
High-Level Simulation of Embedded Software
Vulnerabilities to EM Side-Channel Attacks

Aditya Thimmaiah, Vishnuvardhan V. Iyer,
Andreas Gerstlauer, and Michael Orshansky

Dept. of Electrical and Computer Engineering
The University of Texas at Austin, Austin, TX 78712, USA
{auditt,vishnuv.iyer,gerstl,orshansky}@utexas.edu

Abstract. Attacks on embedded devices using the electromagnetic (EM)
side channel have proliferated. Predicting software vulnerability to such
attacks requires an ability to simulate EM fields during software devel-
opment rather than relying on expensive lab-based measurements. We
propose a modeling approach capable of synthesizing instruction-level
EM traces for arbitrary software, using a one-time pre-characterization
of a processor. Reducing the cost of dictionary construction is a major
contribution of this paper. Results on a set of benchmarks show that
synthesized traces are accurate in estimating EM emanations with less
than 5% mean absolute percentage error (MAPE) compared to mea-
surements. Furthermore, synthesized traces predict control flow leakage
with an accuracy of 87% or more based on the side-channel vulnerability
factor (SVF) metric.

Keywords: Embedded security · EM side-channel · EM simulation.

1 Introduction

Evaluating the security risks of software running on embedded and IoT systems
has become essential. Attacks through the electromagnetic (EM) side-channel are
an especially pernicious threat due to their non-invasive nature [5]. EM fields
emanating from a chip during program execution can be used for recovery of
cryptographic keys [4] and tracking program control flow [6]. Analysis of EM
vulnerabilities are typically performed using lab-based measurements. However,
lab-based EM measurement setups can be costly, time-consuming and require
expertise not available to typical software developers. Therefore, an EM simu-
lator capable of synthesizing EM traces corresponding to on-chip activity with
accuracy that is sufficient for security assessment is highly desirable.

A security-focused EM simulator needs to represent information pertinent to
leakage analysis. Prior work has approached the construction of such simulators
specifically for application-specific integrated circuits (ASICs) concerned with
implementation of cryptographic algorithms [16; 8; 9]. However, they require de-
tailed layout simulation or rely on the working of the cryptographic algorithm to
simplify simulator complexity thus limiting generality. Most of the literature on



2 T. Aditya et al.

side-channel analysis of software running on general purpose micro-controllers
has been in the power domain [13; 15; 10]. These works construct a dictionary by
modeling power consumption of the micro-controller as a function of switching
activity in selected architectural blocks, and then using the pre-characterized
dictionary to synthesize traces for arbitrary programs running on the micro-
controller. However, construction of such dictionaries may become infeasible as
the number of selected blocks and their interactions and dependencies increases.
Current approaches therefore compromise between complexity in dictionary con-
struction and accuracy of synthesized traces. Moreover, the additional spatial
component increases complexity in the EM versus power domain.

In this paper, we seek to develop an EM simulator that is capable of synthe-
sizing instruction-level EM traces to assess the vulnerability of arbitrary soft-
ware running on embedded micro-controllers against EM side channel attacks
(EMSCAs). We present a methodology that significantly reduces the cost of dic-
tionary construction without compromising EM trace synthesis accuracy. We
achieve this by hypothesizing that in a class of non-pipelined micro-controllers
possessing a single bus architecture, a condensed set of architectural blocks can
be identified to characterize the EM emanation during different cycles of each in-
struction’s execution. We identify these dominant architectural blocks to model
for every cycle of all instructions in the instruction set architecture (ISA) using
a statistical feature selection algorithm. By constructing dictionaries at the cy-
cle level for dominant blocks and dependencies, only the switching activity of a
small subset of architectural blocks is required to be modeled, thereby combating
combinatorial explosion. We demonstrate that dominant blocks and dependen-
cies identified at one spatial location remain consistent across others, thereby
simplifying feature selection overhead. We also observe that instructions access-
ing the same micro-architectural components may share similarities in their EM
traces and hence can be clustered during a post-processing step. This allows to
share cycle dictionaries across instructions and further reduce the cost of dictio-
nary construction. In summary, the contributions of the paper are as follows:

– We propose a simulation platform that is capable of synthesizing EM traces
corresponding to arbitrary software running on embedded micro-controllers,
enabling testing of software against EMSCAs at development stage;

– We propose novel feature selection and redundancy removal algorithms to
identify the dominant architectural blocks for each cycle and cluster cycles
of different instructions with similar EM signatures to reduce the cost of
dictionary construction;

– We demonstrate our synthesis approach by implementing it on an AT89S51
micro-controller belonging to the 8051-family, where synthesized traces are
evaluated on five benchmark programs and shown to be in agreement with
measurements with better than 95% accuracy; and

– We use the simulator to predict the side-channel vulnerability factor (SVF)
of a benchmark program. We validate the result against the SVF extracted
from measured traces and show that they agree with >87% accuracy.



