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Abstract—Heterogeneous architectures have arisen as a well-
suited approach for the post-Moore era. Among them, archi-
tectures that integrate programmable accelerators in or near
memory are gaining popularity due to the potential advantages
of reduced data movement. Such near-memory accelerators
benefit from launching a large number of fine-grain tasks to
hide memory latency while exploiting bandwidth gains. This
requires low-overhead and portable mechanisms for interfacing
of accelerators. If not managed carefully, the hard and soft
costs of host and accelerator interactions, such as programming
and device driver overheads for actuation, context transfer and
synchronization can severely limit acceleration benefits.

We present the non-uniform compute device (NUCD) system
architecture as a novel lightweight and generic accelerator
offload mechanism that is tightly-coupled with a general-purpose
processor core. Different from conventional offload mechanisms
that rely primarily on device drivers and software queues, the
NUCD system architecture extends a host core micro-architecture
to enable a low-latency out-of-order task offload to heterogeneous
devices. In the NUCD programming model, a candidate region
for offload in the code is marked with a special instruction. The
NUCD microarchitecture then accelerates function offloading,
actuation, synchronization for out-of-order parallel execution in
hardware with little driver or runtime software involvement,
while maintaining standard sequential program semantics.

Results demonstrate that the NUCD system architecture can
achieve an average performance improvement of 21%-128% over
a conventional driver-based offload mechanism. This in turn
enables whole new forms of fine-grain task offloading that would
otherwise not see any performance benefits.

I. INTRODUCTION

Specialized, heterogeneous and accelerator-rich architec-
tures have emerged as viable solutions to address the im-
pending end of traditional semiconductor scaling [1], [2],
[3]. In particular, architectures that integrate programmable
accelerators in or near memory are gaining attention due to
the data movement reduction benefits of placing the processing
elements closer to the data [4], [5], [6]. A key challenge
in such accelerator-rich systems is programmability and code
portability across architectures with diverging, heterogeneous
compositions of accelerators. Furthermore, integration of ac-
celerators into any system has to address the costs of offload-
ing, initiation, context transfer and synchronization, which can
quickly outweigh any potential acceleration benefits. This is
particularly the case for accelerators placed nearer to memory,
which rely on task-level parallelism and multi-threading to
hide latency. Being able to launch a large number of poten-
tially fine-grain tasks with little programming and offloading
overhead is critical for such near-memory accelerators.

Traditionally, interfacing hardware accelerators within a
system requires a driver specific for a targeted device [7], [8],

[9], [10]. The device driver provides a clean abstraction for
the software to handle low-level operations that interface with
the accelerator device. These low-level operations include data
movement, context management/setup, translation, actuation,
and synchronization1. Regardless of the process, the device
driver overheard must be amortized by acceleration gains
with each invocation. Moreover, each new type of hardware
accelerator within a system requires integrating a driver spe-
cific for each component with each new application, e.g. to
manage context transfer and synchronization between device
and host. These hard and soft costs of accelerator actuation
skew application designers towards coarse-grained accelerator
offload for specific applications, in direct opposition to the
needs of near-data and accelerator-rich systems.

In this paper, we introduce the non-uniform compute device
(NUCD) system architecture (SA) to enable generic, hardware-
assisted and driver-less low-latency compute offload to task-
level accelerators. The NUCD SA provides a canonical pro-
gramming model that adds a single instruction to indicate a
region of interest to offload. This instruction provides fast iden-
tification of critical information to setup an accelerator con-
text, such as code region size, memory footprint/granularity,
and output/input registers. The NUCD microarchitecture then
handles all offload, initiation, synchronization and forwarding
of an accelerator context without driver involvement. NUCD
tightly integrates with a general-purpose core’s out-of-order
mechanisms to maintain standard sequential programming se-
mantics while enabling transparent parallel execution between
the host core and accelerators.

In summary, this paper makes the following contributions:
• We propose an instruction set extension to present accel-

erator tasks to a host core in a portable manner.
• We propose a micro-architecture that implements the
nucd instruction for conditional accelerator offload and
parallel/out-of-order execution of offloaded tasks while
maintaining sequential program consistency.

