the largest static code size
in terms of both instructions and basic blocks. This leads to
larger back-annotation runtimes. ADPCM has the smallest av-
erage basic block size, which affects simulation overhead and
accuracy. CRC32 has the smallest code size, but a relatively
large memory footprint with 30% of dynamically executed
instructions being memory accesses. The memory footprint de-
termines overhead of cache simulations. Stringsearch (StrSrch)
and ADPCM have the largest and smallest footprints of 35%
and 22%, respectively. The FFT benchmark uses floating-point
emulation on our PowerPC targets. We inlined all such emula-
tion calls into respective basic blocks during characterization.
This can lead to additional inaccuracies in our flow. In case
of other library calls, since back-annotation requires source
code, we excluded benchmarks for which library sources are
not available. Benchmarks were further modified to validate
proper function call characterization [2].

We evaluated source-level simulation for an in-order,
e200 z4-like dual-issue core with 16KB 4-way associative L1
data cache and instruction cache, and an e200 z6-like single-
issue core with a longer pipeline. The two targets are represen-
tative of typical embedded processor micro-architectures. Note
that the target ISA thereby has little influence on simulation
accuracy and speed. Both targets do not include floating point
units or dynamic branch predictors. For power and thermal
estimations, we assume a 500MHz operating frequency. A
gcc-4.4.5 cross-compiler with -O2 optimization level is used
to generate executable binary files.

A summary of experimental results for both targets are
shown in Table I and II. For performance, energy and reliabil-
ity, results of source-level (SL) estimation with our proposed
cache model are compared against cycle-accurate ISS/McPAT
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TABLE I
HOST-COMPILED AND REFERENCE ESTIMATION RESULTS FOR Z4

Benchmark Timing [cycles] Energy [mJ] Reliability [AVF] Power [W] Thermal [K]

Register D-Cache SL Ref.SL Ref. SL Ref. SL Ref. SL Ref. SL Ref. HS DTTEM
SHA (Sm.) 24,749,050 24,705,419 13.8 13.6 0.36 0.36 0.59 0.59 0.279 0.277 319.48 319.47 319.48
SHA (Lg.) 257,729,762 258,144,360 143.4 141.4 0.43 0.43 0.61 0.61 0.278 0.277 319.48 319.47 319.48
ADPCM (Sm.) 75,714,673 77,711,244 40.3 40.1 0.51 0.55 0.6 0.59 0.267 0.258 319.42 319.41 319.38
ADPCM (Lg.) 1,464,587,108 1,501,704,686 784.9 780.2 0.52 0.55 0.57 0.58 0.268 0.259 319.42 319.42 319.39
CRC32 (Sm.) 27,420,147 26,054,375 14.3 13.6 0.24 0.24 0.87 0.88 0.261 0.270 319.41 319.41 319.47
CRC32 (Lg.) 533,110,925 506,501,540 277.3 264.3 0.24 0.24 0.88 0.88 0.261 0.270 319.41 319.41 319.46
Dijkstra (Sm.) 74,174,937 75,634,298 33.5 33.7 0.30 0.31 0.89 0.87 0.226 0.227 319.26 319.26 319.27
Dijkstra (Lg.) 375,064,414 382,441,510 169.6 173.6 0.30 0.31 0.89 0.87 0.226 0.227 319.26 319.26 319.27
FFT (Sm.) 145,677,833 157,738,762 76.4 83.8 0.52 0.53 0.86 0.84 0.257 0.265 319.29 319.29 319.50
FFT (Lg.) 1,342,443,584 1,419,826,338 689.7 754.4 0.52 0.53 0.86 0.84 0.256 0.265 319.29 319.29 319.50
StrSrch (Sm.) 1,031,753 977,657 0.4 0.4 0.06 0.06 0.05 0.05 0.210 0.227 319.22 319.22 319.31
StrSrch (Lg.) 23,554,554 22,317,149 9.9 10.1 0.06 0.06 0.50 0.47 0.210 0.227 319.22 319.22 319.31

TABLE II
HOST-COMPILED AND REFERENCE ESTIMATION RESULTS FOR Z6

Benchmark Timing [cycles] Energy [mJ] Reliability [AVF] Power [W] Thermal [K]