EM Side-Channel Vulnerability Simulation 3

The rest of the paper is organized as follows: Section 2 discusses the related
work. Section 3 details the proposed synthesis flow including the feature selection
and redundancy removal algorithms for dictionary construction and synthesis.
Section 4 presents an accuracy evaluation of our synthesis flow and a case study
of utilizing the proposed EM trace simulator for control-flow prediction. Finally,
Section 5 concludes the paper with a summary and an outlook on future work.

2 Related Work

EM trace simulators specifically for ASICs concerned with cryptographic algo-
rithms have been studied in [16] and [8]. The authors investigated a pre-silicon
approach by using 3D full-wave EM field solvers on a given chip layout to simu-
late the EM fields. Although these approaches enable prediction of susceptibility
to EMSCAs during the hardware design stage, they are limited by the large
overhead of simulating the entire chip layout [11]. Moreover, the study in [16]
dealing with ASICs for the advanced encryption standard (AES) simplifies the
simulation complexity by only considering the circuit state corresponding to the
final round of AES targeted by key recovery attacks. This dependency of the
simulation on the working of the target algorithm limits their applicability. An
extension of this approach to a 16-bit general purpose micro-controller was pre-
sented in [9]. However, they were only able to show that the differential traces
between simulation and measurement at the instruction level (difference between
the traces of an instruction for its extreme values) share a similar trend. Fur-
thermore, all such approaches require-layout related information, which may not
always be available.

In the power domain, a post-silicon approach to modeling security-related
power consumption of a general purpose micro-controller was presented in [13].
Power consumption at the instruction level was modeled via the switching ac-
tivity of specific architectural blocks, which were assumed to be sufficient for
capturing the power consumed by the micro-controller as a whole. However, the
presented approach may become computationally infeasible as the number of
considered architectural blocks increases, since the traces required to simulate
the power consumption would need to be modeled under all combinations of the
considered blocks and their dependencies. An attempt to address these issues was
made in [15]. Rather than model the power consumption at the assembly lan-
guage instruction level as in [13], they modeled power consumption only during
assignment, arithmetic, relational and bitwise operations of a higher-level pro-
gramming language (C++) used to program the micro-controller. Dictionaries
for synthesizing traces corresponding to these operations were then constructed
by identifying the most suitable leakage model (Hamming Weight or Hamming
distance between old and new value of the variable manipulated by these oper-
ations) through correlation with the measured power trace. Therefore, accuracy
in simulation of power consumed was traded off for simplicity of dictionary con-
struction (since only a change in a single software variable as opposed to changes
in several different hardware architectural blocks is considered). Our approach



4 T. Aditya et al.

Fig. 1. Overview of our proposed EM trace synthesis approach.

combats combinatorial explosion of [13] by refining the initially selected archi-
tectural blocks using feature selection to identify the dominant blocks to model
for each cycle. Moreover, since we construct the dictionary at a lower level of
abstraction than [15], the degradation in accuracy of synthesis is not significant.

An EM trace simulator was presented in [10] that uses a grey box modeling
approach (combining hardware implementation knowledge and statistical anal-
ysis of leakage traces) similar to ours. They introduce a post-processing step
to cluster dictionary entries sharing a similar leakage profile, which we simi-
larly utilize in our work to reduce the cost of dictionary construction. However,
their investigation of synthesis of EM traces is limited to one spatial location,
specifically the one closest to the power pins. Moreover, only results documenting
correlation between locations (in cycles) of peaks of measured and simulated EM
traces is presented. By contrast, we demonstrate that our approach is capable
of synthesizing EM traces across multiple spatial locations and document cor-
relation between synthesized and measured traces for benchmarks at arbitrary
cycle-level granularity.