• We propose a system architecture that supports light-
weight accelerator invocation, context transfer and syn-
chronization tied to the NUCD micro-architecture.

• Using a cycle-accurate simulator [11], we evaluate the
NUCD SA for near-memory acceleration of several data-
intensive applications. Results show an average system-
wide performance benefit of 21%-128% when compared
to a more traditional driver-based offload mechanism
and up to 2.6× speedup for applications utilizing fine-

1There are many variations on this process
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Fig. 1. System-wide speedup with and without offload overhead.

grain tasks that achieve no performance gains under a
traditional driver model.

The rest of paper is organized as follows. We first present
some further motivation in Section II. We then introduce the
NUCD programming model and system architecture, along
with its micro-architecture in Sections III and IV. We present
our evaluation and results in Section V, related work in
Section VI, and lastly our conclusions in Section VII.

II. MOTIVATION

Figure 1 shows the system-wide speedup of several bench-
marks (details in Section V) where lightweight, fine-grain
kernels are offloaded to near-memory accelerators with and
without device driver overhead. The speedup shown is nor-
malized to no-offload execution. As can be seen, for some
applications, the actual benefit of hardware acceleration is
undone by the cost of driver overhead. Instead of experiencing
system-wide speedup, offloading these kernels to accelerators
using the traditional device driver approach, can be worse than
not offloading them in the first place.

Moreover, in complex heterogeneous architectures where
compute elements are sprinkled throughout the memory hi-
erarchy, maintaining standard sequential program semantics
efficiently is a challenge [12]. Data forwarding and exceptions
from remote accelerators can occur naturally. This synchro-
nization and control-flow back to the host core is normally
handled by the software device driver (i.e. completion queue).
However, leaving such low-level signalling mechanisms to
software places a burden on the programmer, which could
hamper widespread adoption of heterogeneous architectures.
Therefore, a system architecture that provides portable and
transparent mechanisms for accelerator offloading while main-
taining standard sequential program semantics including ex-
ceptions during acceleration is essential.

In the next sections, we detail our approach to address these
objectives and associated design challenges.

III. NUCD PROGRAMMING MODEL

In this section, we first discuss the NUCD programming
model. The NUCD SA employs a nucd instruction to initiate
and assist in the offloading process. The programmer identifies
a region of interest (ROI) in the code by using the nucd
instruction to mark the offloaded region. This can be done
directly in assembly code or by a compiler. In both cases,
necessary and relevant offload information is prepared and
passed to the micro-architecture through the nucd instruc-
tion operands. We describe task identification and the nucd
instruction in the following.

Fig. 2. Task identification in the NUCD programming model.

Fig. 3. Register format of the nucd instruction.

A. Task Identification

Figure 2 illustrates the offload task identification in the
NUCD architecture. The programmer marks the offload
code block as a ROI for offload in the code using
nucd_start and nucd_end pragmas. The compiler in turn
inserts the nucd instruction before the instruction block for
the offload ROI in the assembly code.

B. NUCD Instruction

Figure 3 details the format and content of the three register
operands used by the nucd instruction. Register Xn indi-
cates the base offload information, while registers Xd and
Xt contain more information about the inputs and outputs
required by the offloaded task, respectively. N in register Xn
indicates the size of the offloaded region, i.e. the number
of instructions to offload following the nucd instruction. C
denotes capabilities needed by the offloaded code, and M
contains additional information such as whether the offloaded
code uses registers and/or memory locations as inputs and
outputs. The rest of the bits are reserved (R). For Xd/Xt,
information about up to four input/output registers or memory
regions can be provided. Each 16-bit segment contains 2 bits
to describe the memory granule size, 9 bits to describe the
size of the memory region given as the number of contiguous
granules of memory, and 5 bits to point to a host architecture
register index. If the offloaded task uses memory locations, this
register index will point to the starting address of that memory
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Fig. 4. Offload flow from the host core to the accelerator and back.

location. With these four segments, nucd instructions can
conceptually support up to four live input and output registers
or memory locations. To simplify the register dependence
logic, the return value is limited to a single dependent register
in our current implementation.

