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Abstract—Temporal isolation is one of the key challenges for
co-running mixed-criticality applications on Commercial Off-
The-Shelf (COTS) multi-core platforms. In particular, the main
memory subsystem is one of the most prominent causes of
interference and loss of isolation. Existing mechanisms for mem-
ory bandwidth regulation are limited to conservative bandwidth
reservation, use pessimistic worst-case execution time (WCET)
estimations or require dedicated hardware that is not feasible in
COTS multi-core platforms.

In this paper, we propose a novel mechanism for memory
interference control that uses feedback-based control to dynam-
ically regulate memory accesses of individual cores in a multi-
core platform. Our mechanism directly regulates the source of
interference by leveraging information about memory utilization,
acquired from existing hardware performance counters provided
by modern COTS-based memory controllers. The proposed
solution is implemented on Linux as a loadable kernel module.
The results of evaluating our approach with real and synthetic
benchmarks on a COTS multi-core (NXP S32V234) platform
demonstrate that it is able to provide temporal isolation with
up to 4x and 2x more overall throughput for non-real-time
applications compared to static and dynamic memory bandwidth-
based regulation approaches, respectively, while maintaining
guarantees for applications running on the real-time core.

Index Terms—temporal isolation, memory bandwidth regula-
tion, real-time system, feedback control, multi-core

I. INTRODUCTION

The increased demand for computational power in emerging
applications across different embedded domains (automotive,
avionics and industrial automation) has driven the adoption
of multi-core systems. A key challenge on such platforms is
the ability to consolidate applications with varying Quality of
Service (QoS) requirements, ensuring freedom from interfer-
ence and meeting timing guarantees while also utilizing the
system effectively. However, the presence of shared resources
(like the cache and main memory) leads to undesired inter-
ference between applications [1]–[3] and, as a result, non-
negligible, context-dependent variability of the execution time.
This problem is further exacerbated considering scenarios
in which the set of executing applications is not fixed and
applications dynamically enter or leave the system (e.g., by
over-the-air or modular upgrades). In such a scenario, it is
either infeasible or prohibitively expensive to enumerate all the
possible resource usage scenarios and resulting interference
effects at design time, thereby rendering any offline resource
allocation methods inadequate.

In particular, interference through the shared main memory
system among applications on different cores accounts for sig-
nificant degradation in application performance and response
time [4]. A key problem with modern COTS-based memory
controllers is that memory request scheduling is governed
by proprietary performance-oriented mechanisms [5]. These
mechanisms are agnostic to the priority/criticality of the re-
questor, which can lead to the unfavorable consequence that
requests originating from time-critical tasks may be delayed
by requests of low-priority tasks. These complex memory
scheduling policies combined with innumerable memory re-
quest patterns from co-running applications renders any worst-
case design-time estimation of request service times difficult.

Existing hardware-oriented mechanisms for memory inter-
ference control require dedicated hardware [6]–[8] that is not
feasible in COTS multi-core platforms. On the other hand,
software-oriented memory bandwidth regulations mechanisms,
like MemGuard [9], [10] approach the problem of controlling
memory interference by periodically monitoring the memory
bandwidth originating from each core and stalling cores when
egress memory bandwidth exceeded a pre-defined threshold.
These methods may result in a very conservative usage of
the total memory bandwidth and may prove inadequate in
controlling interference, since they base their regulation on
an indirect measure of utilization (derived from the core-
egress bandwidth) and not on the actual memory utilization. In
fact, many modern memory controllers expose interfaces that
directly reflect the utilization of the DRAM subsystem for a
given observation interval [11].

In order to understand the relationship between the egress
bandwidth at the cores and the resulting utilization at the
DRAM subsystem, we monitored these values and observed
that memory traffic demand with a certain bandwidth can have
different impact on the utilization of the DRAM subsystem
(as seen in Figure 1). This is attributed to the fact that
COTS-based memory controllers have complex performance
oriented optimizations, due to which not only the number of
requests, but also the target addresses, request sequences, and
many other factors affect the number of requests served by
the controller in a given observation interval. This explains
the non-linear relationship between the memory bandwidth
(observed at the core egress) and the memory utilization
reported by the memory controller. This is highly relevant



as memory interference only comes into play when the in-
stantaneous memory utilization saturates and reaches 100%,
causing applications to stall [11], leading to the premise that
the regulation mechanism must be cognizant of the memory
utilization to truly isolate memory interference effects.

In this paper, we propose a novel mechanism that is
aimed at directly controlling the overall memory utilization
to provide temporal isolation. It aims to optimally regulate
memory bandwidth of each core using feedback-based control
in such a way that the memory utilization is maintained
around a pre-defined threshold below saturation. Such an
online memory regulation mechanism is capable of handling
diverse workloads that arrive dynamically and have input-
data dependent memory requirements, for which an exhaus-
tive memory usage profiling is infeasible at design time. To
address mixed-criticality deployments, we consider a setup
in which a dedicated core hosts a real-time (RT) application
while the remaining other cores host best-effort, non-real-
time (NRT) applications. The proposed approach increases
overall memory utilization and provides better responsiveness
to NRT applications than existing approaches that require
conservatively overthrottling the respective cores in order to
provide guarantees to real-time applications.

The key contributions of this work are:
1) We highlight that memory bandwidth measured at the

source cores by itself is not a key indicator of underlying
memory saturation and hence interference. Based on
this observation, we propose a mechanism for regulating
memory bandwidth based on memory utilization mea-
sured at the DRAM subsystem.

2) We propose a feedback-based control mechanism to
dynamically regulate the memory accesses from each
core and ensure temporal isolation based on memory
utilization.

3) We implement our approach as a loadable Linux kernel
module and deploy our solution on a COTS multi-core
(NXP S32V234) platform. We evaluate our system on
an extensive set of realistic benchmarks from the San
Diego [12], DAPHNE [13] and synthetic IsolBench [14]
suite, and demonstrate its effectiveness compared against
the static and dynamic bandwidth-based regulation ap-
proaches. Results show that our approach reduces ex-
ecution time of non-real-time applications by up to
4x compared to bandwidth-based regulation approaches
while maintaining guarantees for real-time applications.