3 EM Synthesis Flow

Fig. 1 presents an overview of our proposed synthesis flow. Our approach con-
sists of two stages, Dictionary Construction and Synthesis. In the dictionary
construction stage, the micro-controller is pre-characterized to construct a dic-
tionary capable of synthesizing EM traces. First, micro-benchmarks that execute



EM Side-Channel Vulnerability Simulation 5

the instruction being characterized in different contexts are generated from pro-
gram templates under varying values of the parameters assumed to define the
architectural state of the micro-controller, such as contents of the internal RAM
(data memory), the internal ROM (program memory), the program counter, etc.
The micro-benchmarks are then executed on a cycle-level simulator and a phys-
ical chip instance of the selected micro-controller to collect prediction features
and EM trace measurements, respectively.

EM emanations of the real chip during micro-benchmark executions are
sensed using an H-field probe and acquired. The acquired EM traces are subse-
quently partitioned into sub-traces of cycle length. We apply a transform (L2-
norm of the Fast Fourier Transform (FFT)) to the cycle-length traces to obtain a
response variable. This transform allows us to combat any jitter in the acquired
traces that may affect the feature selection process. In parallel, a cycle-level sim-
ulator is used to identify the architectural state of the CPU before and after the
execution of every instruction appearing in the micro-benchmarks. The archi-
tectural state for a given cycle forms a Feature Vector (vector containing values
of the considered parameters), and the Feature Vectors and their corresponding
response variables are concatenated across cycles to obtain the Feature Matrix
and the Response Vector, respectively.

In the final step of dictionary construction, we apply feature selection to iden-
tify the most important features in the Feature Matrix that best describe the
Response Vector. Based on the results of feature selection, the collected cycle-
length traces corresponding to the distinct combinations of the identified most
important features are stored in the dictionary as individual entries. Finally, a
post-processing step is performed to cluster the dictionary entries with similar
leakage profiles to allow sharing of cycle dictionaries across instructions. The
identification of such similarities allows further reduction of dictionary construc-
tion time across spatial locations.

The synthesis stage is then concerned with the synthesis of the EM trace
corresponding to a given arbitrary assembly program using the dictionary con-
structed during pre-characterization. A given program is executed on the cycle-
level simulator and the values of the dominant parameters are collected for every
cycle based on the instruction appearing at that cycle. These dominant param-
eters are then used to lookup the dictionary entry for the corresponding stored
EM trace. This process is repeated for every instruction in the program and the
retrieved traces are concatenated to produce the synthesized trace.

3.1 Dictionary Construction

The power consumption and hence EM emanations of a micro-controller are
generally highly correlated with the switching activity of its architectural blocks,
which are in turn correlated with the switching activity at the block inputs. The
architectural state at a given instant may be defined as a collection of values
at the inputs of these architectural blocks at that instant. The architectural
state is generally composed of the internal RAM, program memory (ROM),
program counter (PC) and other registers, etc. Although each of their switching



6 T. Aditya et al.

activity may contribute to the total power consumed during the execution of an
instruction, some may be more dominant than others during different cycles. The
dependency of power consumption on switching activity is generally described
using Hamming Weight (HW) and Hamming Distance (HD) models [7]. In the
following, we use the word parameter to refer to the HW or HD of the inputs of
architectural blocks.

A Baseline approach to constructing a dictionary would involve collecting
traces for all possible combinations of the values assumed by these parameters
for all instructions and blocks active in any given cycle. However, as the number
of parameters considered increases, the number of traces required to cover all
possible combinations may become infeasible to measure experimentally. Instead,
we propose using feature selection to identify the dominant parameters during
the different cycles of an instruction and hence collect traces corresponding to
these cycles. In this paper, we target EM trace synthesis for embedded micro-
controllers. In non-pipelined micro-controllers, only one instruction is active in
any cycle. Furthermore, in a single-bus architecture, each instruction executes
in multiple cycles and only a limited number of blocks is active in each cycle.
We propose a feature selection algorithm to identify the dominant blocks and
parameters for each instruction and cycle. With this, the number of traces re-
quired to characterize a cycle of an instruction is proportional to the number of
values assumed by its dominant parameters.

In addition, if these dominant parameters identified for different cycles of
an instruction remain consistent spatially, then the cost of feature selection is
incurred only for a single spatial location. Smaller dictionaries for other spatial
locations can be constructed making use of this dominant feature information.

