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Abstract Fast and accurate performance and power prediction is a key chal-
lenge in pre-silicon design evaluations during the early phases of hardware and
software co-development. Performance evaluation using full-system simulation
is prohibitively slow, especially with real world applications. By contrast, an-
alytical models are not sufficiently accurate or still require target-specific ex-
ecution statistics that may be slow or difficult to obtain. In this paper, we
present LACross, a learning-based cross-platform prediction technique aimed
at predicting the time-varying performance and power of a benchmark on a
target platform using hardware counter statistics obtained while running na-
tively on a host platform. We employ a fine-grained phase-based approach,
where the learning algorithm synthesizes analytical proxy models that predict
the performance and power of the workload in each program phase from per-
formance statistics obtained on the host. Our learning approach relies on a
one-time training phase using a target reference model or real hardware. We
train our models on less than 160 programs from the ACM ICPC database,
and demonstrate prediction accuracy and speed on 35 programs from SPEC
CPU2006, MiBench and SD-VBS benchmark suites. Results show that with
careful choice of phase granularity, we can achieve on average over 97% perfor-
mance and power prediction accuracy at simulation speeds of over 500 MIPS.

1 Introduction

Fast and accurate performance and power prediction at early design stages is
one of the core challenges in computer system design. Being able to predict
performance and power consumption of real-world application software and
benchmarks running on a target processor that does not yet physically exist is
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an essential part of agile hardware/software co-design flows. As the complexi-
ties of both software and hardware systems continue to grow, such prediction
becomes increasingly difficult. At the same time, applications often exhibit sig-
nificant power and performance variations, where estimation of time-varying
program behavior can provide crucial information for optimization of bottle-
necks in both hardware and software. The need for such fine-grain estimation
further increases prediction challenges.

Cycle-accurate, cycle-approximate or functional virtual platforms and in-
struction set simulators (ISSs) [12, 17, 36] are widely used today to estimate
performance and power consumption of application software executing on a
hardware system. Such models can be very accurate, but simulation speeds are
often prohibitively slow, especially with real-world applications. This severely
limits the amount of exploration that software or hardware developers can
perform. Analytical system models have been proposed as a fast alternative
for modeling software performance and power consumption. However, mod-
els constructed via analytical techniques are often inaccurate and exclusively
targeted at design space exploration for specific hardware and a given set of
benchmarks, which inherently limits their usefulness. Moreover, such models
still require execution traces or statistics obtained by running the actual work-
load in question on a partial ISS model [35] or a physical realization of a close
micro-architecture variant [32,33].

By contrast, real-world applications can be run on real machines to under-
stand their performance characteristics. At the same time, it may be possible
to run a few smaller benchmarks on a slow simulator or other reference model
of a studied system. From basic intuition, we know that there exists some latent
relationship between the execution of a program on two different platforms.
Given a program A that takes t seconds to execute on a particular machine, we
expect A to run longer on a less powerful machine. Conversely, if we instead
execute A on a more powerful machine, we are likely to expect it to finish
quicker. An interesting question is thus whether a small number of example
runs on a slow, detailed simulator or reference model and the corresponding
runs on some other real hardware can give insight into the correlation between
the two, and whether such correlation can be exploited by a machine learning
framework to predict the performance and power of a platform X using runs
on another platform, say platform Y , without actually going through the slow,
detailed simulations of X itself. Platform X can be a detailed full-system sim-
ulator, which is prohibitively slow, and platform Y can be a fast machine, such
as a state-of-the-art x86 workstation. Our goal is to provide a systematic way
of extracting such underlying correlation and use it for novel cross-platform
prediction methods that bridge the gap between traditional analytical model-
ing and simulation-based techniques.

Towards this goal, we present LACross, a learning-based, analytical cross-
platform prediction framework that is capable of fast and accurate perfor-
mance and power estimation at fine temporal granularities. Such accurate,
fine-grained prediction can provide crucial hints for hardware and software de-
velopers in localizing potential performance and power hotspots of constantly
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evolving applications executing on platform hardware that is also under de-
velopment or not otherwise easily accessible (e.g., due to being proprietary or
still being evaluated). Instead of using standard benchmark suites with limited
significance leading to sub-optimal design or purchasing decisions, developers
can run real applications on fast and accurate cross-platform prediction models
that serve as architecture proxies. Such proxies trained on real implementa-
tions or pre-silicon reference models can be given to software developers by
hardware manufacturers without needing to provide access to or exposing in-
ternals of hardware still under development. At the same time, architecture
proxies trained on small micro-benchmarks allow hardware developers to eval-
uate time-varying behavior of large, real-world applications that may otherwise
be too slow to run when only detailed pre-silicon simulators are available in
early development stages.

In early work [48], we introduced a basic learning-based cross-platform pre-
diction formulation that leverages hardware support for collecting performance
counters on modern platforms to predict performance of programs running on
a different platform. This prior work was limited to predicting performance
of whole programs only. Temporal variations of program behavior were not
captured and errors of more than 40% were shown for small embedded bench-
marks. The main issue was lack of training set coverage, where prediction ac-
curacies suffered for programs with performance patterns not covered by the
training set. In [47], we extended our prior approach to predict both power
and performance at the granularity of program phases. It is known that pro-
grams tend to exhibit more homogeneous behavior at the individual phase
level [41]. With training and prediction at finer granularity and proper choice
of phases, temporal variations in large-scale program behavior can be accu-
rately captured and overall accuracy is significantly improved. The benefit of
a phase-based approach is thereby not only in providing more data, but also
in the fact that the quality of the data is better.