We do not construct a formal model of the DRAM subsystem,
nor formulate provable guarantees. The correctness of our
approach is corroborated by a full system evaluation, which
provides evidence that the work presented is practical for
industrial applications.

The rest of the paper is organized as follows: after a
motivation of the memory bandwidth regulation problem in
Section II, Section III describes the overall architecture and
Section IV explains the main algorithm of our approach.
Section V then discusses the experimental setup and presents
results followed by survey of related work in Section VI.
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Fig. 1. Impact of memory bandwidth on utilization for SB-VDS benchmark
profiled in isolation.

Finally, Section VII concludes with a summary and outlook
on future work.

II. MEMORY UTILIZATION

In order to demonstrate the benefit of using memory utiliza-
tion as a metric on which memory bandwidth regulation can
be based, we need to further understand the latent relationship
between the memory requests originating from the cores and
the resulting memory utilization. Applications suffer from
memory interference and incur stalls when the overall memory
requests exceed the rate at which the memory controller can
serve them. An important criterion to avoid such interference-
related stalls is to ensure that the egress memory request at
the cores can be kept below the memory controller service rate
i.e. 100% utilization.

The memory utilization in an observation interval, in the
context of this work, refers to the memory service rate in
that interval. This is measured by leveraging the profiling
mechanism present in modern memory controllers that count
busy cycles, which reflect the total number of cycles where
any memory requests are pending in the memory request
queue (FIFO) during the observation interval. These memory
requests are pending as long as different phases of memory
transfer including arbitration, control and actual data transfers
have not finished. Memory requests made towards DRAM are
first received in the memory request queue (FIFO), which
is shared by different memory banks and command control
unit. Hence if the memory request queue is filled, no more
memory requests are served causing applications to stall. By
monitoring the busy cycles B in an observation interval of
L cycles length, the percentage memory utilization U can be
derived by U = (B/L) ∗ 100.

Fig. 1 plots the ingress memory bandwidth (relative to
the DRAM) and the subsequent memory utilization at the
DRAM subsystem. We profiled the SB-VDS benchmark [12]
applications on our evaluation platform (NXP S32V234 [15])



at a period of 1ms in isolation for a duration of 5 seconds. The
memory bandwidth is measured using the memory controller
profiling mechanism, which measures the total number of
bytes transferred in read and in write memory requests. We
observe that the DRAM subsystem can achieve saturation,
that is a near 100% utilization, for a wide range of memory
bandwidth values ranging from 1800 to 2200 MB/s and as low
as 1250 MB/s. In other words, only observing the memory
bandwidth corresponding to outgoing last-level cache (LLC)
misses and write-backs at the core egress is not sufficient to
predict interference. This non-predictability can be explained
by the fact that the rate at which the memory controller
serves requests is not fixed but highly variable and non-
trivial to compute. It depends on several factors including
the access location of each memory request and the current
state of DRAM subsystem, the memory access pattern, the
memory controller scheduling algorithm, the page policy and
the power-management policy [16], [17], all of which are
hidden from the user in COTS multi-core platforms.

Therefore in the example of Fig. 1, temporal isolation
strategies to conservatively bound the memory interference
by only measuring memory bandwidth have to assume 1250
MB/s as the maximum guaranteed bandwidth to be distributed
among applications. At all higher memory bandwidths, the
memory utilization could reach 100%, which implies that
no more memory requests can be fulfilled and applications
are stalled and experience execution time increases caused
by memory interference. This conservative approach enables
guaranteed application execution times but wastes a significant
amount of memory bandwidth. In order to mitigate this, we
propose the use of memory utilization as a metric to measure
the saturation level of the DRAM subsystem along with a
feedback-based control approach that maximizes the available
memory bandwidth by ensuring that the DRAM subsystem
operates below its saturation threshold (100% utilization). The
effectiveness of our approach is demonstrated by a full system
evaluation, which is presented in detail in Section V.

III. SYSTEM OVERVIEW

An overview of our system architecture is depicted in Fig. 2.
Our setup considers a multi-core platform in which a core
designated as RT core is dedicated to host real-time applica-
tions, while the other cores are designated as NRT cores that
host best-effort applications. The RT core must be allocated
sufficient memory bandwidth such that real-time applications
meet their timing requirements. The NRT cores may occasion-
ally suffer performance degradation due to a reduced memory
bandwidth allocation.

We introduce a Dynamic Regulator (DR) whose purpose is
to maximize the overall memory bandwidth utilization while
maintaining guarantees for applications running on the RT
core. To this end, the DR ensures that the DRAM subsystem
is never saturated as well as that no NRT core exceeds its
allocated memory bandwidth usage. The DR thus primarily
focuses on controlling interference at the DRAM subsystem
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Fig. 2. System architecture.

by observing the memory utilization, and limiting the NRT
core bandwidth.

The DR in principle can reside either in the Operating
System (OS), or in the hypervisor. The DR keeps track of the
memory accesses from individual cores by collecting hardware
performance counter values from the Performance Monitoring
Unit (PMU) of each core, as highlighted by blue lines in Fig. 2.
In addition, the DR computes the memory utilization using
information from the Profiling Unit of the memory controller,
which is highlighted by green lines in Fig. 2. These values
are then used to dynamically configure the memory bandwidth
budgets assigned to the cores, which are then also enforced
by the DR (highlighted by red lines in Fig. 2). For analysis
and evaluation of the mechanism, the DR optionally stores
counter samples and key characteristics in SRAM memory to
avoid additional traffic to the main memory.

Although shared-cache contention is a major issue, in this
work, we focus on the issue of contention induced by the
shared DRAM. As such, we assume that the LLC is either
partitioned on a per-core basis or is private. Different tech-
niques have been proposed to achieve the cache-partitioning
(See [2], [18]–[21]) and can be combined with our approach.