Feature Selection In this section, we demonstrate the application of feature
selection to identify the dominant parameters and show that the results obtained
at one spatial location remain consistent across other locations.

In this paper, we use RReliefF [12] as the feature selection method. To apply
feature selection to identify the dominant parameters for different cycles of an
instruction, we need the Response Vector and the Feature Matrix. The feature
matrix contains all the values assumed by the considered parameters during the
execution of this instruction, while the response vector contains the L2-norm of
the FFT of cycles in the corresponding measured EM trace. The feature matrix
and the response vector are then fed to RReliefF, which assigns weights to each
parameter/feature considered in the feature matrix based on its relevance in
predicting the response vector. Features assigned with close to zero or negative
weights are considered to be statistically irrelevant and hence can be disregarded
from further analysis. To select important features amongst those with positive
weights, RReliefF employs a threshold τ [14] known as the relevance level. The
features/parameters whose weights exceed the relevance level are the dominant
parameters. Since we apply feature selection to each cycle separately, the dom-
inant parameters are identified for each cycle of each instruction. Therefore, a
dictionary required to synthesize the EM traces for the cycles of an instruction



EM Side-Channel Vulnerability Simulation 7

Fig. 2. Ranking of features for the third cycle of NOP.

can be constructed by collecting EM traces for distinct values assumed by the
dominant parameters in each cycle as opposed to collecting EM traces for all
possible values assumed by combinations of all considered parameters.

We now demonstrate the application of feature selection in identifying the
dominant parameters for the third cycle of the NOP instruction of the micro-
controller used in our experiments (see Section 4). The parameters considered
for feature selection are the HW of the Accumulator (ACC), the HWs of General
Purpose Registers (GPRs) R0-R7, the HW and the HD of the PC, and the HW of
instruction-specific operands. The training set required to construct the feature
matrix and the response vector are obtained by collecting the EM traces during
the execution of the NOP instruction under varying values for the considered
parameters (encompassing all possible HWs and HDs). The response vector is
computed by applying the L2 norm to the Fast Fourier Transform (FFT) of
the sections of acquired traces corresponding to the third cycle, whereas the
HW of ACC, HW of GPRs, and HW and HD of the PC in the third cycle
form the feature matrix. Fig. 2 shows the weights assigned by RReliefF to the
considered features and for a chosen relevance level (τ) of 0.1. It is evident that
the HW of R0 is the most important feature/dominant parameter, while all other
features/parameters can be discarded.

To validate the sufficiency of using a single dominant parameter to build a
dictionary for the third cycle of NOP, we compare the performances of models
trained with

1. Only the highest ranked feature
2. Only the second highest ranked feature
3. A combination of the highest and second highest ranked features
4. No feature, i.e. only using an averaged trace

The performance of a model in this paper is evaluated by computing the
mean absolute percentage error (MAPE) between the model forecast trace and



8 T. Aditya et al.

(a) (b) (c) (d)

Fig. 3. Spatial variation of MAPE between true and model forecast traces for the
third cycle of NOP for models trained with different features. The MAPE here has
been averaged over 500 traces for each spatial location. (a) HW of R0, (b) HW of R0
and R1, (c) HW of R1, and (d) no feature/averaged, models.

the true trace as,

MAPE(V̂ i,k
x,y , V

i,k
x,y ) =

100
n ×

∑n
t=1

|vi,k
x,y,t−v̂i,k

x,y,t|
|vi,k

t,x,y|
, (1)

where V̂ i,k
x,y and V i,k

x,y are the model forecast and true measured test trace respec-

tively, for the kth cycle of instruction i at the spatial location (x, y) containing

n samples v̂i,kx,y,t and vi,kx,y,t, t = 1 . . . n. From Fig. 3 we see that the model trained
with the highest ranked feature (Fig. 3(a)) is comparable in performance to that
of a two feature model (Fig. 3(b)). Therefore, since the degradation in accu-
racy in using a single feature model for the third cycle of NOP relative to the
true trace is not significant, we can considerably reduce the cost of dictionary
construction by using a single feature model. By contrast, models using no fea-
ture (Fig. 3(d)) or only the second highest ranked feature (Fig. 3(c)) show poor
accuracy. This confirms the need for proper feature selection.

Furthermore, based on the observation that these results hold true across
spatial locations, we can offset the cost of feature selection by utilizing the im-
portant feature identified at one spatial location to build dictionaries at others.

