
Distributed Convolutional Neural Network
Training on Mobile and Edge Clusters

Pranav Rama, Madison Threadgill, and Andreas Gerstlauer

Electrical and Computer Engineering
The University of Texas at Austin, Austin TX, USA

{pranavrama9999, madison.threadgill, gerstl}@utexas.edu

Abstract. The training of deep and/or convolutional neural networks
(DNNs/CNNs) is traditionally done on servers with powerful CPUs and
GPUs. Recent efforts have emerged to localize machine learning tasks
fully on the edge. This brings advantages in reduced latency and in-
creased privacy, but necessitates working with resource-constrained de-
vices. Approaches for inference and training in mobile and edge devices
based on pruning, quantization or incremental and transfer learning re-
quire trading off accuracy. Several works have explored distributing in-
ference operations on mobile and edge clusters instead. However, there
is limited literature on distributed training on the edge. Existing ap-
proaches all require a central, potentially powerful edge or cloud server
for coordination or offloading. In this paper, we describe an approach
for distributed CNN training exclusively on mobile and edge devices.
Our approach is beneficial for the initial CNN layers that are feature
map dominated. It is based on partitioning forward inference and back-
propagation operations among devices through tiling and fusing to maxi-
mize locality and expose communication and memory-aware parallelism.
We also introduce the concept of layer grouping to further fine-tune per-
formance based on computation and communication trade-off. Results
show that for a cluster of 2-6 quad-core Raspberry Pi3 devices, training
of an object-detection CNN provides a 2x-15x speedup with respect to a
single core and up to 8x reduction in memory usage per device, all with-
out sacrificing accuracy. Grouping offers up to 1.5x speedup depending
on the reference profile and batch size.

Keywords: Distributed edge computing · machine learning

1 Introduction

Traditionally, training and inference of deep learning (DL) models is performed
in the cloud. This requires a large amount of data to be collected and sent to a
centralized infrastructure, introducing latency, privacy, and real-time concerns.
Various approaches have proposed to partition the processing between mobile,
edge, and cloud resources [1, 2]. However, such approaches still rely on a re-
mote cloud for partial processing. To address the latency and privacy concerns
when communicating with the cloud, recent efforts have emerged to localize DL



2 Pranav Rama et al.

tasks fully on mobile or edge devices [3–5]. However, this brings the challenge of
performing compute and memory-intensive inference and training operations on
such resource-constrained devices.

A wide range of approaches have been proposed to address limited mem-
ory and computing capabilities in mobile and edge settings. Techniques such
as pruning and quantization focus on decreasing the complexity of the model
by removing weights and neurons or reducing the bit precision during inference
and/or training. Other approaches such as incremental and transfer learning
start from a pre-trained model and only partially update the model to save
computational resources and reduce training time. These approaches trade-off
accuracy for decreased computational complexity.

Several complementary methods have recently been proposed to utilize par-
allelism in DL models by partitioning them across multiple devices while pre-
serving the original model and accuracy. Federated learning [6] exploits data
parallelism, but still requires a central server for coordination as well as stor-
ing and processing of complete models in each device, which is often infeasible
given memory constraints. Other approaches partition and distribute the model
itself across a cluster of edge devices [5, 7–9]. In addition to exploiting available
multi-device parallelism, this allows for reducing both the computational and
storage requirements on each device. However, such approaches have only been
demonstrated for inference so far.

In this paper, we present an approach for distributed CNN training exclu-
sively on communication- and memory-constrained mobile and edge clusters. Our
approach targets feature map-dominated early CNN layers. We adopt a tiling
and fusing-based partitioning scheme that has previously been demonstrated for
inference [7,10,11] and extend it to apply to both forward and back-propagation
training tasks. The scheme tiles feature maps to reduce memory footprint and
expose model parallelism, then fuses matching tiles of consecutive layers into in-
dependent execution stacks placed on each device to maximally exploit locality.
Furthermore, groups of layers are formed among tiles where synchronization of
feature data shared among neighboring tiles is performed only at group bound-
aries. At the end of a single training pass, the final weight updates of all stacks
are aggregated. This approach can confirm to arbitrary memory constraints im-
posed by each edge device while exposing parallelism, minimizing communica-
tion, and exploiting the locality inherent in convolutional and pooling layers.
Our distributed training approach includes the following contributions:

1. We propose a novel method for tiling and fusing of backpropagation tasks
that considers memory and communication constraints, while exploiting par-
allelism for distributed CNN training on resource-constrained device clusters.

2. We apply the concept of layer grouping of forward inference and back-
propagation tasks in order to further fine tune computation and commu-
nication overhead based on the grouping profile of the layers.

3. We evaluate our approach on distributed training of Yolov2, a common CNN
for object detection, distributed across a network of quad-core Rasberry Pis.