The proposed method can be implemented on any platform
on which we are able to measure i) memory utilization and
ii) per core memory accesses (reads and writes) towards the
DRAM. Many modern COTS platforms (e.g., NXP iMX6-
based and S32 automotive platforms) include a profiling
mechanism inside the memory controller that provides the
ability to calculate the memory utilization together with read



and write access statistics towards the DRAM subsystem for
a given observation interval. Furthermore, modern processor-
microarchitectures (e.g., ARMv8-A, Intel-Xeon (5600/E7),
AMD-17h-Zeppelin/Zen) provide per-core-specific hardware
performance events within a PMU that can measure LLC
misses and write-backs. When a load or store instruction
causes a cache miss, a read transaction is initiated to load the
cache block from main memory. If the line being evicted from
the cache was dirty, then it is written back to memory with
a write transaction referred to as cache write-back. Hence the
combination of LLC misses and write-backs can essentially
translate into the total number of memory accesses for a core.

IV. DYNAMIC REGULATOR

In this section, we describe the design and implementation
of the Dynamic Regulator (DR) as introduced in the previous
section and depicted in Fig. 2. The DR dynamically regulates
and enforces the bandwidths of the NRT cores, while the RT
core is left unregulated such that its hosted RT applications
are non-throttled.

The main concept of the DR mechanism is to maintain the
memory utilization below a pre-defined threshold. Because the
DR samples the memory utilization periodically, the memory
utilization threshold must be set below 100% in order to avoid
overshoots in memory utilization caused by the reactive nature
of DR as a function of the regulation interval.

The DR uses a Sampling and Storage Module to collect
hardware performance counter values periodically according
to the time period defined by the Timer Module. These values
are then used by Bandwidth Regulator to form a feedback-
based control and dynamically regulate the bandwidth budget
of each NRT core. Finally, a User Interface Module is used to
configure different DR parameters. The various components
of the mechanism are depicted in Fig. 2 and described in the
following subsections.

A. Timer Module

The timer module is responsible for triggering periodic
events. The time period configured in the timer module sets
the value of i) the regulation interval at which the memory
bandwidth budgets of the NRT cores are regulated and en-
forced, as well as ii) the observation interval for measuring
memory utilization. For creating a timer, the implementation
relies on the high-resolution timer (in the nanosecond range)
infrastructure provided by the Linux kernel in order to provide
precise timing.

The choice of the regulation interval is a trade-off between
bandwidth regulation granularity and overhead (details in
Section V-B) due to the generation of more frequent timer
interrupts. The overhead of the periodic tick could be reduced
by directly using the scheduler tick. A regulation interval of 1
ms has shown to yield good results and is set throughout the
evaluation setup.

B. Sampling and Storage Module
The sampling unit is mainly used for collecting required

hardware performance counter values at every regulation in-
terval:
• Per-core hardware performance events like LLC misses

and LLC write-backs to measure memory accesses.
• DRAM cycles and busy cycles from the memory con-

troller that provide the average memory utilization U
of the DRAM subsystem, which forms the basis of our
algorithm.

Our sampling-based approach does not measure instantaneous
but average utilization over the observation interval. As such,
there is a tradeoff between capturing transient saturations and
practical limits due to performance overheads explained in the
Section V-B. To compute the total memory bandwidth usage
for each core, we multiply the measured LLC miss count and
LLC write-back count with the cacheline size, which is 64
bytes for our evaluation platform (NXP S32V234 [15]).

The storage of this collected information is optional and
only used for offline analysis and evaluation of the mechanism.
The DR has no inherent requirements for data storage. If the
storage option is used, then the collected samples are stored
in SRAM to avoid additional traffic to the main memory.

C. Bandwidth Regulator
The bandwidth regulator module is the core component

responsible for regulating the memory bandwidth of the NRT
cores in every regulation interval.

The DR first computes the previous memory utilization at
the start of each regulation interval. The memory budget (com-
bined count of LLC misses and LLC write-backs) for each
NRT core for the next regulation interval is then computed by
comparing this utilization to the pre-defined memory utiliza-
tion threshold. Afterwards, the computed memory bandwidth
budget is used to set overflow interrupts for each NRT core.
When the memory requests from a core exceed the set budget,
the preset overflow interrupt for that core is triggered, and the
interrupt handler then suspends the corresponding core from
requesting any further memory requests until the regulation
interval ends. We use the perf event infrastructure to configure
these overflow interrupts, which are present inside the PMU.

Algorithm 1 sketches the working of the Dynamic Regula-
tor. Let the total number of NRT cores be denoted by q. Let bi,r
denote the memory budget allocated to each NRT core πi in a
given regulation interval r. Furthermore we denote by bi,1, the
initial budget assigned to the core πi. The initial budgets can
be user-specified or estimated by profiling the memory request
patterns of the NRT applications and arriving at a conservative
estimate. Let Gr denote the global budget, available to all the
NRT cores in regulation interval r. An initial global budget
G1 is calculated as the sum of the individual budgets of the
NRT cores in the first regulation interval and is given by
G1 =

∑q
i=1 bi,1.

At the beginning of each regulation interval r > 1, the
bandwidth regulator first computes the previous memory uti-
lization Ur−1 (Line 4). It then compares this utilization Ur−1



Algorithm 1: Dynamic Regulator
input: number of cores q, step size δ, threshold UT ,

initial NRT core budget bi,1∀ i ∈ 1 . . . q,
initial util Uinit

1 U1 = Uinit, r = 2, ovrFlag = true
2 G1 =

∑q
i=1 bi,1

3 foreach regulation interval r do
4 Compute the previous utilization Ur−1

5 δ = |UT−Ur−1|
2

6 if Ur−1 < UT ∧ ovrFlag = true then
7 Gr = Gr−1 ∗ (1 + δ)
8 else
9 Gr = Gr−1 ∗ (1− δ)

10 end
11 ovrFlag = false
12 foreach non-real-time core πi, {i ∈ 1 . . . q} do
13 bi,r = Gr ∗ mi,r−1∑q

k=1 mk,r−1

14 Set overflow interrupt with budget bi,r
15 end
16 foreach non-real-time core πi, i ∈ {1 . . . q} do
17 Monitor cache misses and write-backs mk,r

// Whenever mk,r exceeds bi,r raise
interrupt

18 if Event: overflow interrupt triggered then
19 suspend core πi
20 ovrFlag = true
21 end
22 end
23 foreach non-real-time core πi, i ∈ {1 . . . q} do
24 Reset overflow interrupt
25 end
26 r = r + 1
27 end

against the pre-defined threshold UT (Line 6) and accordingly
determines the memory budget for NRT cores for the next
regulation interval. In general, in order to regulate the memory
utilization, a global budget in regulation interval r denoted by
Gr is computed as

Gr = Gr−1 ∗ (1± δ),

where δ represents the step size by which the budget is
increased or decreased. In the Algorithm 1, the value of δ is
set in an adaptive way as shown in Line 5, but the algorithm
can also run with a static step size ranging between (0,1),
which is further evaluated in Section V-A2. The difference
between Ur−1 and UT , divided by a constant factor, is used
as the adaptive step size. We arbitrarily chose a factor of 2 to
represent a half of the difference between Ur−1 and UT .