Redundancy Removal We can further reduce the complexity of dictionary
construction by identifying similarities in cycle dictionaries across instructions.
If two or more instructions share the same dominant parameters for a particular
cycle and their EM traces are similar, then the dictionary for that cycle can
be shared. We identify such potential redundancies in cycle dictionaries of two
instructions by comparing their respective cycle models after Feature Selection.
The models for cycles at a specific spatial location, sharing the same dominant
parameters are compared using the MAPE metric. A low maximum MAPE



EM Side-Channel Vulnerability Simulation 9

Table 1. MAPE between model forecast traces for instruction-cycles of NOP and
MOV A, R0 instructions at spatial location (5mm, 5mm).

Instruction Dominant Parameters Maximum

Cycle (k) NOP MOV A, R0 MAPE(V̂ NOP,k, V̂ MOV,k)

1 HD of PC HD of PC 15.8%
2 HW of ACC HW of ACC 0.3%
3 HW of R0 HW of R0 1.2%
4 N/A* N/A* N/A*
5 N/A* HW of R0 N/A*
6 HW of ACC HW of ACC 0.5%

* Dominant parameters of cycles for which variation in traces are statisti-
cally insignificant with considered parameters are designated as N/A.

(a)

(b)

Fig. 4. EM traces for the first and second cycles of NOP and MOV A, R0 at the spatial
location (x,y)=(5mm,5mm): (a) EM traces for the first cycle show a MAPE(V̂ NOP,1,
V̂ MOV,1) of 10.6% for a HD value of the PC of 2, (b) EM traces for the second cycle
show a MAPE(V̂ NOP,2, V̂ MOV,2) of 0.01% for a HW value of the ACC of 0.



10 T. Aditya et al.

across all values of all dominant parameters implies that the models are similar
and hence can be used as an indicator for potential sharing.

We demonstrate this optimization on the instructions NOP and MOV A, R0
in our micro-controller. The dominant parameters for different cycles of NOP
and MOV A, R0 are given in Table 1. We see that the first, second, third and
sixth cycles share the same dominant parameters between the two instructions.
Therefore, the dictionaries for these cycles can potentially be shared. From the
computed maximum MAPE metric between cycle models of NOP and MOV A,
R0 across all possible HWs and/or HDs of all dominant parameters, it is evident
that dictionaries for the second, third and sixth cycles can be shared between the
two instructions. By contrast, since the first cycle shows a large MAPE, separate
dictionaries have to be built for this cycle for the two instructions. This result
is visualized in Fig. 4, where the traces for the first cycle of the two instructions
show a large difference as shown in Fig. 4(a), while traces for the second cycle
agree with each other (Fig. 4(b)). Therefore, for this example, we can reduce
the dictionary cost for one of the instructions by 50% provided we have the
dictionary for the other.

3.2 Synthesis

We finally discuss the procedure for using this dictionary to synthesize complete
traces of an assembly program. Given an assembly program, we execute it using a
cycle-level simulator. During the execution of an instruction, we collect the values
assumed by the dominant parameters (identified during the feature selection
process) for all the cycles of that instruction. We then look up the dictionary for
the EM traces corresponding to these values of the dominant parameters for each
cycle of the instruction. These EM traces are then concatenated to synthesize
the EM trace for that instruction. This procedure is repeated till the end of
execution of the program to synthesize the complete trace.

4 Experiments

We evaluate our approach using an AT89S51 belonging to the 8051 family of
micro-controllers built around the Intel C-51 ISA. The device operates at a
clock frequency of 2MHz and is programmed serially via an ISP programmer.
The EM field emanated from the device is measured using a 1mm radius H-field
probe RF-U 2.5-2 from Langer. Riscure’s EM Probe Station is used to vary the
spatial location of the probe over the micro-controller’s area (10mm × 10mm). A
PA303 30dB pre-amplifier is used to amplify the measured EM traces. We sample
traces at 5GS/s using a Keysight DSOS054A oscilloscope with a bandwidth of
500MHz. Each acquired trace is averaged 200 times before being processed. Our
experimental setup is shown in Fig. 5.

