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Received 1 October 2007; Revised 4 March 2008; Accepted 10 June 2008

Recommended by Christoph Grimm

The constantly growing complexity of embedded systems is a challenge that drives the development of novel design automation
techniques. C-based system-level design addresses the complexity challenge by raising the level of abstraction and integrating
the design processes for the heterogeneous system components. In this article, we present a comprehensive design framework,
the system-on-chip environment (SCE) which is based on the influential SpecC language and methodology. SCE implements
a top-down system design flow based on a specify-explore-refine paradigm with support for heterogeneous target platforms
consisting of custom hardware components, embedded software processors, dedicated IP blocks, and complex communication
bus architectures. Starting from an abstract specification of the desired system, models at various levels of abstraction are
automatically generated through successive step-wise refinement, resulting in a pin-and cycle-accurate system implementation.
The seamless integration of automatic model generation, estimation, and verification tools enables rapid design space exploration
and efficient MPSoC implementation. Using a large set of industrial-strength examples with a wide range of target architectures,
our experimental results demonstrate the effectiveness of our framework and show significant productivity gains in design time.
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1. INTRODUCTION

The rising complexity of embedded systems challenges the
established design techniques and processes. Novel, nontra-
ditional design approaches become necessary in order to
keep up with the increasing demands of higher productivity.

A well-known technique to address the system design
challenge is system-level design which raises the level of
abstraction, exploits the reuse of intellectual property (IP),
and integrates the traditionally separate design processes of
the heterogeneous system components. By combining the
design flows of hardware units, software processors, third-
party IPs, and the interconnecting bus architectures, system-
level design emphasizes the system perspective of the overall
design task and enables design space exploration across
domains. However, successful system design depends on
efficient design automation techniques and, in particular,
effective tool support.

In this article, we describe the system-on-chip environ-
ment (SCE), a system-level design framework based on the

SpecC language and methodology [1]. SCE realizes a top-
down refinement-based system design flow with support of
heterogeneous target platforms consisting of custom hard-
ware components, embedded software processors, dedicated
IP blocks, and complex communication bus architectures.

1.1. SCE methodology

Figure 1 shows the design flow with SCE in an overview.
Starting with an abstract specification model in the system
design phase, the designer automatically generates trans-
action level models (TLM) of the design, successively at
lower levels of abstraction. Based on component models
from the system database and design decisions made by the
user, the generated models carry an increasing amount of
implementation details.

SCE follows a specify-explore-refine methodology [2]. The
design process starts from a model specifying the design
functionality (specify). At each following step, the designer
first explores the design space (explore) and makes the
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Figure 1: System-on-chip environment (SCE) design flow.

necessary design decisions. SCE then automatically generates
a new model by integrating the decisions into the previous
model (refine).

After the system design phase is complete, the hard-
ware and software components in the system model are
implemented by the hardware and software synthesis phases,
respectively. As a combined result, a pin- and cycle-accurate
implementation model is generated. Also, binary images
for the software processors, as well as register-transfer level
(RTL) descriptions in Verilog for the hardware blocks, are
created for further synthesis and manufacturing of the
intended Multiprocessor system-on-chip (MPSoC).

Three design models used in the SCE design flow
are shown in more detail in Figure 2. In these and later
figures that describe design models, we use the graphical
notation introduced with the SpecC language [1]. In general,
rectangular boxes represent components, and interconnec-
tions are indicated by lines (wires) and arrows (busses).
Encapsulated computational blocks, called behaviors, are
shown as rectangular boxes with round corners, whereas
high-level communication is indicated by channels (ellipses)
and interfaces (half circles).

Figure 2(a) depicts a simple generic specification model.
The model consists of a hierarchy of five behaviors and
four communication channels. Except for the system func-
tionality, this model is free of any implementation details.
During the system design phase, it will be mapped to a
platform architecture (see Section 3.1) and single-threaded
processing elements (PEs) will be scheduled (Section 3.2).
Communication elements (CEs), such as bus bridges and
transducers, and system busses will be added to the model
as well (Sections 3.3 and 3.4).

As a result of each of these model refinement steps, a
TLM is generated, as shown in Figure 2(b). Depending on
the number of implementation decisions taken, the TLM
accurately reflects the number and type of PEs in the
architecture, the mapping of behaviors to the PEs, and the
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Figure 2: Generic SCE design models.

mapping of channels to the system busses and CEs. Note
that the communication in this model is still at the abstract
transaction level.