The global budget Gr for the interval r is distributed among
the q NRT cores πi, i ∈ 1 . . . q proportional to the number of
memory accesses mi,r−1 issued by each NRT core πi in the
previous regulation interval r − 1 (Line 13), such that the

Fig. 3. Hardware architecture of our evaluation platform.

budget bi,r for core πi is given by

bi,r = Gr ∗
mi,r−1∑q
i=1mi,r−1

With this, the higher the memory request ratio ( mi,r−1∑q
i=1 mi,r−1

)
of the core in the current regulation interval is, the higher its
share of the budget for the next interval will become.

Finally, the bandwidth regulator then configures an overflow
interrupt in the PMU with the newly computed budget bi,r
(Line 14). It then monitors the relevant hardware performance
events (e.g., LLC misses and write-backs) to keep track of the
memory usage of the cores (Line 17). If the core πi exceeds the
configured budget bi,r at any point in the regulation interval, an
overflow interrupt is triggered by the PMU and the Dynamic
Regulator suspends core πi until the end of the interval (Line
19).

The bandwidth regulator also keeps track of the NRT cores
that exceed their budget and had to be suspended in the
previous regulation interval to adjust the global budget. If
Ur−1 < UT and there exists at least one NRT core that
was suspended in the previous interval r − 1, then it implies
that some core is underprovisioned and more budget must be
allocated. Therefore, it computes a new global budget Gr

for the interval r by increasing the previous budget Gr−1
by δ. Similarly, if Ur−1 > UT then the bandwidth regulator
computes Gr by decreasing Gr−1 budget of the interval r by
δ.

D. User Interface Module

The Dynamic Regulator framework provides an interface
for letting the user configure the key parameters, namely the
timer period of the regulation interval, threshold UT , number
of samples to be stored and step size δ. Furthermore, the
storage module can also be enabled or disabled. The interface
is implemented using the debugfs file system of the Linux
kernel.

V. EVALUATION RESULTS AND ANALYSIS

We evaluate our approach on the NXP S32V234 [15]
embedded platform. As shown in Fig. 3, the SoC features



TABLE I
BENCHMARK CHARACTERISTICS IN ISOLATION.

Benchmarks Applications Avg. IPC Avg. Bandwidth

SD-VBS

multi ncut 0.88 450 MB/s
disparity 0.50 441 MB/s
tracking 0.59 406 MB/s
mser 0.67 328 MB/s
sift 0.69 126 MB/s
stitch 0.90 124 MB/s
texture synthesis 0.72 013 MB/s

DAPHNE
ndt mapping 0.54 582 MB/s
euclidean cluster 0.87 301 MB/s
points2image 0.85 189 MB/s

Isol-Bench MemBomb 0.15 2321 MB/s

4 ARM Cortex A53 [22] CPUs, organized into 2 clusters
each having 2 cores and clocked at 1GHz. Each core has
its own private L1 data and instruction cache whereas the 2
cores within a cluster share a unified L2 cache. As our focus
is not the shared cache, we use cores that do not share the
same LLC for the majority of experiments. We include an
analysis on four cores using applications that are not cache-
sensitive by nature (e.g., where the working set size of each
application is bigger than the LLC size). While this work is a
proof of concept, cache partitioning is orthogonal and can be
implemented within a hypervisor [23] and used in combination
with the dynamic regulator.

The Profiling Unit of the memory controller in our platform
exposes a set of memory-mapped performance counters that
report: (1) the number of DDR cycles elapsed, (2) the number
of busy DDR cycles, (3) the total number of bytes transferred
in read and (4) in write memory requests. The ratio between
(2) and (1) provides the memory utilization, which forms the
basis of our approach. We implement the Dynamic Regulator
in Linux version 4.19 as a loadable kernel module and pin it
to run on core 1.

A combination of real-world [12], [13] and synthetic [14]
benchmarks are used to gain insight into the platform and eval-
uate the proposed approach. For our real-world benchmarks,
we use a subset of the benchmarks in the San Diego Vision
Benchmark Suite (SD-VBS) [12]. The input dataset for the
benchmark applications comes in 9 different sizes. Since we
are interested in applications that are DRAM-bound, we use
the ones with the largest input data size (named FullHD).
The other benchmark suite is the Darmstadt Automotive
Parallel Heterogeneous Benchmark Suite (DAPHNE) [13],
which represents parallelizable workloads from the automotive
domain. For our evaluation, we used the applications that run
exclusively on the CPU. We also use a synthetic ’Bandwidth’
benchmark from the IsolBench suite [14] that is engineered
to continuously perform memory write operations. In the rest
of the paper, we refer to this benchmark as the MemBomb
application.

Table I summarizes the characteristics of each benchmark
considered in our evaluations. Benchmarks are listed in in-
creasing order of average memory bandwidth usage measured
when each benchmark runs in isolation on the evaluation
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(b) Scenario showing overshooting of total memory utilization
above pre-defined threshold of 80%

Fig. 4. Impact of the memory utilization threshold UT on Dynamic Regulator
behavior for disparity on RT core and MemBomb on NRT core.

platform. Notice that the benchmarks cover a wide range
of memory bandwidth usage, ranging from 13MB/s (tex-
ture synthesis) up to 2.3GB/s (MemBomb). We have excluded
the sift, texture synthesis, stitch and point2image benchmarks
from our evaluation given their low bandwidth requirements
and, therefore, insignificant impact of memory interference on
their execution time.