The 8051 micro-controller architecture includes a register file with 8 GPRs
numbered R0-R7 and an Accumulator register ACC. Each of these registers are 8
bits wide. The GPRs along with ACC are addressed as part of the internal RAM,



EM Side-Channel Vulnerability Simulation 11

Fig. 5. Measurement setup used for acquisition of traces.

which is 128 bytes in size. An assembly instruction in the C-51 ISA can take any
of the GPRs, the ACC or any RAM address as an operand. Consequently, their
values can be manipulated by the execution of an instruction hence contributing
to switching activity. Therefore, we consider these as the parameters during the
micro-benchmark generation sub-stage. As stated before, the micro-benchmarks
are used for collecting training data for the feature selection sub-stage. They
are generated from a standard template and consist of two sections, an initial-
ization section where random values are assigned to the considered parameters
and the execution section that contains the instruction being characterized. List-
ing 1 shows an example micro-benchmark for collecting training data to identify
the dominant parameters for the cycles of the NOP instruction. Traces of the
instruction being characterized for varying values of the HWs and the HDs of
the PC are collected by including multiple executions of the instruction in the
template (for brevity, only two such NOP instructions are shown in Listing 1).

The accuracy of our EM simulator is evaluated by comparing the synthesized
and measured traces for a set of standard benchmark programs from the Dal-
ton benchmark suite [2]. The Dalton benchmarks were originally developed to
optimize the power consumption of 8051 cores.

4.1 Accuracy and Dictionary Cost

We first evaluate the degradation in accuracy and the reduction in cost of dictio-
nary construction due to the Feature Selection optimization alone. Dictionaries
capable of synthesizing traces for all cycles of all the instructions in the ISA
were constructed using just the feature selection optimization, where we applied
RReliefF with 10 nearest neighbors and a relevance factor of τ = 0.1.

To evaluate accuracy at instruction and cycle granularity, we generate 100
assembly programs, each containing all the instructions in the ISA in random



12 T. Aditya et al.

PRECHAR: CPL P1.3 ; For Triggering the Oscilloscope

CPL P1.3

MOV A , #1d ; Random Values for considered parameters

MOV R0, #40d

MOV R1, #15d

CLR C

MOV R2, #159d

MOV R3, #255d

MOV R4, #0d

MOV R5, #119d

MOV R6, #64d

MOV R7, #50d

NOP ; Instruction being characterized

NOP

...

Listing 1: Micro-benchmark to collect training data for the NOP instruction.

order and with random values for all the considered parameters. EM traces for
each program were synthesized using our flow and measured on the device in
our lab setup. Each of the 100 synthesized and test traces corresponding to the
same assembly programs are then divided into instruction- and cycle-level traces
indexed using the i, k scheme described earlier. Finally, the synthesized and mea-
sured traces are compared at the instruction and cycle level using MAPE to com-
pute accuracy. The MAPE results corresponding to the same instruction-cycle
are then averaged across cycles of the same type in the 100 assembly programs.
A maximum MAPE is similarly computed. Table 2 summarizes the average and
maximum MAPE results for the first six instruction-cycles of all instructions. We
see from the tabulated results that the average number of dominant parameters
for any given cycle across all instructions is a small subset of the total considered
parameters, which is consistent with our argument for feature selection. Further-
more, the degradation in accuracy between the synthesized and measured test
traces is not substantial. However, compared to a baseline dictionary that would
require 1012 entries, the total number of traces required to construct a dictionary
for the whole ISA is reduced by eight orders of magnitude.

We next perform a similar evaluation of our approach when the Redundancy
Removal optimization is used in addition to Feature Selection. Table 3 summa-
rizes the result for the first six instruction-cycles of all instructions in the ISA.
The table shows the number of distinct instructions along with accuracy and
dictionary size results. Results show that dictionaries created for a small subset
of instructions are sufficient to synthesize traces for all the other instructions
in the ISA. We observe that the degradation in accuracy is slightly higher than
when using the Feature Selection optimization alone, but is still not significant.
However, the reduction in the number of dictionary entries is substantial. We
only need to measure and record on the order of 103 traces to construct the



EM Side-Channel Vulnerability Simulation 13

Table 2. Feature selection summary.

Instruction Average No. of MAPE No. of
Cycle Dominant Param. Avg Max Dict. Entries

1 2 1.0% 3.4% 2,560
2 1 1.1% 3.9% 2,304
3 1 1.1% 3.8% 2,304
4 0.9 1.6% 3.6% 8,820
5 0.7 0.3% 2.6% 2,187
6 1.1 1.6% 3.3% 3,278

Table 3. Redundancy removal summary.