After hardware and software synthesis (see Sections 3.5
and 3.6, resp.), a cycle-accurate implementation model is
generated, as illustrated in Figure 2(c). In this model, embed-
ded software is represented in detailed layers, including
the real-time operating system (RTOS) and the hardware
abstraction layer (HAL). Custom hardware blocks, on the
other hand, are represented accurately by RTL finite state
machine (FSM) models. Finally, system communication is
also refined down to a pin- and cycle-accurate level.

1.2. Related work

Traditionally, system design is dominated by simulation-
centric approaches with horizontal integration of models
at specific levels of abstraction. Approaches range from the
cosimulation of different low-level languages [3–5] to the
combination of heterogeneous models of computation in a
common simulation environment [6]. In between, C-based
system-level design languages (SLDLs), such as SystemC [7]
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and Handel-C [8], emerged as vehicles for transaction-level
modeling (TLM) [9]. Most cases, however, are limited to
simulation only and lack vertical integration with synthesis
flows that provide a path to implementation.

The first attempts at providing system design envi-
ronments were approaches for hardware/software codesign.
Examples of such environments include COSYMA [10],
COSMOS [11], and POLIS [12]. These approaches, however,
are based on architecture templates consisting of a single
microcontroller assisted by a custom hardware coprocessor,
and are thus limited to narrow target architectures.

More recently, design environments emerged that pro-
vide support for more complex multiprocessor systems.
The OCAPI system [13, 14] is based on an object-oriented
modeling of designs using a C++ class library and focuses
on reconfigurable hardware devices (FPGAs). The OSSS
methodology [15] defines an automated system design flow
from a cycle-accurate specification written in an object-
oriented variant of SystemC. Supporting architecture explo-
ration and automated refinement via intermediate design
models, OSSS feeds into the FOSSY synthesis tool for
implementation in hardware and software.

Around the TLM concept, several SystemC-based
approaches exist that deal with assembly, validation and
to some extent automatic generation of communication
[16–20]. Metropolis [21, 22] is a modeling and simulation
environment based on the platform-based design paradigm.
The key idea is to separate function, architecture, and model
of computation into separate models. Although Metropolis
allows cosimulation of heterogenous PEs as well as different
models of computation, a refinement or verification flow
between different abstraction levels has not emerged. None
of the above frameworks provides a comprehensive, auto-
mated approach for the design of complete MPSoCs from
abstract specification down to final implementation.

SCE was built on experiences obtained from its predeces-
sor, SpecSyn [2]. While SpecSyn was based on the SpecCharts
language, an extension of VHDL, SCE is based on SpecC,
which extends ANSI-C for hardware and system modeling.

With respect to our previous publications (previous pub-
lications focus on point-tools within the SCE environment
and are referenced where applicable), this article is the first
comprehensive, cohesive, and complete description of the
SCE framework. In other words, for the first time we describe
the entire SpecC methodology as implemented by a real
working environment. As such, this article focuses on the
integration of the tools (including scripting facilities, file
formats, and annotations) that realize an efficient top-down
system design flow, all the way from an abstract system spec-
ification down to a pin- and cycle-accurate implementation.
We also list the design decisions taken at each step and thus
provide a complete picture of the input the system designer
needs to provide based on his application knowledge and
design experience. We also demonstrate the effectiveness of
the SCE framework and the complete design flow using the
combined results of six design experiments using real-world
examples. Furthermore, this article describes for the first
time the integration of verification tools into the design flow
and framework.
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Figure 3: SCE software architecture.

2. SCE ARCHITECTURE

SCE is based on the separation of design tasks into two
distinct steps: decision making and model refinement. Model
refinement takes design decisions and generates a new model
of the design reflecting and implementing the decisions.

In SCE, model refinement is automated. Decisions,
on the other hand, can be entered manually or through
a tool box of automated synthesis algorithms. Together,
SCE supports an interactive and automated system design
process. Automatic model generation removes the need for
error-prone and tedious model rewriting. Instead, designers
can focus on design exploration and decision making.

Figure 3 shows the generic software architecture for each
task in the SCE design and refinement flow. In each step,
design decisions are entered by the user through a graphical
user interface (GUI), via a command-line scripting and shell
interface, or with the help of automated synthesis plugins
implementing optimizing algorithms. Based on the design
decisions, a refinement process generates a new design model
from the input model automatically.