A. Sensitivity Analysis

One of the key issues for system designers in using any reg-
ulation mechanism is to configure the right system parameters.
In this subsection, we first discuss the key design parameters
of our approach, in particular the utilization threshold (UT )
and the step size (δ). Since our approach is self-regulatory
due to dynamic feedback-based control, the impact of initial
budgets is insignificant to the overall performance of the
system. Therefore, we arbitrarily choose an initial budget of
50 MB/s for all our experiments.

1) Memory Utilization Threshold: We evaluate the impact
of the pre-defined threshold UT on the slowdown ratio of
co-running applications. We define the slowdown ratio of an
application as the ratio of execution time in contention to the
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Fig. 5. Impact of the step size on Dynamic Regulator behavior for disparity
on RT core and MemBomb on NRT core.

execution time in isolation. In the experiment shown in Fig. 4,
the disparity application is run on the designated RT core,
and an instance of the synthetic MemBomb application is run
on the NRT core. This application is selected as it has the
lowest average IPC and the highest average memory utilization
in the benchmark suite, making it an ideal candidate for
demonstrating memory interference-related effects.

A high memory utilization threshold causes bandwidth to
be more aggressively allocated to the NRT core, which in turn
results in a reduction of its slowdown ratio. This behavior can
be clearly observed in Fig. 4(a), where the slowdown ratio of
the application running on the NRT core decreases with an
increase in the threshold, whereas the slowdown ratio of the
application running on the RT core remains constant at about
1 until the threshold is set to a value of 95%, for which the RT
core starts to see a slowdown due to overshoots in memory
utilization caused by the reactive nature of DR as a function
of the regulation interval.

These overshoots can be seen in Fig. 4(b) for a setup in
which the threshold is set at 80%. The Dynamic Regulator
targets to keep the memory utilization of the DRAM subsys-
tem around this threshold. However, the memory utilization
can exceed the pre-defined threshold for two reasons. Firstly,
it is possible that the memory utilization requirement of the RT

application, which is kept unregulated, exceeds this threshold.
For example in Fig. 4(b), the RT application (dispartiy) mem-
ory utilization pattern shows four instances (around 2000 ms,
3000 ms, 3800 ms and 4600 ms) where the memory utilization
is above 80%. These are the section of application, where
the RT application in isolation has the memory utilization re-
quirement of more than 80%. Hence, when the RT application
is co-run with an NRT application (MemBomb), the memory
utilization will exceed the pre-defined threshold of 80% to
meet the RT application requirements.

Secondly, the Dynamic Regulator decreases the memory
accesses of the NRT cores only when the memory utilization
exceeds the pre-defined threshold (Line 9 in Algorithm 1).
Therefore, a small memory utilization overshoot is expected
due to the reactive nature of the mechanism, which has no
significant impact on the slowdown ratio of the RT core
(Fig. 4) as long as the utilization remains below 100%. This is
why, at the 95% threshold, the RT application slowdown ratio
rises to 1.1 (a 10% increase) due to overshoot that results in
the saturation of DRAM subsystem. Note that with enough
insight into DRAM operation, an adversarial NRT application
could exploit the reactive DR nature by injecting overshoots as
a function of the regulation interval and threshold. For these
reasons, we set a conservative utilization threshold of 80%
to account for overshooting margins and to ensure that we
introduce no additional saturation at the DRAM subsystem.

2) Step Size: In this experiment, we evaluate the impact
of step size δ on the performance of the Dynamic Regulator.
The step size determines the delta value by which the memory
budgets allocated to the NRT cores are increased or decreased
in every regulation interval. We consider two scenarios for step
sizes: (1) static and (2) adaptive. In the first scenario, the step
size is assigned a fixed value for every regulation interval r
(Line 5 in Algorithm 1), whereas in the case of an adaptive
step size, the value for every regulation interval is given by
δ = |UT−Ur−1|

2 .
We co-run a real application from the SB-VDS suite (dispar-

ity) on the RT core with a synthetic application (MemBomb)
on the NRT core and observe the memory utilization and
memory bandwidth pattern of the workloads. As highlighted
by the results in Fig. 5(a), setting a static step size leads to
higher oscillations around the pre-defined threshold of 80% in
comparison with an adaptive step size. This, in turn, causes
higher oscillations in the allocated bandwidth for NRT cores,
as seen in Fig. 5(b). Higher oscillations can lead to memory
utilization overshoots beyond the set threshold, which can
result in missing real-time guarantees in case the memory
utilization reaches 100%.

B. Overhead Analysis

We further conducted experiments to evaluate the perfor-
mance overhead incurred by our proposed mechanism. The key
sources of the overhead arise from 1) the periodic interrupt that
each core receives (either timer or IPI interrupt) at the begin-
ning of every regulation interval; 2) the hardware performance
counter overflow interrupt that is triggered whenever the actual
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Fig. 6. Execution time overhead versus regulation interval.

memory bandwidth of an NRT core exceeds its currently
configured value, and 3) the increased memory accesses due
to cache evictions by the execution of interrupt handlers of
the DR, which indirectly increases the application execution
time.

In order to quantify the overhead caused by the Dynamic
Regulator, we conducted an experiment by running an instance
of MemBomb in isolation on one of the NRT cores. In the
first case, we measure the execution time of MemBomb in
an unregulated and standalone scenario to obtain its baseline
execution time. We then repeat the experiment using the
Dynamic Regulator under two different scenarios: 1) timer-
only and 2) timer with overflow. In the timer-only scenario,
the utilization threshold is set above 100%, so that the core
receives only the periodic timer interrupts at every regulation
interval. In the timer with overflow scenario, NRT cores are set
to a fixed low budget of 10 MB/s (Line 11 in Algorithm 1), so
as to trigger an overflow interrupt at every regulation interval
in addition to the periodic timer interrupt. Since setting a low
budget can itself cause an increase in execution time due to
core suspension, we disable core suspension, i.e. comment out
Line 19 in Algorithm 1.