In this paper, we make the following additional contributions over our prior
work: (1) we demonstrate phase-level power and performance prediction for
additional host architectures, specifically showing that comparable prediction
accuracy is achieved for an AMD Phenom II host with a smaller set of per-
formance counters as supported on our original Intel machine; (2) we perform
additional predictions from Intel to AMD and from AMD to Intel machines,
showing that high accuracy is maintained even when predicting between differ-
ent generations of x86 architectures with similarly high complexity; and (3) we
extend the analysis of training set coverage using a technique known as latent
semantic indexing to show the effects of using different phase granularities on
training coverage versus homogeneity and their implications on accuracy.

The remainder of the paper is organized as follows: after an overview of
our phase-based approach in Section 2, Section 3 surveys the related work.
Section 4 describes the formulation of our performance and power predic-
tion problem. Section 5 then discusses our experimental setup, and Section 6
presents empirical results of our cross-platform performance and power pre-
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Fig. 1: LACross framework.

diction framework. Finally, Section 7 concludes with a summary of the key
contributions and results of this work.

2 Overview of LACross

An overview of LACross is shown in Figure 1. The learning-based formulation
of the performance and power prediction problem consists of two stages: a
training stage and a prediction stage. During the training stage, a set of sample
programs (“training set”) are executed both on the host machine (“host”) and
a reference target model (“target”). The reference model could be either a
simulator or real physical hardware, such as a development board. The target
and host do not necessarily have to be of similar architectures. In fact, as our
results will show, it is possible to achieve accurate prediction between targets
and hosts that are of vastly different micro-architectures and instruction set
architectures (ISAs).

For each workload we obtain, at phase level, various hardware performance
features from the host as well as reference performance and power from the tar-
get. Execution statistics on the host are obtained non-intrusively using built-in
hardware counters. Our goal is to extract the latent relationship between the
host and target. We formulate this problem into a statistical learning setting,
and derive prediction models for both performance and power on the target.
During the prediction stage, a new application is executed only on the host.
A set of performance features is obtained at phase level and used as inputs to
the prediction model in order to produce an estimate of the performance and
power on the target.
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3 Related Work

Simulation-based and analytical models are two main techniques for perfor-
mance and power prediction. Traditional simulation approaches estimate per-
formance of a program by executing it on cycle-accurate or cycle-approximate
ISSs [12,17,36]. Such approaches tend to be accurate but slow, as throughput
of most ISSs is on the order of several hundred KIPS to several MIPS. FPGA-
based acceleration [19] or source-level, host-compiled and transaction level
modeling (TLM) techniques [14] have recently been proposed for improving
simulation speed while trying to maintain accuracy close to an ISS. Through-
put of these higher-level approaches is often around 200-500 MIPS including
cache simulation, while accuracy is often above 90%. However, they typically
involve cumbersome static and dynamic analysis to back-annotate source-level
code or hardware models with simulated target performance estimates. For ex-
ample, for each new application, the work in [18] requires pre-characterizing
each possible pair of basic code blocks on a cycle-accurate reference simulator
with subsequent back-annotation of path-tracking timing and energy models
at the intermediate representation level. This introduces a substantial amount
of code intrusion and development effort. Furthermore, with the effect of com-
piler optimizations and out-of-order hardware execution, such steps become
difficult to statically track, limiting their accuracy. Pure source-level profiling
approaches [16] utilize performance information from the source to predict
performance of an application across platforms. However, this still requires
source code modifications and, since only limited information is available at
the source level, prediction models are often overly simplistic and inaccurate.
By contrast, our approach treats the code execution of a program as a black
box, and only requires a one-time training to construct a statistical model that
can predict performance across arbitrary, unmodified test programs. With the
proper choice of phase granularity, our approach is fast on average while pro-
viding better accuracies than detailed, back-annotation based approaches. Our
training process has to be repeated for every change of the target platform,
however. This limits retargetability compared to other approaches [18].

Analytical processor models [20, 40, 44] date back decades ago, with their
main focus being on the evaluation and study of micro-architectural varia-
tions on pipeline and instruction level parallelism. More recently, Karkhanis
et al. [29] extend prior works and applied those techniques to study super-
scalar processors. In recent years, statistical and regression-based methodolo-
gies started to thrive. Linear regressions are simple and widely used, but can
suffer from overfitting and other problems [8]. More recently, advances in linear
and nonlinear regression techniques have tried to address such problems, e.g.
by adding a least absolute shrinkage and selection operator (LASSO) to linear
regression [45] or by using general, non-linear but computationally expensive
neural networks [23] or support vector machine regressions (SVRs) [43]. Mc-
Cullough et al. [37] evaluated various regression methods for processor power
characterization, showing that linear regression models can perform poorly
under certain conditions. Bircher et al. introduced techniques using linear re-
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gression for predicting power consumption from performance counters with
good results [13]. Lee and Brooks proposed a predictive modeling and spatial
sampling method [32, 33] for efficient micro-architecture design space explo-
ration. They employed linear regression models to characterize different micro-
architectures, navigate a large design space and identify all Pareto-optimal
candidate architectures. Joseph et al. [27,28] also utilized regression-based ap-
proaches to construct processor performance models, where an iterative error
minimization technique is applied to find the optimal fit. Similar ideas were
also introduced by Ipek et al. [26] using artificial neural networks instead of
regression models. Lee et al. [34] and Khan et al. [30] extended and general-
ized the predictive modeling approach from uni-processor to multi-processor
and multi-core systems, respectively. Our objective is fundamentally different
from all these existing approaches. Instead of trying to obtain statistical per-
formance models for some target architecture of interest from measurements
performed on the same base architecture, we aim to provide cross-platform
performance and power prediction by establishing analytical models that cor-
relate two distinct architectures.