Register D-Cache SL Ref.SL Ref. SL Ref. SL Ref. SL Ref. SL Ref. HS DTTEM
SHA (Sm.) 35,983,039 36,429,267 16.5 16.7 0.37 0.37 0.59 0.59 0.232 0.229 319.56 319.57 319.56
SHA (Lg.) 375,326,029 379,980,280 172.1 173.8 0.44 0.44 0.61 0.61 0.230 0.229 319.56 319.58 319.56
ADPCM (Sm.) 119,584,284 115,866,610 51.0 49.1 0.51 0.55 0.57 0.59 0.215 0.212 319.47 319.48 319.46
ADPCM (Lg.) 2,324,832,871 2,253,595,320 994.7 956.6 0.52 0.55 0.58 0.58 0.215 0.213 319.47 319.49 319.47
CRC32 (Sm.) 41,111,640 41,066,243 17.6 17.7 0.24 0.24 0.88 0.88 0.215 0.216 319.47 319.48 319.49
CRC32 (Lg.) 799,222,969 798,336,362 342.2 344.1 0.24 0.24 0.88 0.88 0.215 0.216 319.47 319.48 319.48
Dijkstra (Sm.) 108,090,303 109,560,552 41.8 42.3 0.30 0.31 0.89 0.87 0.193 0.193 319.35 319.36 319.35
Dijkstra (Lg.) 546,557,390 553,991,012 211.3 214.1 0.30 0.31 0.89 0.87 0.193 0.193 319.35 319.36 319.35
FFT (Sm.) 207,466,663 233,253,571 86.1 96.1 0.52 0.53 0.86 0.84 0.208 0.221 319.36 319.37 319.55
FFT (Lg.) 1,909,751,431 2,103,216,994 803.0 931.3 0.52 0.53 0.86 0.84 0.209 0.221 319.36 319.37 319.55
StrSrch (Sm.) 1,405,434 1,464,203 0.5 0.6 0.06 0.06 0.05 0.05 0.189 0.192 319.32 319.33 319.36
StrSrch (Lg.) 32,071,425 33,410,850 11.9 12.8 0.06 0.06 0.50 0.47 0.187 0.192 319.32 319.33 319.36
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Fig. 6. Source-level timing estimation accuracy.

reference (Ref.). For power estimations, average power over
whole program executions is compared. For source-level ther-
mal estimations, average steady-state temperatures over all
floorplan components using either HotSpot (HS) or DTTEM
models are summarized. Likewise, for reliability, average AVF
estimates across all registers and cache lines are shown. De-
tailed breakdowns of power, thermal and reliability accuracy,
including transient power and thermal results will be discussed
in the following sub-sections. Note that source-level accuracies
are very similar between small and large data sets. Unless
noted otherwise, only results for large data sets will be shown.

A. Timing and Energy Results

Fig. 6 and 7 compare the accuracy of timing and energy
results for complete application runs of various benchmarks.
In order to explore tradeoffs in cache modeling, we investigate
three cases: (1) estimating timing and energy for the processor
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Fig. 7. Source-level energy estimation accuracy.

core only excluding caches (Core only), (2) modeling all
memory accesses as perfect caches with 100% hit rate (Perfect
cache), and (3) incorporating our online cache model as
described in Section VI-A (Cache model).

For timing simulation (Fig.6), the maximum timing estima-
tion errors on the Z4 target are 5.8% for the core only, 5.4%
for a perfect cache and 5.4% for an accurate cache model,
while average errors are 1.1%, 3.5% and 3.5%, respectively.
On the Z6 target, the maximum estimation errors are 6.2%
for the core only, 9.2% for a perfect cache and 9.2% for an
accurate cache model, while average errors are 1.4%, 3.2%
and 3.2%, respectively.

The energy estimation results (Fig.7) largely depend on the
timing accuracy, where the maximum estimation errors on the
Z4 target are 5.1% for core only, 9.7% for the perfect cache
and 8.6% for the accurate cache model, while average errors
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Fig. 9. Occupancy of each individual register for Z4 target and small input
data set.

are 1.2%, 2.9% and 2.7%, respectively. On the Z6 target, the
maximum estimation errors are 6.0% for core only, 10.0%
for a perfect and 10.0% for an accurate cache, while average
errors are 1.2%, 3.9% and 3.9%.