C. Offload Flow

Figure 4 shows the general offload flow for executing the
nucd instruction. Once the nucd instruction and all of its
information is decoded, the micro-architecture triggers the
offload process. The host core first invokes delegation of
the ROI to the accelerator by transferring the context to the
accelerator. Once it is sent, the host core continues fetching
and executing the instructions following the NUCD sequence
(bar). At this point, the accelerator and host core can operate
in parallel. During acceleration, standard sequential program
consistency is maintained through dependency checks in the
NUCD microarchitecture. This allows host and accelerator to
execute concurrently as long as no dependencies dictated by
sequential program semantics are violated. Finally, when the
accelerator finishes the offloaded task and returns, the nucd
instruction is finally retired and the offload completes.

D. Multi-Task Offload

Note that with this support for concurrent execution with the
accelerator, the host can encounter multiple nucd instructions
in the stream and hence can offload several concurrent in-
flight NUCD tasks, as shown for the example of a parallelized
loop in Figure 2. The outer loop in the figure spawns four
NUCD tasks operating independently on the regions specified
by the inner loop. As discussed in the previous section, after
launching the first task in the first loop iteration, the host
core will continue executing instructions and additional loop
iterations. Since iterations are independent, this will result in
all four tasks to be successively launched and offloaded such
that they can execute concurrently. We will explain how we
enhance the NUCD micro-architecture to maintain consistency
among in-flight tasks in the following section.

IV. THE NUCD MICRO-ARCHITECTURE

We describe the NUCD micro-architecture extensions in
this section. At its core, NUCD extends the standard out-of-
order (OoO) micro-architecture to support a driverless offload
process where all procedures are handled by the hardware.

Fig. 5. NUCD system architecture.

Moreover, the extended micro-architecture also enables NUCD
to maintain standard sequential program semantics during
acceleration. OoO execution between the region of interest and
the host core is made possible by integrating NUCD support
into the host core’s existing dependency tracking mechanisms.

Figure 5 demonstrates the NUCD system architecture.
NUCD extensions are marked in blue color. A standard OoO
architecture is extended with an offload engine for accelerator
invocation, and dependency and retirement tracking integrated
into the existing host core load-store queue (LSQ) and reorder
buffer (ROB) structures. The offload engine is responsible
for handling the accelerator invocation and context transfer
process once the nucd instruction is decoded. The LSQ and
ROB handle dependency tracking and retirement on the return
path back from the accelerator while allowing for out-of-order
execution between offloaded tasks and the host core. Further
details of the offload process and relevant components will be
described in the following sections.

A. Accelerator Invocation and Context Transfer

Once a nucd instruction is decoded, the host core prepares
the accelerator context and performs the context transfer to
the accelerator device. All instructions prior to the nucd
instruction are retired before the nucd instruction is issued,
effectively creating a sequential barrier. This guarantees that
any dependent input registers for the NUCD offload region are
ready and have the latest architectural value before the offload
begins. Moreover, to preserve sequential memory consistency,
the host core flushes any modified lines needed for NUCD
execution to memory (i.e., from memory ranges specified
through the instruction). This guarantees that the latest data
is resident in memory when an accelerator core reads from
locations that have been modified but not written to memory
prior to offload.

Based on the register/memory information encoded in the
nucd instruction, the host core then further arranges the
context transfer by assembling a packet consisting of necessary
information for the accelerator to execute the ROI. This
includes the program counter of the first and last instruction
in the region of interest as well as values of all needed live
input registers. Once the packet is created, it will be sent to
the target accelerators work queue. After the context transfer
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Fig. 6. Extended host core architecture for invocation and context transfer.

completes, the program counter of the host core is set to the
instruction following the NUCD sequence.