Overall, the SCE framework is formed by the combi-
nation of point tools. These tools exchange information
through command line interfaces and design models. In
general, all tools operate on a given design model. Design
decisions, profiling data, and metainformation about the
design are stored as annotations attached to the correspond-
ing objects in the design and database models. All models
and databases in SCE are described and captured in the
form of SpecC internal representation (SIR) files. Using the
SpecC compiler (scc), SCE models and databases can be
imported from and exported into source files in standard
SpecC language format at any time.

2.1. Graphical user interface

The main interface between the designer and the tools is the
sce GUI [23] which provides various displays and dialogs
for browsing of design models and databases, interactive
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decision entry, and graphical analysis of profiling and
estimation results. Furthermore, it includes menus and tool
bars to trigger simulation, profiling, refinement, synthesis,
and verification actions. For each action, specific command-
line tools are called and executed as needed where the GUI
supplies the necessary parameters, captures the output and
handles (normal or abnormal) results.

In each session, multiple candidate designs and models
can be explored and generated. Information about design
models and their relationships, including project-specific
compiler and simulator parameters, are tracked by the
GUI and can be stored in project files in a custom XML
format, allowing for persistent storage, documentation, and
exchange of metainformation about the exploration process.

2.2. Simulation and profiling

All design models in the SCE flow are executable for vali-
dation through simulation. Using the SpecC compiler and
simulator, models can be compiled and executed at any time.
SCE also includes profiling tools to obtain feedback about
design quality metrics. Based on a combination of static and
dynamic analysis, a retargetable profiler (scprof) provides
a variety of metrics across various levels of abstraction
[24]. Initial dynamic profiling derives design characteristics
through simulation of the input model. The system designer
chooses a set of target PEs, CEs, and busses from the
database, and the tool then combines the obtained profiles
with the characteristics of the selected components. Thus,
SCE profiling is retargetable for static estimation of complete
system designs in linear time without the need for time
consuming resimulation or reprofiling.

The profiling results can also be back-annotated into the
output model through refinement. By simulating the refined
model, accurate feedback about implementation effects can
then be obtained before entering the next design stage.

Since the system is only simulated once during the
exploration process, the approach is fast yet accurate enough
to make high-level decisions, since both static and dynamic
effects are captured. Furthermore, the profiler supports
multilevel, multimetric estimation by providing relevant
design quality metrics for each stage of the design process.
Therefore, profiling guides the user in the design process and
enables rapid and early design space exploration.

2.3. Verification

SCE also integrates a formal verification tool scver. Our
equivalence verification technology is based on model algebra
[25], which is a formalism for symbolic representation and
transformation of system level models. The formalism itself
consists of a set of objects and composition rules. The objects
are behaviors, synchronization channels, variables, and
ports. The composition rules for control flow, blocking, and
nonblocking communication, and hierarchy allow creation
of formal models. Functionality preserving transformation
rules are also defined on model algebraic expressions. Each
of these transformation rules are proven sound with respect
to a trace-based notion of functional equivalence.

The incorporation of model algebra-based verification
in SCE follows the refinement flow. Well-formed models in
SpecC can easily be translated to respective model algebraic
expressions. The system designer simply selects an original
and a refined model and invokes the verification tool. scver
then converts the models and applies the transformation
rules to derive the refined model from the original model.
The two models are equivalent by virtue of the soundness
of the transformation rules. The original model is then
checked for isomorphism against the derived model and
the differences, if any, are reported. It must be noted that
the number and order of transformation rules used for the
model derivation step depend on the type of refinement.
Since the key concept in SCE is the well-defined semantics
of models at different abstraction levels, the order of
transformation rules can be easily established. Therefore,
equivalence verification becomes not only tractable, but
straightforward.

2.4. Databases

In the SCE design flow, the system is gradually refined
using system components from a set of databases [26].
Specifically, SCE includes databases for processing elements
(PEs), communication elements (CEs), operating system
models, bus or other communication protocols, RTL units
and software components. The database components are
described as SpecC objects (behaviors or channels). The
SpecC hierarchy for a component object in the database
defines its structure and functionality for simulation and
synthesis. In addition, metadata, such as attributes, param-
eters, and general information, is stored in the form of
annotations attached to the components.

2.5. Scripting interface

SCE supports scripting of the complete environment from
the command line without the need for the GUI. For
scripting purposes, a GUI-less command shell, scsh, of SCE
is available. The SCE shell is based on the same libraries as
the SCE GUI (not including the GUI layer itself) and offers
interactive command-prompt based- or automatic script-
based execution.