Overall, timing and energy estimation accuracy is more
than 90% in all cases. The FFT as the only floating-point
benchmark shows the largest errors. Since inlined floating-
point emulation routines can be data dependent, additional
errors are introduced when statically estimating their timing
and energy. This reflects a limitation of our approach. The
ADPCM benchmark exhibits relatively larger errors since its
IR has comparatively smaller blocks with a larger number of
consecutive branches. This leads to pipeline dependencies that
span across more than two blocks, which are not accurately
captured by our pair-wise characterization. There are multiple
sources of inaccuracies for timing and energy estimations
when caches are included. As mentioned before, to keep
our cache models lightweight, a fixed number of cycles are
attached to each cache miss. In reality, however, miss penalties
can vary dynamically. For example, since the memory port in
our target is 32-bit wide, it may take multiple cycles to fetch
data into the 32 byte line-fill buffer. Hence, consecutive cache
misses may interfere, and a later cache access may need to wait
for additional cycles until an earlier cache miss has read the
fetched data from the buffer. For these reasons, the StrSrch
and CRC32 benchmarks, which have the largest memory
footprints, result in larger estimation errors for simulations
with both perfect and accurate cache models.

Overall results show that inclusion of caches will incur an
average 1.7% inaccuracy compared to modeling the core only.
Most embedded benchmarks have relatively low cache miss
rates under typical cache configurations [45], [21], [22], [23].
As such, simulations assuming a perfect cache only decrease
accuracy by 0.1% on average compared to an accurate cache
model. As will be shown in Section VII-E, despite being
lightweight, the slightly better accuracy of an accurate cache
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model thereby comes with a significant speed penalty. Fur-
thermore, in cases where over-estimated core cycle counts
are cancelled out by cache under-estimations (see CRC32
example), the perfect cache model can actually have a lower
error rate.

B. AVF Estimation Results

We simulate the occupancy of each register and cache line
and calculate the register file and data cache AVF as the
average occupancy of each storage location throughout each
whole program execution. We collect reference estimations by
parsing and analyzing detailed cycle-accurate uADL simulator
output traces to compare against our source-level simulation
results.

Fig. 8 shows the register file and data cache AVF estimation
accuracy. Generally, estimation errors are mainly due to tim-
ing inaccuracies manifesting themselves as jitter in recorded
access times. For the register file, the largest occupancy errors
are 6.01% for the Z4 and 5.83% for the Z6 target, while the
average errors are 2.50% and 1.77%, respectively. The largest
error is seen in the ADPCM benchmark. Again, this is due to
inaccuracy in capturing timing dependencies spanning across
more than two blocks. For data caches, the largest occupancy
errors are 5.26% for the Z4 and 5.26% for the Z6 target, while
the average errors are 1.95% and 2.27%, respectively.

Fig. 9 shows the breakdown of AVFs for individual registers
for the SHA, ADPCM and CRC32 benchmarks. Registers
R13 to R22 are reserved, and their occupancy is always
0%. As such, they are omitted in Fig. 9. In the PowerPC
calling convention, registers R23 to R31 are usually used
as link registers to store return addresses. Hence, they will
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Fig. 12. Average absolute transient and steady-state temperature errors.

(a) Source-level (b) Reference

Fig. 13. Steady-state hotspot formation in SHA (Z6).

(a) Source-level (b) Reference

Fig. 14. Steady-state hotspot formation in CRC32 (Z6).

only be occupied when there are large numbers of function
calls during the execution, which is the case in the ADPCM
and SHA benchmarks. CRC32 consists of a single function
only, and link registers remain unused. Results show that the
source-level simulation can accurately replicate the dynamic
occupancy of each register, with less than 1% error on average.
A similar breakdown is possible for vulnerability of individual
cache lines. This shows the ability of our approach to enable
detailed soft-error reliability analysis at fine structural granu-
larity.

C. Transient Power Results

Fig. 10 shows the mean absolute percentage error (MAPE)
of the transient power traces obtained from source-level
models as compared against the cycle-accurate reference. In
the reference flow, similar scripts as in the back-annotation
are used to identify latency information and access statistics
for different sampling intervals. For each sampling interval,

McPAT is invoked to obtain power values. We choose two
different sampling periods, 10K and 1M cycles, to evaluate
our flow. Caches are included, and an accurate source-level
cache model is used.

Under a 10K sampling rate, the maximum MAPE on the Z4
and Z6 targets is 12% and 13%, while average errors are 6%
and 5%, respectively. Under 1M cycles sampling, maximum
MPAEs are 12% and 13%, while average errors are 4% and
4% for the Z4 and Z6 targets, respectively. Due to averaging
effects, our infrastructure shows a better estimation accuracy
under a larger sampling period. Inaccuracies of source-level
power models mainly stem from errors in the underlying basic
timing and energy estimates.