Figure 6 shows the required extension on the host core
architecture to support NUCD invocation and context transfer.
A standard OoO core pipeline is enhanced with two neces-
sary components for hardware-offloading purposes: a Packet
Generator and a NUCD Scheduler. The Packet Generator
obtains signals from the decode stage that identify if a nucd
instruction is in-flight. The front-end of the core is stalled until
the context creation and context transfer is completed. In the
beginning of the offload process, the Input-Load Sequencer
issues a sequence of operations to read relevant registers such
as the program counter identifying the beginning of the region
of interest and live input registers using encoded information
from the nucd instruction. Once the relevant information is
collected from the register file, the Packet Producer assembles
the packets for accelerator offload. Afterwards, NUCD Sched-
uler takes the packets and coalesces them if necessary. When
the coalesced packet is ready, the Packet Sender selects a target
from the pool of available accelerators and offloads the final
packets to the accelerator’s memory-mapped work queue.

The offload engine also handles dependency checks to main-
tain sequential consistency among multiple in-flight nucd
instructions, i.e. multiple concurrent task offloads. In general,
different NUCD tasks can proceed concurrently if they are
independent, i.e. if their input and output data regions do not
overlap, or if there is only an overlap in their input regions.
In all other cases, i.e. if there is an overlap and hence data
dependency or anti-dependency between an output region of
one task and an input or output region of another task, the
younger task is blocked and not allowed to proceed. The
NUCD scheduler in the offload engine can be equipped with a
dependency table that tracks input and output region dependen-
cies among in-flight NUCD tasks. Alternatively, the memory
consistency tracking logic in the load-store queue (LSQ) can
be extended to provide task dependency information to the
NUCD scheduler. In either case, with such information, the
scheduler can delay any task offloads that violate memory
consistency until any older dependent task completes.

The packet generator can be seen as a small-entry in-
struction/data queue for a maximum of four dependent input
registers and context data. Moreover, the NUCD scheduler
can be designed as a write buffer consisting of few cacheline
entries for the context packet, and additional control logic for
a coalescer. Such capabilities in general already exist in a stan-

dard LSQ design. Thus, the area overhead of the offload engine
is similar to that of a conventional LSQ design. Moreover, the
main operations performed by the offload engine are majorly
register file reads and issuing memory requests. They can run
in parallel to the main pipeline and are not on the critical path.

B. Accelerator Execution and Address Translation

Once the context packet reaches the accelerator’s work
queue, the accelerator loads the context and starts execution
of offloaded code. During execution, the accelerator accesses
conventional user-space virtual addresses. As such, translation
faults can potentially occur during the execution. Any accel-
erators that need to interact with a virtual memory system
via an input/output memory management unit (IOMMU) often
can only efficiently run relatively regular applications [13],
[14], [15], which are the opposite of the types of applications
that benefit from near-memory acceleration. In fact, translation
overheads for accelerators can degrade performance by up
to 50% [16]. Hence, low-overhead translation mechanism in
accelerator devices, especially near-memory ones, are a critical
component for performance.

The NUCD SA utilizes a simplified mechanism to mitigate
overhead for address translation and memory management
on the accelerator side. User-space virtual addresses accessed
by offload code are allocated to a physically contiguous
memory region by the OS. Translation from virtual to physical
addresses on the accelerator core is accomplished using the
physical base address of each set of contiguous pages (often
termed range-based translation [17]). If a page is not loaded
in memory, the fault is taken in the host core, freeing the
accelerator from having to tolerate memory page faults. In the
NUCD SA, the OS memory/slab allocator is modified to allo-
cate virtual ranges that are also contiguous in physical space,
which is a common existing approach for many networking
and accelerator applications and supported by the Linux kernel
allocator kmalloc by default [18]. A different design with the
ability to handle non-contiguous physical address spaces can
also be provided. However, this requires virtual-to-physical
translation support and overhead in NUCD devices.

C. Accelerator Retirement and Sequential Consistency

While the accelerator executes the ROI, from the host core’s
perspective, the nucd instruction continues to execute and
retires only when the ROI completes on the accelerator. This
enables the host core to resume execution of the following
instructions past the NUCD sequence. Once execution of the
ROI on the accelerator is done, a completion signal is sent
to the core from the accelerator devices. Moreover, if the
acceleration produces an output, the value of the corresponding
accelerator register is transferred back to the host core along
with the completion signal. The host core then retires the
nucd instruction and the entire offload process completes.