The SCE shell is based on an embedded Python inter-
preter that is extended with an API for low-level access to
SCE core functionality and internals. For user-level scripting,
a complete set of high-level tools on top of the SCE
shell are available. Provided scripts include command-line
utilities for component allocation (sce allocate), map-
ping/partitioning (sce map), scheduling (sce schedule),
connectivity definition (sce connect), component import
(sce import), and project handling (sce project). These
scripts provide a convenient command-line interface for all
SCE high-level functionality and decision entry. Together
with command-line interfaces to refinement tools and the
compiler, a complete scripting of the SCE design flow,
through shell scripts or via Makefiles, is available.
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Figure 4: Refinement-based tool flow in SCE.

3. SCE DESIGN FLOW

Figure 4 shows the refinement-based tool flow in SCE
from the initial abstract specification down to the final
implementation model. In particular, the SCE flow consists
of six specific tools which we will describe in the following
sections.

3.1. Architecture exploration

The first step in the SCE design flow, architecture explo-
ration, defines the target platform and, under a set of
design constraints, maps the computational parts of the
specification model onto that platform. The target archi-
tecture consists of a set of PEs, that is, software processors,
custom hardware blocks, and memories. These components
are selected by the system designer as part of the decision
making. In particular, the designer selects the type and the
number of PEs, CEs, and communication busses.

Architecture exploration consists of two tasks: PE allo-
cation and partitioning. PE allocation defines the target
architecture by selecting system components (software and
hardware processors, memories) from the PE database.

Partitioning then maps behaviors and variables to the
allocated PEs and memories, respectively.

Following the design decisions of PE allocation and
partitioning, the SCE architecture refinement tool scar
inserts an additional layer of hierarchy representing the
PEs into the model and groups behaviors and variables
under these according to the partitioning. Next, it refines
given complex channels into a client-server implementation
using message-passing communication between the PEs and
inserts necessary synchronization to properly preserve the
original execution semantics. Finally, scar automatically
generates the output architecture model [27].

3.2. Scheduling exploration

A key feature in the SCE design flow is the early evaluation
of different scheduling strategies for software processors
that are sequential and physically can only execute one
task at a time. To evaluate different static and dynamic
scheduling algorithms, such as round-robin or priority-
based scheduling, we utilize a high-level RTOS model on
each processor in the system [28]. Our abstract RTOS
model is written on top of the SpecC language and does
not require any specific language extensions. It supports
all the key concepts found in modern RTOS, including
task management, real-time scheduling, preemption, task
synchronization, and interrupt handling.

After the designer chooses the desired scheduling strat-
egy (e.g., round-robin, priority-based, or first-come-first-
served), the SCE scheduling refinement tool scos automat-
ically groups the given behaviors in the software PE into
tasks and inserts the RTOS model with the user-defined
scheduling strategy into the design model. scar then wraps
all primitives and events that can trigger scheduling, such
as task activation and termination, IPC synchronization
and communication, and timing wait statements so that
the inserted RTOS is called. It finally generates the refined
model that can then be simulated for accurate observation
and evaluation of dynamic scheduling behavior in the
multitasking system. Since our abstract RTOS model requires
only minimal overhead in simulation time, this approach
enables early and rapid design space exploration.

3.3. Network exploration

Network exploration defines the system communication
topology and maps the given communication channels onto
a network of busses and communication elements (CEs),
that is, bridges and transducers. For this, network refinement
inserts the required CEs from the database into the model
and implements the end-to-end communication over point-
to-point links between PEs and CEs [29].

In the input architecture model, PEs communicate via
abstract, typed end-to-end channels, and memory interfaces.
During network exploration, the user allocates the actual
communication media, bridges, and transducers for the sys-
tem busses and CEs, respectively. Furthermore, the designer
defines the connectivity of PE and CE ports to the busses,



6 EURASIP Journal on Embedded Systems

and maps architecture-level end-to-end channels onto the
allocated bus network.

Based on the network decisions by the designer, the
SCE network refinement tool scnr inserts and implements
the ISO/OSI presentation, network and transport layers,
which implement data conversion, packeting, and routing;
and acknowledgements, respectively. scnr then generates
the new network model such that it reflects the selected
network topology including typed end-to-end architecture
level communication over untyped point-to-point links
between the components in each network segment.