Fig. 6 shows the performance overhead, i.e., the increased
execution time with respect to the unregulated baseline sce-
nario as a function of the regulation interval. It can be noted
that the overhead for a regulation interval of 1ms is only 2.6%.
Overhead increases with a reduction in the regulation interval,
reaching up to 4.4% for a 500µs regulation interval. Based on
the results, we pick 1ms as the default regulation interval and
use it throughout our evaluation.

C. Comparing Dynamic Regulation based on Utilization and
Bandwidth Thresholds

To demonstrate that memory utilization as a metric is more
beneficial than memory bandwidth, we implemented another
version of Dynamic Regulator that is based on a memory
bandwidth threshold instead. In order to realize this, we make
the following changes in Algorithm 1 to have regulation based
on a memory bandwidth threshold:
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Fig. 7. Impact of the Memory Bandwidth threshold BT on slowdown ratio
for disparity on RT core and MemBomb on NRT core.

1) The previous memory utilization Ur−1 is set to measure
the previous total memory requests toward the DRAM
subsystem from all the cores (Line 4 in Algorithm 1).

2) The step size δ is set to a small static value of 0.05
(Line 5 in Algorithm 1) for a gradual change in memory
budgets for NRT cores.

3) The threshold UT is replaced by BT , representing a pre-
defined memory bandwidth threshold.

In the remainder of the paper, we refer to this modified
algorithm as DR@BW. The total number of memory requests
are measured using the Profiling Unit of the memory con-
troller. We use the guaranteed (worst-case) bandwidth [9] of
the DRAM subsystem as the memory bandwidth threshold.
The guaranteed bandwidth of the DDR3 memory used in our
evaluation is approximately 950 MB/s based on the work in
[11].

We further highlight the rationale of using guaranteed
bandwidth as the threshold in DR@BW by experimentally
observing the impact of various memory bandwidth thresholds
on the slowdown ratio of the applications in RT and NRT
cores. For this experiment, we run a real application (disparity)
on the RT core alongside a synthetic application (MemBomb)
on the NRT core.

A high memory bandwidth threshold implies that bandwidth
is more aggressively allocated to the NRT core, which in turn
results in a reduction of its slowdown ratio. This behavior can
be clearly observed in Fig. 7, where the slowdown ratio of
application run on the NRT core decreases with the increase
in the threshold. However, when the memory bandwidth
threshold is raised over the guaranteed bandwidth (950 MB/s),
the RT application suffers from memory interference, resulting
in an increase in the slowdown ratio. Hence, in order to make
sure that the guarantees for the RT applications are always
met, the memory bandwidth threshold is set to the guaranteed
bandwidth of the DRAM subsystem.

We evaluate the overall performance benefit of using mem-
ory utilization rather than memory bandwidth as the basis for
memory bandwidth regulation by comparing DR effectiveness
against DR@BW. We co-run a real application (disparity) on
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Fig. 8. Comparison of the performance of Dynamic Regulator with Memory
Bandwidth and Memory Utilization as threshold for disparity on RT core and
MemBomb on NRT core.

the RT core and a synthetic application (MemBomb) on the
NRT core. To ensure fair comparison, we used the same step
size of 0.05 when comparing the two mechanisms.

Fig. 8(a) and Fig. 8(b) show the memory bandwidth usage,
over time, of the RT core and NRT core respectively for both
these approaches. While Fig. 8(c) shows the overall system-
wide memory utilization over time. The RT core shows similar
memory patterns in Fig. 8(a) under both approaches as they
both aim to maintain native execution time without stalls.

Fig. 8(b) shows that DR@BW limits the combined memory
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bandwidth of RT and NRT cores based on the pre-defined
memory bandwidth threshold of 950 MB/s (guaranteed band-
width). In order to do so, in each regulation interval, the
DR@BW observes the bandwidth consumed by the RT core
and allocates the residual bandwidth (guaranteed bandwidth -
RT core bandwidth) to the NRT cores. As seen in Fig. 8(a),
during the initial 2000 ms of execution, the RT application
has a relatively low bandwidth requirement and therefore the
regulation approach allocates a major portion of the available
memory bandwidth to the NRT core during this phase of
execution. After the initial 2000 ms, the RT application has
a varying bandwidth requirement with an average bandwidth
of 500 MB/s and peak bandwidth of approximately 2000 MB/s,
and it can be seen how the DR@BW correspondingly varies the
allocation to the NRT cores, to limit the combined bandwidth
usage of the RT and NRT cores, to the guaranteed bandwidth.

The clear advantage of using the utilization as a metric
comes across in Fig. 8(c). Here we see that the overall memory
utilization achieved by DR is higher than that achieved by
DR@BW. Secondly, this also validates that DR limits the
memory utilization of the entire system according to the
pre-defined memory utilization threshold of 80%. Overall,
DR using memory utilization is able to improve the overall
memory utilization by 1.5x and provide 2x more NRT memory
bandwidth than DR@BW for this experimental setup, all while
maintaining guarantees for applications running in the RT core.

D. Comparison of Dynamic Regulator versus bandwidth-
based approaches on 2 cores

In this experiment, we compare the slowdown experienced
by the RT and NRT applications co-run on two cores under
the following scenarios i) Unregulated execution, in which
the applications are co-run in their respective cores with no
regulation mechanism in place, 2) Dynamic Regulator, 3) a
dynamic bandwidth-based approach (DR@BW), and 4) a static
bandwidth-based approach (MemGuard [10]).

Comparison against MemGuard: We use the latest im-
plementation of MemGuard [10] that regulates LLC write-
backs in addition to LLC misses and configured it to only



TABLE II
SLOWDOWN RATIO OF BENCHMARKS IN CONTENTION WITHOUT REGULATION AND WITH DIFFERENT REGULATION MECHANISMS FOR TWO CORES.