Fig. 11 compares the source-level (SL) and reference power
traces for SHA, ADPCM and CRC32 examples under a 10K
cycles sampling period for small input data sets on a Z4 target.
Data intensive applications with simple control flow, such as
CRC32, will demonstrate a constant power value for most
of the execution time in both models. The power trace from
source-level estimation of the SHA example tightly follows
the reference trace, while ADPCM and CRC32 show larger
transient or constant mismatches due to the relatively larger
timing and energy errors discussed in previous sections.

D. Thermal Estimation Results

We perform thermal simulations on Z4 and Z6 architectures
with a floorplan area (for 90 nm process technology) of 4.77
mm2 and 6.85 mm2, respectively. The ambient temperature
is assumed to be 318.15 K. A 1M cycles sampling period
is chosen as a tradeoff between precision and overhead. As
reference flow for all comparisons, the dynamic power trace
from the cycle-accurate reference models is fed into HotSpot.

To calculate transient and steady-state temperatures,
HotSpot is configured to generate a temperature profile using a
block-based model. HotSpot reports both types of temperature
estimations for all the components of a floorplan. Similar
values are obtained from DTTEM. Transient errors for both
models are measured as average absolute errors over all
sampling periods.

Fig. 12 shows the absolute transient and steady-state error
of source-level thermal simulations for SHA, ADPCM and
CRC32 benchmarks across all models and processors. For
transient estimation, the maximum error is 0.08K for the Z4
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Fig. 15. Total run time comparison.

processor and 0.03K for the Z6 processor using a HotSpot-
based model. In case of DTTEM, maximum errors are 0.09K
and 0.03K for the Z4 and Z6 targets, respectively. The average
absolute transient errors of a HotSpot-based model are 0.03K
and 0.007K for the Z4 and Z6, and 0.04K and 0.02K for
DTTEM. For steady-state estimations, when HotSpot is used
as the thermal model, the maximum error is 0.08K for the
Z4 processor and 0.03K for the Z6 processor. The maximum
errors in case of DTTEM are 0.08K and 0.06K, respectively.
The average absolute steady-state errors in both models are
low. Usage of DTTEM instead of HotSpot increases the
average steady-state error only marginally (0.015K vs. 0.007K
for a 0.008K increase in the Z6, and an increase by 0.002K
from 0.028K to 0.030K in the Z4). Errors are higher in case
of DTTEM mainly because of the approximations related to
discretization. For example, it cannot capture the secondary
effects of current temperature values on the next set of
temperatures.

We further analyze steady-state thermal profile generation
using a grid-based HotSpot with a grid size of 64x64. The
temperature maps of SHA and CRC32 on the Z6 target
are shown in Fig. 13 and Fig. 14. The hotspots identified
by both flows are in the instruction fetch block and the
execution pipelines. Including caches, we can observe that
our flow can accurately track temperature variations across
different benchmarks with minimal differences in steady-state
temperature profiles.

E. Simulation Speed
We evaluated our source-level PERPT infrastructure by

comparing the total runtime and simulation throughput against
the reference flow.

Fig. 15 shows the runtime breakdown of the reference
and source-level modeling flows. In the thermal case, we
used HotSpot-based source-level models to establish a fair
comparison. As will be shown later, the DTTEM-based model
has a similar runtime and speedup. A 1M-cycle period is
picked as a common sampling rate for power and thermal
estimations.

The total runtime of the reference flow includes the ISS
timing simulation, power and energy estimations by McPAT,
AVF estimation using ISS execution traces and thermal esti-
mation by invoking HotSpot. In Fig. 15, additive contributions
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Fig. 16. Source-level PERPT simulation throughput.

to overall runtime are highlighted as ISS, Reliability Comp.,
McPAT and HotSpot. For the Z4 target, an average of 2.3
minutes of execution time are required for running the whole
flow over small data sets, while large data sets require 32.0
minutes on average. For the Z6 target, the average runtimes
are 2.6 minutes and 41.1 minutes, respectively. Cycle-accurate
ISS execution and power trace generation contribute more than
85% to the overall reference runtime. This is because detailed
execution traces need to be generated in the ISS simulation and
McPAT needs to be invoked repeatedly to compute transient
power traces. We excluded trace parsing and file I/O overhead
in the reference flow to establish a fair comparison.