4 Learning Formulation

Many possible granularities for characterizing program phases have been pro-
posed. Huang et al. [25] identify program phases at the granularity of sub-
routines and functions. Balasubramonian et al. [10] use conditional branch
counts, whereas Sherwood et al. [41] use a granularity of 100 million instruc-
tions throughout the execution of a program to characterize program phases.
Conceptually speaking, at the finest granularity, each instruction can be con-
sidered a separate program phase. By contrast, and at the most coarse gran-
ularity, an entire program can be considered as a single phase. Choosing the
correct granularity in many cases depends on the use case and application.
In our approach, we define the program phases in units of compiler basic
blocks [9], and we study the effect of different granularities on prediction.

We apply a variant of a LASSO linear regression [45] to our performance
and power prediction problem with two key differences: We impose extra con-
straints on the model parameters, and we perform linear regression on a phase-
specific basis. We formulate our performance and power prediction problem
as a piecewise constrained, locally sparse linear regression (PCLSLR), which
extends the constrained locally sparse linear regression (CLSLR) proposed
in [48]. For each workload, we obtain feature vectors consisting of selected
hardware counter measurements for every program phase. We then apply a
CLSLR to obtain a local linear prediction model specific to each program
phase that correlates the host performance features and target timing and av-
erage power. The joint PCLSLR model for the whole program is simply the
superposition of the models in each program phase.

Formally, for each program phase j, let x̂j ∈ Rd denote the performance
feature vector obtained from the host, and ŷj ∈ R denote the cycles or power
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from the reference simulator or hardware. The goal is then to extrapolate a
mapping F : Rd → R such that for all j,

F(x̂j) ≈ ŷj .

A popular approach is to assume that F is a globally linear function, and
thus formulate the problem as a standard linear regression. However, linear
regression is known to suffer from problems like overfitting [8]. More impor-
tantly, due to the linearity assumption on the target function, this approach
performs poorly when the underlying function is non-linear. In reality, and
as will be shown in Section 6.1, performance features on one platform and
performance/power on another platform follow an inherently non-linear rela-
tionship [37]. Instead of assuming that F is globally linear, we only impose a
differentiability assumption, i.e. that F is differentiable everywhere in its do-
main. Although the function F can no longer be expressed explicitly in closed
form as in the ordinary linear regression case, this still allows us to approx-
imate F point-wise via a first-order locally linear approximation, which we
denote as F̂.

Formally, given the feature vector x̂j of a program phase j, let {(xi, yi), i =
1, . . . ,m} be the set of m performance feature vectors and reference perfor-
mance or power pairs in the training set that are close to x̂j based upon the
following distance criteria,

‖x̂j − xi‖2 ≤ ε,
where ε is a parameter for determining the size of the local neighborhood of
interest. Let X ∈ Rm×d be the matrix that contains all the xTi as its row
vectors, and Y ∈ Rm be the column vector that contains all the yi as its
elements. The CLSLR then solves the following optimization problem,

minimize
θj

1

2m
‖Xθj − Y ‖22 + λ‖θj‖1

subject to θj ≥ 0.

(1)

The solution θj is then used as the parameters to the local linear approximation

F̂j at x̂j , i.e., F(x̂j) ≈ F̂j(x̂j) = θTj x̂j .
Intuitively, the quadratic objective function in (1) aims to minimize the

prediction error in each program phase by considering only the feature vectors
in the training set that are close to x̂j as determined by a l2-distance threshold
of ε. Since feature vectors that are close to each other are more likely to
exhibit similar performance patterns across different architectures, we impose
the distance constraint such that only relevant feature vectors in the training
set are considered when forming the prediction model for each phase. The
l1-norm constraint on the hyperplane parameter θj restricts solutions to be
small in order to avoid overfitting, and the positivity constraint states that
all the performance features on the host should contribute positively to the
performance or power on the target.

Note that the optimization problem in (1) does not have an analytical so-
lution. In fact, it belongs to a particular type of convex optimization problems
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for which the objective function can be decomposed into a convex and smooth
function (the least-square term) plus a convex but non-smooth function (the
l1-regularizer). The solution can be computed efficiently by first-order iterative
algorithms, such as proximal gradient methods [11,39].

By solving (1), we obtain a a linear approximation to a non-linear function
at input point xt. As such, the CLSLR provides a powerful tool for model-
ing any generic non-linear function using a first-order local approximation. In
principle, if the neighborhood is chosen to be close enough to the input point
of interest, such techniques give good prediction accuracy. However, if a close
neighborhood does not exist, i.e. if all points are far way compared to the point
of interest, the smoothness assumption breaks down (i.e. F̂j(x̂j) 6≈ F(x̂j)) and
the CLSLR is likely to give erroneous predictions.