To maintain sequential program semantics during concurrent
accelerator and host executions, the NUCD SA uses the
support of existing out-of-order host core mechanisms for
consistency management, namely scoreboarding and the load-
store-queue (LSQ) for tracking of read-after-write (RAW)
dependencies, and the Reorder Buffer (ROB) for handling of
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write-after-write (WAW), and write-after-read (WAR) output,
and anti-dependencies. We explain how different dependency
tracking and sequential consistency management is supported
by scoreboarding, LSQ, and ROB in the following subsections.

1) Scoreboarding: For consistency tracking of RAW de-
pendencies between output registers produced by the offloaded
task accessed by any following instructions executed on the
host core, NUCD makes use of the standard scoreboarding
mechanism. Any instructions past the NUCD sequence that
are dependent on the output register of the offloaded task will
be stalled in the issue stage until acceleration finishes.

2) Dependency Tracking with LSQ: The LSQ further tracks
RAW dependencies between any subsequent memory load
instructions dependent on the acceleration results. Any reads
originating from the host core to NUCD output memory
locations that are potentially written by the offloaded task are
blocked by the LSQ while independent reads can progress
to the issue stage normally. This is achieved by tracking the
address range of the output region to which a NUCD task
is writing results. The LSQ is augmented to store the base
address and number of consecutive pages that are required by
the NUCD offload task. Then, every load from the host during
acceleration will be checked against the NUCD task’s output
region to identify whether a RAW dependency exists. In case
of a dependency, the LSQ blocks the instruction and schedules
it only once the acceleration completes. Any independent
load/store instructions can progress without waiting for the
NUCD task to retire. This mechanism maintains memory
dependency-tracking between the accelerators and the host.

3) Sequential Retirement with ROB: Finally, the ROB
ensures that instruction retirement and hence committing of
data to registers and memory follows the program order
to guarantee sequential consistency of memory and register
writes and thus avoid any WAW and WAR hazards between the
host CPU and accelerator. While any younger and independent
instructions after the nucd sequence can be scheduled to
issue, their retirement in the ROB has to wait until the
acceleration finishes execution. Once the NUCD kernel has
finished, a signal is sent back to the ROB to indicate that the
operation completed or threw an exception. If an exception
is thrown, the operation is handled based on the offset from
the NUCD program counter. If no exception has occurred,
the return register is committed as the ROB head reaches the
nucd instruction. Note that the near-memory accelerator will
have committed all its memory data by the time it finishes
execution and notifies the ROB. The nucd instruction is then
retired, deallocated and the operation completes.

An alternative design choice can opt for a less conservative
synchronization mechanism. It is possible to speculatively let
the nucd instruction commit from the ROB such that it will
not block any younger instructions from committing. However,
this requires a checkpoint mechanism to detect violations
and safely roll back the architectural state. Prior work has
used eviction timing of any modified lines under speculative
execution to detect violations and roll back accordingly [19].
In our work, we do opt for the ROB as synchronization point
due to its simpler design.

Fig. 7. LSQ and ROB snapshot of the host core during acceleration. An
instruction marked as red in the LSQ is blocked until NUCD acceleration
completes to satisfy dependencies. Other instructions can execute subject to
sequential ROB retirement.

4) Putting It All Together: Figure 7 illustrates an example
of LSQ and ROB operation during offload execution. Once
decoded, an entry is allocated in the ROB for the nucd
instruction, similar to standard decoding and ROB allocation
in the OoO pipeline. In addition, an entry for the nucd
instruction is allocated in the LSQ. It contains information
about the memory locations to which the NUCD task writes.

The offload process then begins as described in Section
IV-A. Once the context transfer completes, the accelerator
starts execution of the ROI. At the same time, the host
core program counter will branch to the code following the
offloaded region (bar, with respect to Figure 4). The host core
then decodes instructions and allocates ROB and LSQ entries
from there. On encountering a load instruction ldr x11,
[x10] that reads a value from the address region dependent
on the NUCD task, the LSQ will block the execution of
the load and wait until the NUCD-offloaded task completes
(marked in red), therefore avoiding memory consistency vi-
olations. By contrast, the following instruction ldr x12,
addr_B reads a value from a memory location addr_B,
and since there is no read-after-write dependency between the
instruction and the NUCD-offloaded task, the LSQ can pro-
ceed and issue the instruction. Moreover, while the following
ldr x13, [x12] does not depend on the NUCD-offloaded
task, it has a read-after-write dependency with the previous
instruction (a.k.a ldr x12, addr_B). Thus, it will execute
once the preceeding instruction completes. Afterwards, the
host core performs a store to addr_B, which is independent
from the NUCD task. As such, the LSQ will go ahead and
issue it, subject to sequential retirement in the ROB. The
process repeats until there are no more instructions or ROB
or LSQ become full.