3.4. Communication synthesis

Next, the task of communication synthesis is to implement
the point-to-point logical links between stations over the
actual bus media, and to select and define the final pin- and
bit-accurate parameters of the communication architecture
under a set of constraints. Communication refinement then
inserts protocols and bus-functional component descrip-
tions from the bus and PE/CE databases, respectively, and
generates a refined communication model that implements
the communication links in each network segment over the
actual, shared bus protocol and bus wires. In addition to this
pin-accurate model (PAM), our communication refinement
also generates a fast-simulating TLM of the system, which
abstracts away the pin-level details of individual bus transac-
tions [29].

In the input network model, communication in each
network segment is described as a set of logical links.
During communication synthesis, the designer (through the
GUI, scripting or using synthesis plugins) defines the bus
parameters, such as address and interrupt assignments, for
each logical link over each bus. Based on these decisions, the
SCE communication refinement tool sccr inserts low-level
(transaction-level down to pin-accurate) models of busses
and components from the databases, and generates a new
communication model (PAM or TLM) of the design. In the
output model, PE and CE components are refined to imple-
ment the lower communication layers (link, stream, media
access, and protocol layer) for synchronization, addressing,
and media accesses over each bus interface. On top of bus
models from the bus database, the generated model hence
implements all system communication down to the level of
timing-accurate bus transactions (TLM), or cycle-accurate
events for sampling and driving of the bus wires (PAM).

3.5. RTL synthesis

The task of RTL synthesis is to generate structural RTL
from the behavioral description of the hardware components
in the design. Although the designer can freely choose
all behavioral synthesis parameters, including scheduling,
allocation, and binding decisions, the SCE RTL synthesis tool
scrtl supports automatic decision making through plugins.
The designer can choose an algorithm to apply to all or only
parts of their design. Critical parts of the design, on the other
hand, can be manually preassigned or postoptimized [30].

Both designers and algorithms can rely on a set of
estimates to aid them in the decision making. SCE includes
RTL-specific profiling and analysis tools that provide feed-
back about a variety of metrics including delay, power, and
variable lifetimes.

RTL synthesis in SCE takes full advantage of the design-
ers’ insight by allowing them to enter, modify, or override
their decisions at will. On the other hand, tedious and error-
prone tasks including code generation are automated.

3.6. Software synthesis

For implementing the software components in the sys-
tem model, SCE relies on a layer-based modeling of the
programmable processors and the software stack executing
on them. Our embedded processor model supports task
scheduling and interrupt handling.

Given scheduling priorities defined by the system
designer, the SCE software synthesis tool sc2c automatically
generates embedded software code for each processor from
the system model [31]. More specifically, we generate
efficient ANSI-C code from the SLDL code of the mapped
application, and compile and link it against the selected
RTOS. The resulting software binary can then be used for
cycle-accurate instruction-set simulation within the system
model, as well as for the final implementation.

4. EXPERIMENTS AND RESULTS

We have applied SCE to a large set of industrial-strength
examples. In the following, we will first demonstrate the
SCE design flow in detail as applied to a case study. Next,
we summarize our experiences with different examples and
show exploration results. Finally, we will present a set of
verification experiments.

4.1. Modeling experiment

In order to demonstrate the overall SCE design flow, we
have applied the flow to the example of a mobile phone
baseband platform. The specification model of the system
is shown in Figure 5. The design combines a JPEG encoder
for processing of digital pictures taken by a camera and
a voice encoder/decoder (vocoder) for speech processing
based on the mobile phone GSM standard. Both JPEG and
Vocoder processes are hierarchically composed of subbehav-
iors implementing the encoding and decoding algorithms
in nested and pipelined loops and communicating through
abstract message-passing channels. At the top level, a channel
Ctrl between the two processes is used to send control
messages from the JPEG encoder to the vocoder.

For the target platform (for space reasons, we do not
show the platform model separately; the model is almost
identical to Figure 6, with the exception that the OS layer
and OS channel are omitted), we decide to use two software
processors assisted by several hardware accelerators. For the
JPEG encoder, we select a Motorola Coldfire processor for the
main execution, assisted by a special IP component DCT IP
which performs the needed discrete cosine transformation
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(DCT) in hardware. We also choose a direct memory access
component DMA that receives pixel stripes from the camera
and puts them into a shared memory Mem. On the other
hand, we select a digital signal processor DSP to perform
the majority of the voice encoding and decoding tasks.
To reach the required performance, the DSP is assisted by
four hardware blocks dedicated to input and output of the
data streams, and one custom coprocessor in charge of
the codebook search, the most time-critical function in the
vocoder.