In the CLSLR, we need to choose two tuning parameters, the sparsity
penalty λ and the parameter ε for controlling the size of the neighborhood.
We employ a standard technique known as cross-validation [31] to determine
their values. In particular, we randomly chose a subset of the original training
dataset and divide it into a training subset and a test subset. We train using
only data from the training subset, and we use data from the test subset to
compute an average prediction error percentage. We iteratively repeat this
process applying different values for λ and ε until the cross-validation error is
less than a threshold of 5%.

During prediction, the constructed models for all the unique per-phase
feature vectors are cached, such that (1) does not need to be solved repeatedly
for the same phase. Two feature vectors x̂j and x̂k are defined to be unique iff

‖x̂j − x̂k‖∞ ≥ T,

where the threshold T is empirically chosen to be 200 with respect to the
training set. A threshold of 200 is found to be enough for filtering out the
inherent noise in processor performance counter based phase measurements.

5 Prediction Infrastructure

In order to verify the effectiveness of our cross-platform prediction framework,
we base our experiments on measurements obtained on real hardware systems
and software workloads. In the following, we describe our experimental setup,
including the software workloads used as training set, as well as the host
and target hardware platforms used for prediction, including data acquisition
frameworks used to obtain hardware performance counters on the hosts as well
as reference performance and power measurements on the targets.

5.1 Training Set

The validity of any learning-based approach is crucially dependent upon the
choice of the training set. An ill-formed or insufficient training set affects the
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Table 1: Breakdown of the training set.

Application Domains Number of Programs
Simulation 14
Enumeration 16
String Manipulation 30
Graph Algorithm 26
Dynamic Programming 21
Geometry 25
Recursion 13
Miscellaneous 12

statistical model, causes over-interpretation of the data during the training
phase and produces a model that overfits the data. A good training set should
satisfy the following properties:

– Each workload inside the training set should individually be a good repre-
sentative of the programs encountered during the later prediction phase.

– The variety of the workloads in the training set should be sufficiently large
to cover the application space of interest.

– The overall number of program instances in the training set should be large
enough to avoid overfitting problems in general.

For the purpose of our targeted cross-platform performance prediction, we
are in need of a diverse variety and sufficient number of programs, which
contain algorithms that are used as typical building blocks in real-life software
applications.

For our performance prediction approach, we utilize 157 diverse and rep-
resentative programs from the ACM International Collegiate Programming
Contest (ICPC) [6] database. The ACM-ICPC is the largest and most pres-
tigious programming contest, where hundreds of programming problems each
year are created to test participant knowledge on algorithms and program-
ming as well as the ability to create new software applications. As such, the
ACM-ICPC database provides a great resource for large-scale program mining.
Table 1 shows the breakdown of the programs in our training set with respect
to their related application domains. For programs in the simulation domain,
they often involve step-wise replay of the given input sequence and produce
outputs based upon some predefined rules. Emulating a play in a board game
or tracing through a discrete event simulation are typical problems encoun-
tered in this domain. These programs are often computationally intensive. The
enumeration domain contains programs that solve some form of combinatorial
problem, where enumeration of all possible candidate solutions is required.
As these problems often require large amount of storage for maintaining the
search space, they are likely both computation and memory intensive. The
string manipulation domain contains problems such as parsing, translation, en-
cryption/decryption and other general text processing. The graph algorithm
category includes programs that require manipulation of graph data struc-
tures. For instance, variations of computing the shortest path, graph search,
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(a) ODROID-U3. (b) ODROID-XU3.

Fig. 2: Reference target platforms.

connected components, and network flow problems are common representa-
tives of programs in this domain. Many problems from the dynamic program-
ming domain require manipulation of large multidimensional arrays to store
partial solutions in order to compute future solutions. Both graph algorithms
and dynamic programming problems are therefore memory intensive. In many
cases, they also result in irregular memory access patterns due to pointer chas-
ing code. Recursion problems often incur high branch miss rates, due to the
frequent non-predictable call and return structures underlying the recursive
algorithm. Finally, geometry and miscellaneous programs that solve numerical
problems complete the training set. Programs in these domains often consist of
large amounts of floating-point ALU operations and are thus compute bound.

The large variety of programs in the ACM-ICPC database resolves the
representativeness and diversity requirements of the training set. We use orig-
inal programs and inputs. In our earlier work [48], the size of the training set
was artificially increased to improve coverage by creating 100 random inputs
for each program. This is not necessary in our case. Profiling programs at
phase granularity provides sufficient amount of training data, and no addition
of artificial and possibly unrepresentative data is necessary. With our new
phase-based approach, a small training set with low training overhead is suffi-
cient to achieve high accuracy. Since training and prediction are performed at
program phase level, the diversity of program phases is our primary concern.
The program phases in the training set should ideally provide a good coverage
of the program phases encountered during prediction. We study training set
coverage and diversity in Sections 6.4 and 6.5.

5.2 Profiling and Measurement Infrastructure

We perform profiling of the training set on two different host platforms: an
Intel Core i7-920 processor [2] with 24 GB of memory, and an AMD Phenom
II X6 1055T processor [1] with 8 GB of memory.