On task completion, the ROB ensures that retirement from
the accelerator to the host core follows sequential order. As
shown in Figure 7, while any younger instructions after the
nucd call are able to issue and execute, their retirement in the
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ROB has to wait until the acceleration finishes and the nucd
instruction retires.

All in all, together with scoreboarding and LSQ tracking,
retirement and committing of instructions in program order in
the ROB enable the NUCD architecture to maintain sequential
memory and register consistency while overlapping accelerator
with host core executions. This guarantees standard sequential
program semantics during acceleration while exploiting any
additional concurrency available on the host core.

V. EXPERIMENTS AND RESULTS

We evaluate the NUCD system architecture using the gem5
full-system simulator [11]. A 64-bit Arm architecture was used
as a baseline in a configuration to emulate an out-of-order
host core with similar characteristics to an Arm A57 [20].
In-order 64-bit Arm cores (with similar characteristics to an
Arm A53 [21]) in configurations with 4, 8, 16, and 32 cores
are employed as near-memory accelerators on a cross-bar
network interposed between the main coherent network and
the HBM1 memory controller (with 8 primary channels). This
configuration enables the memory controller to use a standard
interleaving pattern while allowing the accelerator and host
cores to access the memory fabric at full bandwidth. We use
HBM1 as the main memory in a standard configuration [22].
We compare accelerations under NUCD offload with a driver-
based mechanism that uses traditional memory-mapped device
actuation along with standard doorbell interaction mechanisms
following the driver implementation described in [7]. We
model NUCD offload engine and context transfer overhead
assuming standard register file and memory transaction costs.
All simulation parameters are summarized in Table I.

We use several fine-grain benchmarks that represent key
data-intensive kernels widely used across applications. Table II
summarizes the parameters, inputs, and offloaded ROI char-
acteristics of the benchmarks. Meabo [23] is a multi-phased
memory-intensive benchmark. Phase2 (meabo2) and Phase5
(meabo5) are selected for the evaluation. Both phases access
memory using a random indirection vector. They employ one
and two indirection vectors, respectively. Ebox [24] is an
extended box filtering approximation of Gaussian convolution.
Stride [25] is a benchmark stressing memory systems with
several light compute kernels. SPATTER [26] is a benchmark
for timing scatter/- gather kernels. Finally, SpMV [27] is
the sparse matrix-vector multiplication in CSR format. We
manually partition each ROI call into as many tasks as the
number of accelerators, launching one task to one accelerator.

A. Speedup

Figure 8 shows the system-wide speedup across different
applications with 4, 8 or 16 accelerator cores. We compare the
original host-core execution to execution with different near-
memory accelerators under driver-based vs. NUCD offload.
The figure also indicates the ideal theoretical speedup that
can be achieved assuming zero offload overhead for each
accelerator configuration.

Results show that accelerations with NUCD offload can
yield up to 3.6x speedup across different applications and
accelerator configurations, averaging 21%-128% performance

TABLE I
SUMMARY OF SIMULATION PARAMETERS.

Host CPUs Near-Memory Accelerators
ISA ARMv8 (64-bit) ARMv8 (64-bit)

Core Configuration 1 OoO core [20] 4-32 in-order cores [21]
L1 I/D Cache 32 KB, 2-cycle 32 KB, 2-cycle

L2 Cache 1 MB, 12-cycle N/A
HBM Config HBM Gen1 [22]

HBM Peak-BW 128 GB/s

TABLE II
WORKLOAD PARAMETERS.