Instruction No. of MAPE No. of Reduction rel.
Cycle Instructions Avg Max Dict. Entries to feature sel.

1 9 1.1% 4% 90 96.5%
2 1 2.3% 4.9% 9 99.6%
3 1 1.3% 4.2% 9 99.6%
4 7 1.2% 3.8% 541 92.9%
5 6 1.7% 4.2% 54 97.5%
6 24 2.6% 4.8% 353 89.2%

entire dictionary using this optimization. This represents an over 90% reduc-
tion in dictionary size compared to feature selection alone, and a nine order of
magnitude reduction compared to the baseline approach.

With the effect on accuracy and cost due to the optimizations studied, we now
proceed to validate our synthesis approach on real-world benchmark programs.
Accuracy is computed using the MAPE between the synthesized trace and test
trace across all samples in each benchmark. Table 4 shows that the synthesized
traces agree well with the test traces across the benchmark programs. Overall,
synthesized traces agree with measurements with less than 5% MAPE.

Table 5 compares the computational resources required by each of the consid-
ered approaches. To ensure a fair comparison, only one trace required for build-
ing the dictionary is recorded for each micro-benchmark. All traces are stored
as double precision arrays with each trace stored in the dictionaries requiring
≈3KB of disk space. As discussed above, the total number of traces required to
build a dictionary for the entire ISA using the Redundancy Removal optimiza-
tion is 9 orders of magnitude lower than the Baseline approach. Consequently
the improvement in memory and time required is substantial.

4.2 Case Study: Compile-Time Control Flow Prediction

We further performed a case study to show the applicability of the synthesis
flow in predicting the vulnerability/information leakage of a software program.
We use the side-channel vulnerability factor (SVF) metric from [3] to measure
the control flow leakage of the GCD benchmark program from [2], a snippet of



14 T. Aditya et al.

Table 4. MAPE between test and synthesized traces for benchmark programs.

Benchmarks Size (Bytes) MAPE

GCD 55 3%
FIB 303 3%
SORT 572 4.2%
SQRT 1167 2.8%
MATRIX 490 2.7%

Table 5. Resources for a single spatial location (5GHz sampling frequency).

Construction Method Traces Memory Time

Baseline 1012* 3 PB* ≈5×109 h*

Feature Selection 104 40 MB 60 h

Redundancy Removal 103 4 MB 6 h

*Projected

which is shown in Listing 2. Control-flow leakage here refers to the certainty with
which the If-Else block executions can be predicted using the information avail-
able through the EM side-channel. Computation of SVF requires two inputs, the
Oracle Distance Vector and the Side-Channel Distance Vector. An oracle trace
is the ground-truth pattern of If-Else block executions. Corresponding synthe-
sized or measured EM traces are the side-channel traces. The Oracle Distance
Vector is computed by applying a distance function to the elements of the oracle
trace in a pairwise manner [1], where we choose XOR as the distance function in
this work. The Side-Channel Distance Vector is computed in a similar manner
from the side-channel trace elements, where we use the Euclidean distance be-
tween the L2-norm of the FFT of elements as the distance function. Finally, the
information leakage is estimated by computing the Pearson Correlation between
the oracle and side-channel distance vectors. We computed cycle-level SVF using
both synthesized and measured EM traces for six variations of the GCD bench-
mark using register or direct addressing and replacing the instruction at the IF
label in Listing 2 with variants with different leakage. Results in Table 6 show
that for both register and direct addressing, the measured and synthesized SVF
agree with at least 87% accuracy.

5 Summary and Conclusions
In this paper, we presented a methodology to allow synthesis of security-relevant
EM traces at instruction and cycle granularity for the class of micro-controllers
possessing a single bus architecture. Different EMSCAs require varying levels
of granularity in the EM traces to pose a threat to the running software. Our
proposed synthesis flow allows EM traces to be synthesized at a granularity
similar to that observed using measurement. Thus, we can equip software design



EM Side-Channel Vulnerability Simulation 15

LOOP: MOV A, R6

...

SETB C

SUBB A, R7

JC ELSE

IF: CLR C ;;;If-Block;;;

MOV A, R6

SUBB A, R7

MOV R6, A

SJMP LOOP

ELSE: CLR C ;;;Else-Block;;;

MOV A, R7

SUBB A, R6

MOV R7, A

SJMP LOOP

Listing 2: Disassembled GCD program.