To demonstrate effectiveness of our approach on state-of-the-art mobile
and embedded target platforms, we employ physical hardware references as
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Intel Core i7-920 AMD Phenom II X6

L1 Total Cache Misses L1 Total Cache Misses
L2 Total Cache Misses L2 Total Cache Misses
L3 Total Cache Misses Branch Misses

TLB Loads Instructions
Unconditional Branches Cycle Stalled
Conditional Branches Cycles

Branch Misses L1 Total Cache Accesses
Instructions Floating Point Operations
Cycle Stalled

Cycles
L1 Total Cache Accesses
L2 Total Cache Accesses
L3 Total Cache Accesses

Floating Point Operations

Table 2: Hardware performance counters profiled on the hosts.

targets for training and prediction. We use the ODROID-U3 (U3) develop-
ment board [3] (Fig. 2a) to obtain reference performance measurements (cy-
cle counts). The U3 board uses the Samsung Exynos 4412 SoC as its hard-
ware platform. The Exynos 4412 SoC contains a homogeneous quad-core ARM
Cortex-A9 processor with 32 KB L1 instruction and data cache. For reference
power measurements, we use the ODROID-XU3 (XU3) development board [4]
(Fig. 2b). It uses the Samsung Exynos 5422 SoC as the hardware platform. The
Exynos 5422 SoC consists of a heterogeneous big.LITTLE CPU arrangement,
which combines a Cortex-A15 and a Cortex-A7 processor cluster. The XU3
development board integrates an on-chip TI INA231 current sensor for power
measurements of all eight cores, but the CPU hardware is restricted to not al-
low any performance counter measurements. Thus, two different boards serve
as performance and power references due to hardware limitations associated
with each board.

For our study, we are mainly interested in predicting performance and
power for single-core workloads. Thus, all programs are restricted to run on
one core till completion, which minimizes measurement noise due to core mi-
gration. On the XU3 board, we restrict the workloads to run solely on one of
the A15 processors with DVFS disabled.

We use the PAPI toolset [38] for collecting various hardware performance
counters on both the hosts and the targets. For power measurement, we de-
veloped a custom API that interacts directly with the onboard TI INA231
power sensor. As shown in Table 2, for each phase of the training programs we
profile 14 and 8 hardware performance counters on the Intel and AMD host
platforms, respectively.

Figure 3 shows the 14 hardware performance events that we collect on the
Intel host machine using a granularity of 5,000 basic blocks, and the correla-
tion coefficients between each individual event measured on the host and the
performance of the A9 as well as the power of the A15 target. The number
of CPU cycles, together with the number of instructions, the total number
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Fig. 3: Correlation of hardware performance events with target performance
and power (Intel Core i7 920).

Fig. 4: Correlation of hardware performance events with target performance
and power (AMD Phenom II X6 1055T).

of L1 cache accesses and the number of floating point operations appears to
be highly correlated with the target timing. Other events (i.e, the number of
unconditional branches and L2 cache-related events) also influence the target
timing substantially, whereas the rest of the events have relatively low impact
on the target timing. Nevertheless, the individual contributions of different
counters can vary widely from application to application, and we include all
14 counters in our prediction to cover a wide range of potential behavior.
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Similarly, Figure 4 shows the 8 hardware performance events we collected
on the AMD host machine at a granularity of 5,000 basic blocks and their
correlation coefficients. Note that due to the underlying difference in the im-
plementation of the two host processors, some hardware performance counters
available on the Intel i7 processor are not present on the AMD platform. Hence,
only 8 out of the original 14 hardware performance events are measured on
the Phenom II processor. Nevertheless, as indicated in Figure 4, the majority
of the 8 hardware events continue to show strong correlation with the target
performance and power. Note that these are the performance feature vectors
we denoted as x̂j in our problem formulation (Section 4) for any given program
phase j. The disparity in performance feature vectors between the two host
machines will be discussed further in Section 6 to study its effect on prediction
accuracy and speed.

5.3 Prediction Framework

Figure 5 shows the tool flow used in LACross. for fine-grain, phase-level profil-
ing and prediction. We utilize the LLVM compiler framework [7] to instrument
profiling API calls at intermediate representation (IR) basic block level of each
program during compilation. The application sources are first compiled into
LLVM IR and then instrumented and linked against the profiling API. The
instrumented LLVM IR tracks the number of dynamic basic blocks executed
by the program in order to log various counter and power measurements at the
end of each program phase. Instrumentation at the IR level thereby guarantees
that features and reference performance and power obtained for each phase
correspond to the same execution on both the host and the target. During
training, the instrumented IR is cross-compiled into host and target binaries.
During prediction, we obtain the performance features on the host for each
program phase, and we use previously collected training data to solve (1) and
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predict per-phase performance and power. We use MATLAB 2013a as the main
computation environment. The optimization problem (1) can be transformed
into a quadratic program (QP) and solved using the built-in quadprog()
function in MATLAB [5].