In the scheduled model obtained after architecture par-
titioning and scheduling (Figure 6), the ColdFire processor
runs the JPEG encoder in software assisted by the hardware

DCT IP. Since this processor only executes this one task, no
operating system is needed and the OS layer CF OS is empty.
On the other hand, the DSP performs two concurrent speech
encoding and decoding tasks. These tasks are dynamically
scheduled under the control of a priority-based operating
system model that sits in an additional OS layer DSP OS
around the DSP. The encoder on the DSP is assisted by
a custom hardware coprocessor (HW) for the codebook
search. Furthermore, four custom hardware I/O processors
perform buffering and framing of the vocoder speech and bit
streams.

Table 1 summarizes the design decisions made for imple-
menting the communication channels in the example. As a
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Table 1: Communication design parameters for baseband example.
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result of the network exploration, the network is partitioned
into one segment per subsystem with a transducer Tx
connecting the two segments (Figure 7). Individual point-
to-point logical links connect each pair of stations in the
resulting network model. Application channels are routed
statically over these links where the Ctrl channel spanning the
two subsystems is routed over two links via the intermediate
transducer.

During communication synthesis, all links within each
subsystem are implemented over a single shared medium.
In both cases, the native ColdFire and DSP processor busses
are selected as communication media. Within the segments,
unique bus addresses and interrupts for synchronization are

assigned to each link. On the ColdFire side, the memory
is assigned a range of addresses with a base address plus
offsets for each stored variable. On the DSP side, two of
the four available interrupts are shared among the four I/O
processors. In those cases, additional bus addresses for slave
polling are assigned to each link (base address plus one).
Finally, a bridge DCT Br is inserted to translate between the
DCT IP and ColdFire bus protocols.

As a result, SCE communication synthesis generates two
models, a fast-simulating TLM (Figure 8), and a pin-accurate
model (PAM, Figure 9) for further implementation. In the
TLM, link, stream, and media access layers are instantiated
inside the OS and hardware layers of each station. Inside the
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Figure 9: Baseband example: pin-accurate model (PAM).

processors, interrupt handlers that communicate with link
layer adapters through semaphores are created. Interrupt ser-
vice routines (ISR) together with models of programmable
interrupt controllers (PIC) model the processor’s interrupt
behavior and invoke the corresponding handlers when
triggered.

In the PAM, additionally the communication protocol
layers are instantiated. Components are connected via pins
and wires driven by the protocol layer adapters. On the
ColdFire side, an additional arbiter component regulates bus
accesses between the two masters, DMA BF and CF BF.

Table 2 summarizes the results for the example design.
Using the refinement tools, models of the example design
were automatically generated within seconds. A testbench
common to all models was created which exercises the design
by simultaneously encoding and decoding 163 frames of

speech on the vocoder side while performing JPEG encoding
of 30 pictures with 116 × 96 pixels. We created and refined
both models of the whole system and models of each
subsystem separately. Note that code sizes (lines of code,
LOC) in each case include the testbenches. Since testbench
code is shared, the size of the system model is less than the
sum of the subsystem model sizes. All models were simulated
on a 2.7 GHz Linux workstation using the QuickThreads
version of the SpecC simulator.

Figure 10 plots simulation times on a logarithmic scale,
that is, the graph shows that simulation times generally grow
exponentially with each new model at the next lower level of
abstraction. On the other hand, results of simulated overall
frame transcoding (back-to-back encoding and decoding)
and picture encoding delays in the vocoder and JPEG
encoder, respectively, are shown in Figure 11. As can be seen,



10 EURASIP Journal on Embedded Systems

Table 2: Modeling and simulation results for baseband example.

ColdFire subsystem DSP subsystem System

Model LOC Simul. time JPEG delay LOC Simul. time Vocoder delay LOC Simul. time

Specification 1,819 0.02 s 0.00 ms 9,736 1.31 s 0.00 ms 11,481 2.25 s

Architecture 2,779 0.03 s 9.66 ms 11,121 1.21 s 8.39 ms 13,866 2.56 s

Scheduled 3,098 0.02 s 22.63 ms 13,981 1.20 s 12.02 ms 17,020 2.00 s

Network 3,419 0.02 s 22.63 ms 14,319 1.22 s 12.02 ms 17,658 2.03 s

TLM 5,765 1.04 s 24.03 ms 15,668 27.4 s 13.00 ms 21,446 92.3 s

PAM 5,916 14.3 s 24.02 ms 15,746 34.8 s 13.00 ms 21,711 2,349 s

RTL-C 7,991 14.9 s 23.48 ms 23,661 147 s 12.88 ms 33,511 2,590 s
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Figure 10: Simulation speeds for the baseband example.
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Figure 11: Simulated delays in the baseband example.

with each new model, measured delays linearly converge
towards the final result.