Table 6. Correlation of cycle-level SVF between measured and synthesized traces.

Addressing mode IF-Instruction SVF correlation

Register CLR C 87%
Register NOP 87%
Register MOV A, R6 87%
Direct CLR C 93%
Direct NOP 92%
Direct MOV A, 0x08 90%

environment with EM side-channel awareness to predict and hence fortify the
software against EMSCAs during the design cycle of the software. The cost of
pre-characterization was reduced through the application of feature selection to
identify dominant features and redundancy removal to share dictionaries across
instructions. The cost associated with collecting the training data set for feature
selection was justified by demonstrating that the identified dominant features
remain consistent spatially and hence the information obtained at one spatial
location can be utilized to construct dictionaries at others. Traces synthesized
using the proposed approach were shown to be accurate with less than 5%MAPE
compared to measurements, and a case study of control-flow leakage prediction
showed an agreement with measured test traces with better than 87% accuracy.
In future work, we plan on extending our approach to pipelined micro-controllers.

Acknowledgments

This work was supported in part by NSF grant CCF-1901446.



16 T. Aditya et al.

Bibliography

[1] Arsath K F, M., Ganesan, V., Bodduna, R., Rebeiro, C.: PARAM: A Micro-
processor Hardened for Power Side-Channel Attack Resistance. In: (HOST)
(2020)

[2] Dalton-Project: Benchmark Applications for Synthesize-
able VHDL Model, University of California Riverside
http://www.ann.ece.ufl.edu/i8051/i8051benchmarks/index.html

[3] Demme, J., Martin, R., Waksman, A., Sethumadhavan, S.: Side-channel
vulnerability factor: A metric for measuring information leakage. In: (ISCA)
(2012)

[4] Genkin, D., Pachmanov, L., Pipman, I., Tromer, E.: ECDH Key-Extraction
via Low-Bandwidth Electromagnetic Attacks on PCs. In: (CT-RSA) (2016)

[5] Getz, R., Moeckel, B.: Understanding and eliminating EMI in microcon-
troller applications (1996)

[6] Han, Y., Etigowni, S., Liu, H., Zonouz, S., Petropulu, A.: Watch Me, but
Don’t Touch Me! Contactless Control Flow Monitoring via Electromagnetic
Emanations. In: (CCCS) (2017)

[7] Iyer, V.V., Yilmaz, A.E.: Using the ANOVA F-Statistic to Isolate
Information-Revealing Near-Field Measurement Configurations for Embed-
ded Systems. In: (EMC+SIPI) (2021)

[8] Kumar, A., Scarborough, C., Yilmaz, A., Orshansky, M.: Efficient simula-
tion of EM side-channel attack resilience. In: (ICCAD) (2017)

[9] Li, H., Markettos, A., Moore, S.: Security evaluation against electromagnetic
analysis at design time. In: (HLDVT) (2005)

[10] McCann, D., Oswald, E., Whitnall, C.: Towards Practical Tools for Side
Channel Aware Software Engineering: ’Grey Box’ Modelling for Instruction
Leakages. In: (USENIX Security) (2017)

[11] Menichelli, F., Menicocci, R., Olivieri, M., Trifiletti, A.: High-level side-
channel attack modeling and simulation for security-critical systems on
chips. (IEEE TDSC) 5(3), 164–176 (2008)

[12] Robnik-Sikonja, M., Kononenko, I.: An Adaptation of Relief for Attribute
Estimation in Regression. In: (ICML) (1997)

[13] Thuillet, C., Andouard, P., Ly, O.: A Smart Card Power Analysis Simulator.
In: (CSE) (2009)

[14] Urbanowicz, R.J., Meeker, M., La Cava, W., Olson, R.S., Moore, J.H.:
Relief-based feature selection: Introduction and review. Journal of Biomed-
ical Informatics 85, 189–203 (2018)

[15] Veshchikov, N.: SILK: High Level of Abstraction Leakage Simulator for Side
Channel Analysis. In: (PPREW) (2014)

[16] Yoshikawa, M., Asai, T.: Platform for Verification of Electromagnetic Anal-
ysis Attacks against Cryptographic Circuits. In: (ITNG) (2013)