6 Experiments and Results

To show the effectiveness of LACross, we test it with 35 selected benchmark
programs from three standard benchmark suites that are not encountered
in the training set. We use 7 programs (aes, crc, dijkstra, fft, patricia,
qsort, sha) from the MiBench suite [22], 9 programs (disparity, localiza-
tion, mser, multi ncut, sift, stitch, svm, texture synthesis, track-
ing) from the San Diego Vision Benchmark Suite (SD-BVS) [46], and 19
programs (perlbench, bzip2, gcc, mcf, milc, namd, gobmk, dealII, so-
plex, povray, hmmer, sjeng, libquantum, h264ref, lbm, omnetpp,
astar, sphinx3, xalancbmk) from SPEC CPU 2006 [24]. We chose the 19
programs from SPEC implemented in C/C++ as we use the C/C++ interface
provided in PAPI to instrument counter profiling calls. We use the “large”,
the “fullhd” and the “ref” input set for programs from MiBench, SD-VBS and
SPEC CPU 2006, respectively.

These 35 programs are first profiled on the Intel and AMD hosts to obtain
14-dimensional and 8-dimensional hardware performance feature vectors at
program phase level using the PAPI toolset. We then conduct performance and
power predictions using previously trained models for the U3 and XU3 boards,
respectively. In order to study the effect of phase granularity on the prediction
accuracy and speed, we perform our experiments at different phase sizes. Note
that for power prediction, due to hardware constraints on the sampling rate
of the TI INA 231 current sensor on the XU3 development board, the smallest
phase granularity used is 20,000 basic blocks. The sampling speed is inherently
limited by the ADC conversion speed of the sensor. From our experiments, we
found a sampling period of approximately 20,000 basic blocks to be the fastest
the sensor hardware could support.

6.1 Cross-Validation Error

We first evaluate the accuracy of the statistical models in terms of their cross-
validation error. We employ 10-fold cross-validation [31] of the training set as
an estimate of the generalization error of different regression techniques. The
comparison is shown in Figure 6. This experiment is performed at a phase
granularity of 20,000 basic blocks.

A simple LASSO linear regression [45], which assumes global linearity of
the underlying data results in more than 20% cross-validation error for both
performance and power prediction. By contrast, the PCLSLR yields only a
2% average prediction error. The fact that the non-linear PCLSLR technique
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Fig. 6: Cross-validation error for phase-level performance and power prediction
(phase granularity = 20,000 blocks).

performs an order of magnitude better than the linear model strongly suggests
that the underlying relationship F between the hardware performance counters
on the hosts and performance and power on the ARM target is inherently
non-linear. Our prior work [48] demonstrated similar results at whole program
granularity. The accurate prediction of PCLSLR also provides us with insights
into the inherent nature of the data set. It reassures us that the assumption
about the smoothness of the target function F is indeed valid empirically.

6.2 Overall Prediction Accuracy and Speed

Figure 7 shows the accuracy of predicting whole program performance for
the 35 test programs profiled at a phase granularity of 5,000 basic blocks.
The predicted cycles of the 35 benchmark programs are very close to the
actual cycle measurements obtained on physical hardware. The worst-case
prediction error is around 2% for both the Intel and the AMD hosts, with
average errors less than 1%. Note that the accuracy we refer to here is the
percentage prediction accuracy of whole program performance.

Figure 8 similarly shows the overall program-wise power prediction accu-
racy of the 35 programs from the test set, profiled at a phase granularity of
20,000 basic blocks. The average error for predicting average power over whole
programs is about 2.5%, while the worst-case prediction error is less than 10%.

The total runtime of each test program, as shown in Figure 9 consists of the
profiling time and the prediction time. The profiling time is the time it takes to
collect counters on the host. Due to hardware limitations on the simultaneous
number of counters that can be collected, this requires 5 separate runs of
each program to collect 14 features on the Intel host and 3 runs each on the
AMD to collect 8 counters. The prediction time measures the total duration
of solving the optimization problem (1) for each phase of the program. Solving
time is governed by the dimension of data matrix X and of the neighborhood



16 Xinnian Zheng et al.

(a) 19 SPEC CPU programs

(b) 16 MiBench and SD-VBS programs

Fig. 7: Predicted target cycles and prediction accuracy of 35 benchmarks
(phase granularity = 5,000 blocks).

defined by distance threshold ε. For the same phase granularity, comparing
runtimes of the SPEC programs (Fig. 9b) with the MiBench and SD-VBS
programs (Fig. 9a), we see that as programs execute longer, the number of
dynamic phases grows proportionally, which results in more time spent in
solving the optimization problem (1). As phase granularity increases from
5,000 blocks to 20,000 blocks, the average total runtime generally decreases
due to a decrease in both the profiling and prediction time. As the sampling
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(a) 19 SPEC CPU programs

(b) 16 MiBench and SD-VBS programs

Fig. 8: Predicted target power and prediction accuracy of 35 benchmarks
(phase granularity = 20,000 blocks).

granularity of program phases becomes larger, the total number of dynamic
phases decreases accordingly, and thus fewer instances of the CLSLR problem
need to be solved for each program. Note that prediction complexities vary
across applications and hosts due to differences in the convergence speed of
solving (1) numerically. At the same time, the sampling of the performance
counters via the PAPI toolset also incurs performance overheads [15]. Hence,
as the number of dynamic phases decreases, the overhead of profiling also
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Fig. 9: Runtime of 35 benchmarks

becomes smaller. Profiling times vary across hosts due to differences in host
performance and the number of runs required.