Total ROI
Benchmark Option Input Dyn. Inst. Dyn. Inst. Calls
Meabo2 [23] Phase2 8,000 elements 73,235 73,100 1
Meabo5 [23] Phase5 8,000 elements 89,234 89,102 1

Ebox [24] Stride 8 8,000 elements 392,909 392,701 1
Stride [25] Distance 8 4,096 elements 1,506,743 40,129 8
Spatter [26] Distance 8 8,000 elements 83,770 83,450 1
SpMV [27] N/A circuit 1 (D) 277,875 277,650 1

improvement over driver-based offload on 4-16 accelerator
cores. In all cases, NUCD speedups are equal or close to
the theoretically achievable maximum. Closer observation of
meabo2, meabo5, stride, and spatter shows that NUCD-based
offload can unlock performance benefits that do not exist with
device driver offload. While driver-based offload results in
performance slowdown compared to original host execution
even when using 16 accelerator cores, the NUCD mechanism
can achieve 1.05x-2.6x speedup for such configurations. Note
that even with ideal offload, no performance benefits are
observed from offloading to 4 devices across most applications
due to the limited compute and reduced bandwidth available
with fewer of the simpler accelerator cores. In case of spmv,
significant slowdowns are seen that do no improve even when
the number of accelerator cores increases. This is due to the
data access behavior and unbalanced work distribution in spmv
contributing to poor performance on the in-order accelerator
cores and limited task-level parallelism among cores.

B. Offload Overhead

In general, driver offload of a single task to one accelerator
core can take up to 40k cycles; predominantly stemming
from the overhead of memory-mapping accelerator to the
user program. This overhead grows proportionally with the
number of tasks and cores. By contrast, in the NUCD SA,
such overhead is minimized by delegating much of the process
to the hardware, requiring only 150-200 cycles per offload
with the configuration given in Table I. Figure 9 illustrates
the fraction of execution time spent on offload for different
applications under different offload mechanisms. Driver-based
offload can occupy up to 70% of total execution time, as
seen in spatter and ebox. Driver overhead averages 18%, 35%,
and 47% for 4, 8, and 16 accelerator cores respectively. By
contrast, the hardware-assisted NUCD offload mechanism is
able to restrict offload overhead to less than 4% of the total
execution time. This in turn results in significantly greater
system-wide speedup as shown in Figure 8. Note that due
to the slowdown experienced under offloading and the longer
runtime of the benchmarks, offload overhead occupies only a
smaller fraction of total execution time in spmv and stride. In
general, NUCD offload benefits fine-grain tasks the most. In
coarse-grained tasks, higher offloading costs are more easily
hidden by the longer overall execution times.
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Fig. 8. Speedup under different offload mechanisms with varying accelerators.

Fig. 9. Fraction of execution time spent on offload.

C. Scaling

Figure 10 further shows the speedup scaling under driver-
based and NUCD acceleration as a function of up to 64
accelerator devices, normalized to the speedup with one accel-
erator core. We observe that meabo2 under NUCD acceleration
scales very well as the number of accelerator devices increases.
Acceleration under 8 and 16 cores results in 6.8x and 11x
speedup gain, respectively, while utilizing 32 cores improves
performance by 16x. By contrast, a driver-based offload of
meabo2 is unable to provide similar scalable performance
benefits. As shown in Figure 8, achievable speedups only
increase minimally when adding up to 16 cores. This is due
to increasing driver overhead outweighing the acceleration
benefits with additional cores. Acceleration with 32 cores in
turn results in 20% performance slowdown over execution
with 16 cores as acceleration benefits saturate while driver
overheads continue to increase proportionally.

On the other hand, stride experiences a relatively constant
speedup as the number of accelerator devices increases for
both NUCD and driver offload. While acceleration on four
cores in NUCD can boost performance by 1.9x, performance
benefits saturate when using 8 or more cores in both cases.
This is due to a limited number of instructions within the ROI
as shown in Table II, where the offload overhead occupies only
a smaller fraction of total execution time in stride.

Note that in all cases, without support for out-of-order task
offload in NUCD, only one task could be in flight at any
time, and speedups would be limited to a single accelerator.
Out-of-order execution allows independent NUCD tasks to be
simultaneously issued to achieve scalable performance.