RT Core NRT Core
Benchmarks Unregulated MemGuard DR@BW DR Benchmarks Unregulated MemGuard DR@BW DR
disparity 1.22 1.03 (750) 1.03 1.02 MemBomb 1.21 7.82 (200) 4.70 2.43
tracking 1.35 1.04 (850) 1.03 1.03 MemBomb 1.16 17.72 (100) 5.06 2.61
mser 1.16 1.04 (700) 1.01 1.01 MemBomb 1.26 8.10 (250) 3.90 2.14
multi ncut 1.11 1.04 (800) 1.02 1.02 MemBomb 1.13 11.23 (150) 5.84 2.16
ndt mapping 1.27 1.05 (750) 1.03 1.03 MemBomb 1.43 9.41 (200) 6.84 3.47
euclidean 1.08 1.02 (700) 1.01 1.01 MemBomb 1.29 5.61 (250) 4.93 2.22
Average 1.20 1.04 1.02 1.02 Average 1.25 9.98 5.21 2.51
disparity 1.08 1.02 (750) 1.02 1.02 tracking 1.04 2.30 (200) 1.71 1.37
disparity 1.05 1.01 (750) 1.01 1.02 ndt mapping 1.03 1.97 (200) 1.68 1.16
tracking 1.09 1.02 (850) 1.01 1.02 ndt mapping 1.03 3.57 (100) 1.86 1.33
tracking 1.04 1.02 (850) 1.02 1.01 mser 1.05 2.10 (100) 1.43 1.25
tracking 1.05 1.02 (850) 1.01 1.01 multi ncut 1.04 2.37 (100) 1.61 1.31
Average 1.06 1.02 1.02 1.02 Average 1.04 2.46 1.66 1.28

use static bandwidth reservation. We first determine, for each
application, its static memory budget, which is the key pa-
rameter used by MemGuard. In order to determine the static
bandwidth budget for the RT core, we vary its budget, and
observe the corresponding slowdown experienced by the RT
application, as seen in Figure 9. We use the lowest budget
configuration which results in a similar slowdown as observed
in isolation. Then, the static bandwidth budget for the NRT
core is computed as the difference of guaranteed bandwidth
and static bandwidth budgets for RT core. Fig. 9 illustrates
the slowdowns as a function of budgets for two applications
disparity and MemBomb that are co-run on RT and NRT cores,
respectively. For this example, the budgets of 750 MB/s and
200 MB/s are selected for the RT and NRT cores, respectively.
For our remaining experiments, we use the same method-
ology to select the memory budgets for MemGuard. Once
the configurations for the MemGuard have been selected, we
conducted the evaluation with different setups as described in
the following.

1) Synthetic benchmarks on NRT core: In the first setup,
we studied the detailed system performance by running a real
application on the RT core along with a synthetic memory
intensive application (MemBomb) on the NRT core. This setup
is chosen to provide a worst-case scenario where the memory
demand from the NRT core (when unregulated) alone can
saturate the memory controller by hitting the to 100% memory
utilization.

Table II shows the slowdown ratios for different execution
settings as compared to the execution times in isolation. We
compare unregulated execution in which the applications are
run concurrently in the respective cores with no regulation
mechanism in place to the proposed Dynamic Regulator,
DR@BW and MemGuard. The memory utilization threshold
of the DR is 80% and the memory bandwidth threshold for
DR@BW is 950 MB/s. The budget of MemGuard is individ-
ually configured for each experiment and mentioned within
brackets.

As expected, all regulation approaches successfully ensure
enough memory bandwidth for the application on the RT core,
denoted by the slowdown ratios close to 1. The application

on the NRT core suffers the highest slowdown with Mem-
Guard (on average 9.98). The dynamic regulation improve
the slowdown significantly, with the utilization-based DR (on
average 2.51) having a clear advantage over the bandwidth-
based DR@BW (on average 5.21). In summary, the DR is
able to improve the slowdown ratio of the NRT application on
average by 4x in comparison with MemGuard and by 2x in
comparison with DR@BW.

2) Real-world benchmarks on NRT core: In this setup,
the objective is to conduct a comparison using real-world
applications with varying memory loads. Here, real benchmark
applications from the SB-VDS and DAPHNE benchmark suite
are run on both RT and NRT cores. Again, the RT applica-
tions show similar memory behavior under all the regulation
mechanisms as they maintain the same execution time, as can
be observed in Table II. Due to their lower required memory
bandwidth (cf. Table I), the overall slowdown ratios of the
real-world NRT applications are lower than of the synthetic
MemBomb benchmark. Similarly the improvement factors be-
tween the different regulation approaches are lower. However,
the DR still improves the slowdown ratio of NRT applications
on average by 2.2x in comparison with MemGuard and by
1.3x in comparison with DR@BW.

E. Comparison of Dynamic Regulator versus bandwidth-
based approaches on 4 cores

Table III summarizes and compares the slowdown ratio
under different approaches when co-running applications from
real and synthetic benchmarks on four cores under four
different scenarios. We use the same mechanisms and their
configurations for comparison as mentioned earlier for two
cores.

The results of the 4 core experiments are in line with the
experiments on 2 cores. All regulation approaches effectively
isolate the RT core as denoted by the slowdown ratios close
to 1. With the synthetic MemBomb benchmark running on all
3 NRT cores, the DR shows an average improvement of slow-
down ratios compared to MemGuard by 3.1x and compared to
DR@BW by 1.7x. Similarly, for real-world applications on all
3 NRT cores, the DR improves the slowdown ratios on average



TABLE III
SLOWDOWN RATIO OF BENCHMARKS IN CONTENTION WITHOUT REGULATION AND WITH DIFFERENT REGULATION MECHANISMS FOR FOUR CORES.