Note that initial specification models are untimed and
hence do not provide any delay measurements at all.
Beginning with the architecture level, estimated execution

Table 3: Design examples and target architectures.

Examples
Buses

(masters→slaves)

JPEG A1 CF→HW

Vocoder
A1 DSP→HW

A2 DSP→HW1,HW2

A3 DSP→HW1,HW2,HW3

MP3float

A1 CF→HW1

A2
CF→HW1,HW2,HW3

HW1↔HW3

HW2↔HW3

A3
CF→HW1,HW2,HW3,HW4

HW1↔HW3↔HW5

HW2↔HW4↔HW5

MP3fix

A1 ARM→2 I/O

A2 ARM→2 I/O, LDCT, RDCT

A3
ARM→2 I/O, LDCT, RDCT

LDCT↔I/O

RDCT↔I/O

Baseband A1
DSP→HW, 4 I/O, T

CF,DMA→Mem,BR,T,DMA

BR→DCTIP

Cellphone A1
ARM→4 I/O, 2 DCT, T

LDCT,RDCT→I/O

DSP→HW, 4 I/O, T

delays are back-annotated into the computation blocks.
As expected, scheduling has a large effect on simulation
accuracy where abstract OS modeling enables evaluation
of scheduling decisions at native simulation speeds (note
that since the amount of simulated parallelism decreases,
simulation is potentially even faster than at the specification
level). Depending on the relation of communication versus
computation, introducing bus models and communication
delays at the transaction-level further increases accuracy,
potentially at the cost of significantly longer simulation
times. On the other hand, TLMs allow for accurate modeling
of communication close or equivalent to pin-accurate mod-
els but at higher speed.
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Table 4: Results for exploration experiments.

Examples
Model size (LOC) Refinement time

Spec Arch Sched Net PAM scar scos scnr sccr Total

JPEG A1 1806 2409 2732 2780 4642 0.27 s 0.37 s 0.16 s 0.21 s 1.01 s

Vocoder
A1

7385
8449 9594 9775 10679 2.29 s 1.30 s 0.62 s 0.56 s 4.77 s

A2 8508 9632 9913 10989 2.41 s 1.36 s 0.75 s 0.69 s 5.21 s

A3 8535 9659 9949 11041 2.64 s 1.69 s 0.79 s 0.64 s 5.76 s

MP3float
A1

6900
6963 28190 28204 29807 0.82 s 3.24 s 0.90 s 0.90 s 5.86 s

A2 7181 28275 28633 31172 0.93 s 2.66 s 1.11 s 1.48 s 6.18 s

A3 11069 28736 30202 32795 4.66 s 4.05 s 7.10 s 1.88 s 17.69 s

MP3fix
A1

13363
13724 17131 17270 21593 0.95 s 1.37 s 0.58 s 0.95 s 3.85 s

A2 16040 18300 18564 23228 3.28 s 1.68 s 0.85 s 1.20 s 7.01 s

A3 16023 18748 19079 24471 2.72 s 1.76 s 1.97 s 0.95 s 7.40 s

Baseband A1 11481 13866 17020 17658 21711 4.27 s 2.46 s 1.24 s 1.02 s 8.99 s

Cellphone A1 16441 18653 21936 22570 30072 3.86 s 3.10 s 1.31 s 1.22 s 9.49 s

Table 5: Results for equivalence verification.

Examples Refinement
Model 1 Model 2

No. of transformations Verification time
Type No. of nodes No. of edges Type No. of nodes No. of edges

JPEG
Architecture spec. 148 219 arch. 180 257 1602 1.6 s

Scheduling arch. 180 257 sched. 180 287 2740 2.1 s

Network sched. 180 287 net. 201 253 2852 2.1 s

Vocoder
Architecture spec. 436 761 arch. 528 882 6131 3.3 s

Scheduling arch. 528 882 sched. 528 881 7065 3.7 s

Network sched. 528 881 net. 569 933 7229 3.8 s

Our results show that with increasing implementation
detail at lower levels of abstraction, accuracy (as measured
by the simulated delays) improves linearly while model
complexities (as measured by code sizes and simulation
times) grow exponentially. All in all, our results support the
choice of intermediate models in the design flow that allows
for fast validation of critical design aspects at early stages of
the design process.