VI. RELATED WORK

The increasing demand for energy-efficiency and high per-
formance has spurred a growing number of hardware acceler-
ators as essential parts of future computing systems. Several

Fig. 10. Performance scaling with number of accelerator cores on meabo2
and stride applications.

designs and optimizations have been proposed for accelerators
in various domains [1], [2], [3]. A number of prior works have
also shown the performance benefits and energy savings of
near-memory accelerators [4], [5], [6]. While the performance
gains demonstrated by these works are promising, they place
less emphasis on the efficiency of integrating and interfacing
such accelerators with the host core.

In practice, several software and/or hardware extensions are
required to integrate an accelerator into a system architec-
ture. Hardware optimizations to integrate accelerators typically
begin with a mechanism to communicate “jobs” between a
host/master and the endpoint device. This is often in the form
of a ring buffer or other form of synchronized communication
(e.g., VIRTIO [28]). Our mechanism replaces the ring-buffer,
however, it does not replace virtualization standards such as
SR-IOV (single-root IO Virtualization [29]), our mechanism
works with these.

Several software approaches exist in literature that at-
tempt to optimize various aspects of the CPU-accelerator
runtime/system software interface. Gdev [9] allows GPUs to
access main system memory directly and has been shown to be
beneficial for low-latency applications. PTask [10] provides an
OS abstraction for GPU computing resource and data transfer
management. It presents a dataflow programming model that
exposes information to enable the OS kernel to better assist
with performance isolation and data movement coordination.
Finally, Pagoda [30] presents a runtime system that dynami-
cally manages GPU resources to improve utilization for narrow
kernels with limited parallelism where the actual time spent
executing (vs. offload overhead) is relatively low. While the
above approaches have demonstrated improvements in data
and resource management, they do not address optimization
of the actual offload process.

Several hardware mechanisms have been proposed to mit-
igate accelerator offload costs. Lustig et.al. [31] present fine-
grained host CPU-accelerator synchronization. Using full-
empty bits to track data transfer completion, the accelerator
can process data as soon as it is ready without waiting for
full offload completion. While this can benefit by amortizing
data transfers during offload and kernel computation, the
offload process itself is still performed by the runtime soft-
ware. Other mechanisms such as AMD’s extended task queue
mechanism [32] and Arm’s Revere System Architecture [33]
aim to reduce the overheads of interacting with device work
queues. However, the actual offload overhead itself is not
fundamentally reduced. Other approaches enhance the ISA to
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support fine-grain accelerator offload through the host core [4],
[34], [35]. However, they target instruction-level offloading
and thus are not able to support light-weight tasks that consist
of instruction streams larger and more complex than just a
simple arithmetic operation.

In summary, existing works fall into either traditional
driver-centric offload, hardware-based offloading targeted at
instruction-level granularity, or hardware-software mecha-
nisms to accelerate work queues. Driver-based approaches
tend to suffer from the non-trivial latency caused by the
runtime software and system overhead that can limit the benefit
of offload for lightweight tasks. Existing microarchitecture-
driven mechanisms are limited to instruction-level offload,
and are typically unable to handle lightweight tasks. Lastly,
mechanisms that focus solely on acceleration of the work
queue tend to reduce the overhead of initiating an accelerator,
but do very little for the core-side invocation and targeting of
that accelerator.

VII. SUMMARY AND CONCLUSIONS

We proposed the proposed NUCD system architecture as
a general and hardware-assisted accelerator offload mecha-
nism that provides low-latency and low-overhead offload to
accelerators. The NUCD system architecture incorporates a
task dispatch mechanism that is tightly coupled with the core
micro-architecture to perform context transfer, actuation, and
synchronization integrated with out-of-order execution. This
dispatch mechanism includes features that ensure memory
consistency for accelerators outside of the coherence network
using a common interface. The NUCD architecture allows
maintaining standard sequential program semantics under con-
current acceleration coordinated in hardware from a main core.
Results show that the NUCD architecture can improve perfor-
mance by 21%-128% across different applications compared
to traditional driver-based offload.
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