Core1: RT Core2: NRT
Benchmarks Unregulated MemGuard DR@BW DR Benchmarks Unregulated MemGuard DR@BW DR
disparity 1.80 1.04 (750) 1.04 1.04 MemBomb 2.47 48.04 (67) 29.74 13.84
tracking 2.02 1.06 (850) 1.04 1.04 MemBomb 2.62 73.47 (33) 29.74 15.71
Average 1.91 1.05 1.04 1.04 Average 2.55 60.75 29.74 14.77
disparity 1.22 1.05 (750) 1.03 1.03 tracking 1.27 3.07 (67) 2.34 1.87
ndt mapping 1.23 1.05 (750) 1.03 1.03 euclidean 1.08 4.52 (67) 2.07 1.55
Average 1.23 1.05 1.03 1.03 Average 1.18 3.79 2.21 1.71

Core3: NRT Core4: NRT
Benchmarks Unregulated MemGuard DR@BW DR Benchmarks Unregulated MemGuard DR@BW DR
MemBomb 4.30 48.50 (67) 36.20 20.82 MemBomb 4.29 49.47 (67) 35.94 20.82
MemBomb 4.44 73.47 (33) 37.01 23.24 MemBomb 4.47 74.57 (33) 36.47 22.61
Average 4.37 60.99 36.61 22.03 Average 4.38 62.02 36.20 21.71
mser 1.23 2.15 (67) 1.75 1.35 multi ncut 1.14 2.71 (67) 2.32 1.94
tracking 1.33 2.57 (67) 2.24 1.83 multi ncut 1.15 2.49 (67) 2.29 1.76
Average 1.28 2.36 1.99 1.59 Average 1.15 2.60 2.31 1.85

by 1.7x compared to MemGuard and by 1.3x compared to
DR@BW.

It is important to remember that COTS-based memory
controllers are optimized for high memory throughput [24],
but do not provide predictable timing among memory requests
from different cores in multi-core platforms. In order to pro-
vide predictability for time-critical applications, all regulation
approaches need to allocate sufficient memory bandwidth
to the RT core such that real-time applications meet their
timing requirements, while NRT cores may suffer performance
degradation compared to an unregulated scenario due to a
reduced memory bandwidth allocation. As a result, a trade-
off exists between performance and predictability.

Finally, it is worth noting that even with a conservative
memory utilization threshold of 80%, the DR outperforms
other mechanisms. With an increased threshold, the DR will
show an even higher performance improvement if occasional
slowdowns of the RT core are acceptable.

VI. RELATED WORK

Existing studies that addressed memory interference in a
multi-core real-time environment can broadly be classified
into hardware-oriented and software-oriented mechanisms. On
the hardware front, embedded high performance platforms
are increasingly offering QoS modules on the interconnect
[25], [26] between the masters (CPUs, GPUs, DMAs) and the
main memory, which can regulate and prioritize the memory
requests. However, even with the existing QoS modules there
are two main concerns [5]. Firstly, the QoS module may treat
the entire core cluster as a single master, because the core
cluster is connected to the interconnect at a single port. With
this, the QoS module may offer regulation only at the core-
group level and may not differentiate among different cores,
which does not solve the problem of cross-core contention.
Secondly, a static configuration of the QoS module parameters
may not be sufficient to efficiently use the underlying DRAM
due to varying workloads; we additionally need a software
mechanism that takes into account the changing memory usage

patterns of applications and reconfigures these parameters in
the QoS modules.

Using a dedicated memory controller [6] or additional
hardware like FPGAs [7], [8] is a common approach to reduce
memory interference. However, relying on dedicated hardware
is not feasible for systems employing COTS components,
which come with fixed architectures and memory controller
designs.

With the need for easy portability and minimal dependency
on platform architectures, OS-level software solutions like
MemGuard [9] are preferred. The base version of MemGuard
statically regulates memory budgets of each core based on a
pessimistic worst-case bandwidth estimation. This can lead to
an under-provisioning of memory bandwidth since it does not
account for dynamic workload behavior and traffic patterns
of applications. We do not compare against the predictive
mechanisms proposed by MemGuard, since our approach is
orthogonal and is not comparable (the RT core is unregulated
and we are not working with global reclamation). However, in
order to validate our approach, we make a fairer comparison
using the same reactive Dynamic Regulator with either mem-
ory utilization or bandwidth as metric for regulating memory
budgets for each core.

Other dynamic bandwidth regulation mechanisms [27], [28],
[29] perform offline analysis and budget estimation based on
worst-case memory access latency metrics, potentially using
feedback-based control [30]. However, all these mechanisms
suffer from pessimistic budget and worst-case execution time
(WCET) estimations. They are agnostic to the memory utiliza-
tion, and compute the allocated bandwidth values based on an
offline analysis, hence are suitable only for a statically known
sets of workloads.

By contrast, our work proposes the use of a different metric
for bandwidth regulation, namely memory utilization, which
provides the actual saturation level of the DRAM. Combining
memory utilization with per-core memory bandwidth usage
and feedback-based control, Dynamic Regulator is able to
provide guaranteed bandwidth to the RT core and efficiently
allocate remaining bandwidth to NRT cores. The proposed



feedback-based control is closely related to classic PID ap-
proaches in control theory.

VII. SUMMARY AND CONCLUSIONS

In this work, we presented a feedback control-based dy-
namic memory bandwidth regulation mechanism to support
efficient temporal isolation in COTS multi-core platforms. We
highlighted with examples that memory bandwidth measured
at the source cores by itself is not a key indicator of the un-
derlying memory saturation and hence interference. Therefore,
alternative mechanisms that are based on the actual memory
utilization are warranted. Based on this insight, we proposed
a mechanism for regulating memory bandwidth based on the
memory utilization measured at the DRAM controller.

We implemented our solution in Linux as a loadable ker-
nel module and deployed it on a COTS multi-core (NXP
S32V234) platform to demonstrate its effectiveness compared
against static and dynamic bandwidth-based approaches. Re-
sults show that our approach reduces execution time of non-
real-time applications by up to 4x while maintaining guaran-
tees for real-time applications. As future work, we plan to
extend our approach to a system-level solution by regulating
memory requests emerging from other masters like hardware
accelerators and GPUs in addition to cores in the systems-
on-chip. We also plan to further reduce the implementation
overhead in order to use smaller regulation intervals and hence
accommodate more fine-grained bandwidth regulation. Our
approach can also be extended to handle multiple RT cores
by additionally assigning and enforcing static bandwidth limits
to each RT core based on offline analysis, in such a way that
in any regulation interval the combined memory utilization of
all RT cores is always below 100% while also ensuring that
sufficient bandwidth limits are set to ensure that the application
meets its end-to-end requirements.
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