We further demonstrate an example of fine-grained dynamic power and
performance tracing. Figure 10 and 11, show the dynamic behavior of execut-
ing the dealII benchmark on the predicted and real targets. Here, we use a
phase granularity of 20,000 basic blocks, and results show that the prediction
tracks accurately against performance and power measurements obtained from
the hardware.

In addition, Figure 12 demonstrates the accuracy of performance prediction
across the two x86 host machines for the 16 MiBench and SD-VBS programs.
The predicted cycles of the test programs at whole program level remain very
close to the actual cycles measured on the hardware, even when predicting
between different micro-architectures of similar complexity.

6.3 Phase Granularity Tradeoffs

As indicated above, the choice of phase granularity will influence prediction
accuracy and speed. A finer phase granularity can potentially increase training
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Fig. 10: Fine-grained performance behavior of dealII on U3 target.

Fig. 11: Fine-grained power behavior of dealII on XU3 target.

set coverage and thus improve accuracy. Finer phase granularity, however, also
requires more frequent profiling and prediction. We further study the tradeoff
between prediction accuracy and speed with respect to different choices of
phase granularity.

To measure simulation speed, we use the total number of dynamic in-
structions in a target program divided by the total time it takes to obtain the
predicted performance and power on the host (i.e, profiling of the performance
features vectors plus the time spent on solving the CLSLR (1) for all phases
of the program). To measure accuracy, we use the mean absolute percentage
error (MAPE) between the prediction and the actual measurement across all
phases and programs.

As shown in Figure 13, the overall accuracy and speed for predicting work-
load performance varies significantly with respect to the choice of program
phase granularity. At a granularity of 5,000 basic blocks, the per-phase perfor-
mance prediction accuracy is about 92% on both hosts. Note that this is worse
than the prediction accuracy across whole programs we have seen in Section 6.2
and Figure 7b. Due to averaging effects when aggregating all the phases of an
entire program, overall performance accuracy is considerably higher.

At a granularity of 500 blocks, phase-level predictions are about 95% ac-
curate as compared to real hardware measurements. As the phase granularity



20 Xinnian Zheng et al.

ae
s

cr
c

di
jk

st
ra ff
t

pa
tr

ic
ia

qs
or

t
sh

a
di

sp
ar

it
y

lo
ca

li.
m

se
r

m
ul

ti
si

ft
st

it
ch

sv
m

te
xt

ur
e

tr
ac

ki
ng

Av
er

ag
e0

2000

4000

6000

8000

10000

12000

To
ta

l C
yc

le
s 

(m
ill

io
ns

)

Predicted Cycles on AMD Based on Intel
Total Cycles Measured from AMD Hardware
Prediction Error (Intel -> AMD)
Predicted Cycles on Intel Based on AMD
Total Cycles Measured from Intel Hardware
Prediction Error (AMD -> Intel)

0.0%

2.0%

4.0%

6.0%

8.0%

10.0%

Pr
ed

ic
ti

on
 E

rr
or

Fig. 12: Predicted target cycles and prediction accuracy across the host ma-
chines (phase granularity = 5,000 blocks)

gradually increases from 500 to 20,000 basic blocks, the prediction accuracy
only experiences a minor decreasing trend. The diminishing returns at finer
and finer granularities are likely due to the inherent noise of performance
counter measurements at very small sampling periods. Such noisy measure-
ments can deviate the PCLSLR from the nominal target function. When the
phase granularity grows beyond 50,000 basic blocks, however, the prediction
accuracy drops drastically due to a lack of coverage in the training data. This
is consistent with our earlier work [48], where large errors were seen when
performing predictions at whole program level despite a much larger training
set.

At the same time, the simulation speed improves proportionally with a
decrease in phase granularity. As such, there is an optimal tradeoff between
speed and accuracy at medium granularities. Note that for the same phase
granularity, the average prediction speed obtained from the AMD host is ob-
served to be slightly faster than the Intel host. This is due to the fact that
only 3 profiling runs are required as opposed to 5 on the Intel host.

For power prediction on the two hosts (Figure 14), a similar tradeoff is
observed. Our method, however, is still accurate (over 90% phase-wise accuracy
compared to real hardware measurements) and fast (over 500 MIPS) on both
hosts. Again, due to error cancellation effects, at the same phase granularity,
the accuracy of predicting average power for a whole program is significantly
better than the average absolute per-phase prediction accuracy.
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(a) Intel host to U3 target.

(b) AMD host to U3 target.

Fig. 13: Speed and accuracy tradeoff (performance prediction).

6.4 Training Set Coverage

In the following, we further study coverage of the training set and its effect
on prediction accuracy with respect to the space of feature vectors. We use
a dimensionality reduction technique known as principal component analysis
(PCA) [42] based on Singular Value Decomposition (SVD) to extract and visu-
alize the latent semantics in the data and to project the 14- and 8-dimensional
feature space into a lower-dimensional and thus easier to comprehend represen-
tation. We choose to keep so-called principle components (PCs) representing
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(a) Intel host to XU3 target.

(b) AMD host to XU3 target.