4.2. Exploration experiments

In order to demonstrate our approach in terms of design
space exploration for a wide variety of designs, we applied
SCE to the design of six industrial-strength examples: stand-
alone versions of the JPEG encoder (JPEG) and the GSM
voice codec (Vocoder), floating- and fixed-point versions
of an MP3 decoder (MP3float and MP3fix), the previously
introduced baseband example (Baseband), and a Cellphone
example combining the JPEG encoder, the MP3 decoder, and
the GSM vocoder in a platform mimicking the one used in
the RAZR cellphone. For each example, we generated differ-
ent architectures using Motorola DSP56600 (DSP), Motorola
ColdFire (CF), and ARM7TDMI (ARM) processors together
with custom hardware coprocessors (HW, DCT) and I/O
units. We used various communication architectures with
DSP, CF, ARM (AMBA AHB), and simple handshake busses.

Table 3 summarizes the features and parameters of the
different design examples we tested. For each example, the
target architectures are specified as a list of masters plus slaves
for each bus in the system where the bus type is implicitly
determined to be the protocol of the primary master on the
bus. For example, in the case of the MP3float design, the
ColdFire processor communicates with dedicated hardware
units over its CF bus whereas the HW units communicate
with each other through separate handshake busses. For sim-
plicity, routing, address, and interrupt assignment decisions
are not shown in this table.

Table 4 shows the results of exploration of the design
space for the different examples. Overall model complexities
are given in terms of code size using lines of code (LOC) as
a metric. Results show significant differences in complexity
between input and generated output models due to extra
implementation detail added between abstraction levels.

Note that manual refinement would require tremendous
effort (in the order of days). Automatic refinement, on the
other hand, completes in the order of seconds. Our results
therefore show that a significant productivity gain can be
achieved using SCE with automatic model refinement.

4.3. Verification experiments

We implemented the SCE equivalence verification tool scver
to verify the refinements above network level. Since the
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lowest abstraction level of communication in model algebra
is the channel, models below network level in the SCE
flow could not be directly translated into model algebraic
representation.

The results for verification of architecture, scheduling,
and network refinements are presented in Table 5. We used
two benchmarks, namely, the JPEG encoder and Vocoder as
shown in column 1. The model algebraic representation was
stored in a graph data structure, with nodes being the objects
and edges being the composition rules. Column 5 shows the
total transformations applied to derive model 1 from model
2 using the transformation rules of model algebra. As we
can see, since the order of transformation is decided, it only
took a few seconds to apply them even for representations
with hundreds of nodes and edges. The verification time also
includes the time it took to parse the SpecC models into
model algebraic representation and to perform isomorphism
checking between the derived and original model graphs.

The results demonstrate that the SCE tool flow based on
well-defined model abstractions and semantics enables fast
equivalence verification.

5. SUMMARY AND CONCLUSION

In this work, we have presented SCE, a comprehensive
system design framework based on the SpecC language. SCE
supports a wide range of heterogeneous target platforms
consisting of custom hardware components, embedded
software processors, dedicated IP blocks, and complex
communication bus architectures.

The SCE design flow is based on a series of automated
model refinement steps where the system designer makes
the decisions and SCE quickly provides estimation feedback,
generates new models automatically, and validates them
through simulation and formal verification. The effective
design automation tools integrated in SCE allow rapid and
extensive design space exploration. The fast exploration
capabilities, in turn, enable the designer to optimize the sys-
tem architecture, the scheduling policies, the communication
network, and the hardware and software components, so that
an optimal implementation is reached quickly.

We have demonstrated the benefits of SCE by use of six
industrial-size examples with varying target architectures,
which have been designed and verified top-to-bottom.
Compared to manual coding and model refinement, SCE
achieves productivity gains by orders of magnitude.

SCE has been successfully transferred to and applied in
industrial settings. SER, a commercial derivative of SCE, has
been developed and integrated into ELEGANT, an environ-
ment for electronic system-level (ESL) design of space and
satellite electronics that was commissioned by the Japanese
Aerospace Exploration Agency (JAXA). ELEGANT and SER
have been succesfully delivered to JAXA’s suppliers and are
currently being introduced into the general market [32].
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