In case of source-level models, the runtime consists of
back-annotation time (Timing, AVF, Energy), source-level mod-
els simulation time (SL/Sim.) and HotSpot execution time
(HotSpot). For the Z4 target, average runtimes for full PERPT
estimation are 1.9 minutes for small and 2.1 minutes for large
data sets. On the Z6 target, 2.1 minutes and 3.0 minutes
are required, respectively. During back annotation, timing,
energy and AVF metrics of each basic block pair have to
be obtained from reference models. As such, timing and
energy characterizations, which require detailed cycle-accurate
execution traces and McPAT invocations contribute the most
to overall overhead, taking more than 71% of the total runtime
on average. By contrast, extending the characterization to
also extract AVF time stamps contributes little additional
complexity.

Time spent in back-annotation depends on code size and
control flow graph complexity. In applications with large code
size but low dynamic instruction counts, there is more relative
overhead in total runtime versus a reference flow. This is
the case for small data sets and the StrSrch example, for
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which the source-level flow does not provide a better runtime.
However, back-annotation is a one-time effort. Its overhead
will be outweighed by the additional execution time for large
input data sets. The source-level model’s execution time does
not significantly scale with input size, and it demonstrates
up to 15-20 times faster execution speeds in such cases.
Furthermore, once generated, a back-annotated source-level
model can be repeatedly resimulated under different input
scenarios.

Finally, Fig. 16 shows the simulation throughput of back-
annotated PERPT source-level models for large data sets.
Simulation throughput is measured in target-equivalent MIPS,
calculated as the ratio of dynamic instructions executed on
the target over the execution time of the source-level model.
We do not count back-annotation time in the calculation of
throughput, as this is a one-time effort for a given benchmark.
For timing and energy estimation alone, average speeds of
5740 MIPS, 3780 MIPS and 290 MIPS can be achieved when
estimating the core only (PE-Core), assuming a perfect cache
(PE-PC) or incorporating an accurate cache model (PE),
respectively. When also including reliability, an average speed
of 185 MIPS is achieved for a model that performs register file
and D-Cache AVF estimation (PER). For power estimation
(PEP), power traces can be generated with 1M and 10K
sampling rates at 280 and 268 MIPS on average. Finally,
Hotspot- and DTTEM-based thermal models with 1M sam-
pling rate (PEPT-HS-1M and PEPT-DTTEM-1M) provide 180
and 191 MIPS throughput on average, respectively. Overall,
simulation throughputs are several orders of magnitude faster
than an equivalent ISS execution with an average of only
0.658 MIPS. If time-consuming execution trace generation and
parsing are included, reference throughputs can be even lower.

Multiple factors influence simulation speeds. Larger basic
block sizes will result in higher core-only base speeds, as
more target instructions can be simulated with lower branching
overhead. The FFT benchmark with inlined floating-point
emulations has a much larger simulation throughput for that
reason. It further benefits from the fact that floating-point oper-
ations requiring a large number of emulated target instructions
can be natively executed using hardware support on the host.
Among other benchmarks, ADPCM has the smallest average
block and lowest base speed. The memory footprint determines
simulation overhead when introducing cache models. A larger
footprint will result in more invocations of the cache. This
is the case for StrSrch and CRC32 benchmarks, which are
the slowest among all models with perfect cache. Note that
an accurate cache model will reduce simulation speed signifi-
cantly. This establishes a tradeoff between accuracy and speed
of different modeling levels. Variations in speed of accurate
caches thereby also depend on specific access patterns and
cache outcomes. Finally, incorporating reliability, power and
thermal models incurs additional overhead. Specifically, reli-
ability modeling requires back-annotation of individual target
register accesses. This is especially pronounced in the FFT
benchmark with a large ratio of (emulated) target instructions
per source-level operation. By contrast, power and thermal
annotations add a fixed overhead on top of basic timing and
energy models.

VIII. SUMMARY AND CONCLUSION

In this paper, we propose a novel multi-metric source level
simulation infrastructure for performance, energy, reliability,
power and thermal (PERPT) estimations. We leverage existing
retargetable architecture description language (ADL) frame-
works for basic block timing and energy characterization. For
reliability modeling, we evaluate the register file and data
cache vulnerabilities against soft errors by estimating the AVF
using an online occupancy analyzer. Finally, the host-compiled
source-level model is integrated with thermal models for fast
temperature estimation. The one-time back-annotation of code
is fast (on the order of 1-2 minutes), while resulting models
are more than 90% accurate for timing, energy, reliability and
power estimation, with an average error of 0.05K for steady-
state thermal estimation. Models are orders of magnitude
faster than existing reference flows, with simulation speeds
ranging from 180 MIPS to more than 5740 MIPS. Our back-
annotation flow is fully automated. The retargetable back-
annotation (RBA) tool is available for download at [44].
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