Fig. 14: Speed and accuracy tradeoff (power prediction).

the 3 most dominant linear combinations of features, which in all cases cover
more than 90% of the sum of all singular values. For the purpose of demon-
stration, we only plot the 3D-projected data onto the plane spanned by the
second and third principal component, as they are visually more informative.
Plotting the projected data over the first principal component results in a thin
elliptic band that does not allow useful conclusions to be drawn. This effect is
common when the data is well correlated and properly normalized [21].
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(a) Phase granularity = 500 basic blocks

msermser

gobmkgobmk

qsortqsort

siftsift

povraypovray

astarastar

(b) Phase granularity = 500,000 basic blocks

Fig. 15: 2D feature space projection into principle components (Intel).

Figure 15 shows the 2D projection of the phase-by-phase feature vectors
into their PC2 and PC3 components obtained by executing all programs in the
training set as well as the 35 test programs on the Intel host. Closeness of the
projected features points preserves the closeness of the original feature vectors
in higher dimensions, which implies a similarity in the performance patterns
of program phases. At a small phase granularity (500 blocks, Figure 15a),
performance patterns obtained from the program phases in the training set
provide a strong coverage of the program phases observed in the test programs.
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(a) Phase granularity = 500 basic blocks

msermser

siftsift

gobmkgobmk

povraypovray

qsortqsort
astarastar

(b) Phase granularity = 500,000 basic blocks

Fig. 16: 2D feature space projection into principle components (AMD).

This assures that the local linear models we derive retain a good approximation
of the target function F at those feature vectors that are seen in the test
programs. At more coarse phase granularity (500,000 blocks, Figure 15b), the
coverage of the feature space is no longer guaranteed. Many feature vectors
from the test programs (such as mser, sift, gobmk or povray) start to have
fewer close neighbors. As such, the local linearity assumption in the PCLSLR
formulation begins to break down. However, not all programs suffer from the
coverage problem. As shown in Figure 15b, test programs such as qsort or
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Fig. 17: Total number of unique phases.

astar still have a sufficient amount of nearby training data despite the sparse
feature space.

Similar results are seen for the 8-dimensional feature vector projections
obtained by executing the training set on the AMD Phenom II machine (Fig-
ure 16). The coverage decreases as the phase granularity becomes coarser.
Prediction accuracy at large phase granularities also suffers due to the break-
down of the local linearity assumption of the PCLSLR.

Overall, an effect of training set coverage on accuracy can be observed.
When there is a sufficient amount of data in the feature space that lies close
the input points of interest, the CLSLR produces accurate predictions. Con-
versely, if existing data lies far away from the inputs, the locally linear model
may not be able to capture the underlying behavior of the non-linear target
function, which leads to inaccuracies in the prediction. Results confirm that
by performing more fine-grained profiling at the level of program phases, we
effectively mitigate the issue of lack of coverage in the training, and thereby
are able to achieve significantly better prediction accuracy overall.

6.5 Program Phase Homogeneity

Results above have shown that prediction accuracy correlates closely with
training set coverage. However, it is not clear whether the training set coverage
is simply from having more training data when sampling at a finer granularity
or as a result of the homogeneous nature of performance patterns in smaller
program phases. To help clarify this question, we show in Figure 17 the total
number of unique dynamic program phases obtained on both hosts across all
training set programs as a function of phase granularities. As the phase gran-
ularity increases, the total number of unique phases increases. This indicates
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that more diverse performance patterns emerge as increasingly larger chunks
of a program are encapsulated in one phase. Conversely, as program phases be-
come more fine-grained, even though the total number of phases encountered
increases, the total number of unique program phases decreases. This indi-
cates that the improvement in the feature space coverage of the training set at
smaller granularities is due to an increase in the homogeneity of performance
patterns as phases becomes smaller. In other words, there are fewer distinct
program patterns out of which programs are composed at smaller phases.

Note that as granularity continues to increase, the total number of unique
phases would also be expected to continue to increase. However, since all pro-
grams complete their execution in a finite amount of time, the number of
dynamic phases is finite. Thus, the total number of unique phases eventually
decreases when the phase granularity becomes too large. This agrees with the
downward trend observed in Figure 17 for phase granularities greater than
20,000.

7 Summary and Conclusions

This paper proposes LACross, a learning-based framework for fast and ac-
curate phase-level cross-platform prediction of performance and power of a
workload running on a target machine. The key idea behind LACross is the
simple observation that performance and power consumption of an application
running on two different platforms are correlated, even if the two platforms are
of vastly different architectures. We employ a unified learning-based formula-
tion for the problem of both cross-platform performance and power prediction.
We further show that constructing prediction models at program phase level
helps to resolve training set coverage issues and thus increases accuracy. With
proper choice of phase granularity, the prediction achieves over 97% accuracy
at speeds over 500 MIPS for both performance and power. This is orders
of magnitude faster than traditional cycle-accurate simulation, with the draw-
back that it requires application source code to be available. Predictions based
on an x86 host can thereby run at almost the same speeds as executions on
physical ARM hardware. With better counter support in the hosts, predic-
tion speeds could be even higher. Overall, results of this work demonstrate
the use of advanced machine learning methods for fast and highly accurate
computer system performance modeling and evaluation. Resulting prediction
models can serve as fast and accurate architecture proxies that enable explo-
ration of pre-silicon hardware designs using large-scale real-world applications
while simultaneously supporting independent software development for such
evolving architectures.
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