Distributed CNN Training on Mobile and Edge Clusters 3

2 Related Work

Performing inference on resource-constrained edge and mobile devices has re-
ceived significant attention. Approaches for distributed inference in edge settings
exploit inherent parallelism to partition a model and distribute it across multiple
devices [4, 5, 7–9]. These methods can be applied to the forward inference pass
in distributed training. We adopt tiling and fusing strategies from distributed
edge and hardware accelerated inference [7, 10, 11] in our work and extend it to
the back-propagation pass in order to support distributed training.

Training CNNs requires additional memory compared to inference due to the
need to store input data, gradients, and activation values for each layer. This
normally requires partitioning of the workload involving powerful edge servers or
the cloud [1,12,13]. Multiple approaches exist for training a DL model on a single
edge device [14]. These typically employ simplified model architectures [15] or
use reduced bitwidths for training [16]. Alternatively, approaches for incremental
or transfer learning take a pre-trained model and only update a subset of weights
[17] or the last layers of a model with every training sample [18]. However, all of
these approaches trade off accuracy for reduced model complexity.

Multi-device solutions that rely on federated learning exploit data parallelism
to collaboratively train a model, with each device training a local model on its
own data and devices exchanging weight updates as different variants of a dis-
tributed gradient descent [6]. Other multi-device approaches rely on approximate
gradient prediction methods that trade off accuracy [19]. However, mobile and
edge devices, e.g. in the IoT space, often lack sufficient memory to store an en-
tire local model. In [12, 13], federated learning is hierarchically combined with
model partitioning in each local cluster. However, these approaches use parti-
tioning schemes commonly used in cloud settings, which are not optimized for
the greater memory and communication limitations in mobile and edge settings.

3 Overview

Fig. 1 gives an overview of our approach. We partition feature data and delta
gradient maps in forward inference and back-propagation passes, respectively,
into tiles in a grid-wise fashion along their width and height dimensions. In both
passes, output tiles of each layer are computed from input tiles through con-
volutions with filter data or through simple pooling operations. Exploiting the
inherent locality in these operators, all intermediate matching tiles on forward
and backward passes are fused into independent execution stacks and tasks that
stay local on one device. Tiling exposes parallelism and reduces storage require-
ments proportional to the tiling granularity, while fusing maximizes locality and
thus minimizes communication overhead.

Each output tile is computed by convolving a certain dependent input region
with the filter data. This dependent region includes the corresponding input tile
along with some boundary data, which depends on the filter size and stride. The
boundary data has to be communicated between the neighboring devices prior
to starting the convolutions in both the forward and backward passes.



4 Pranav Rama et al.

(a) 3x3 tiling w/ 2 groups
(b) Independent execution tasks with com-
munication boundaries

Fig. 1: Distributed CNN training overview.

Alternatively, we can further combine multiple convolutional and pooling lay-
ers to form groups where communication of boundary data with neighboring tiles
is done only at the beginning of each group. Within each group, any required
intermediate data is locally computed from input data collected at the beginning
of the group and no further communication is needed within the group. Fig. 1
shows 2 groups each in the forward and backward pass. In this case, commu-
nication is done at the feature-map inputs of layer L1 and L3 in the forward
pass and at the delta gradient inputs of layer L4 and L2 in the backward pass.
These feature and gradient maps serve as synchronization points where all tiles
share boundary data with the neighboring tiles. Grouping introduces a trade off
between communication and computation overhead. Larger groups have more
redundant computation since the boundary data grows with the group size as
illustrated by the funneling red arrows in Fig. 1. At the same time, larger groups
synchronize less frequently whereas smaller groups have more communication
and synchronization overhead. We will discuss optimal grouping strategies later.

The only points at which the entire partition needs to be communicated
is when receiving the input training sample at the first layer and the initial
delta gradient loss at the last layer. Once this is received, the forward pass
and backward pass can be completed with just intermediate group boundary
synchronization, which is a much smaller overhead.

Each task and device requires access to a complete copy of all filters. In order
to update the filter weights during back-propagation, partial weight gradients
computed by each task for each tile must be summed across all tiles to get the
final weight updates. This requires the devices to communicate their entire par-
tial weight update sets with each other or a common central device for summing
at the end of the training cycle for each batch. Such weight updates are only
required once at the end of each batch, and can stay local on each tile until
then. For the early feature-map dominated layers, filters are relatively small and
storing local copies in each device as well as communicating updates between
tiles carries a small overhead in comparison to the computation and memory
benefits we get from feature and gradient map partitioning.



Distributed CNN Training on Mobile and Edge Clusters 5

Fig. 2: Single-layer tiled forward inference and back-propagation.

4 Distributed Training

In the following, we describe details of our distributed tiling approach for a single
layer followed by a discussion of fusing and grouping across multiple layers.

4.1 Single-Layer Tiling

Fig. 2 illustrates the tiling process of a forward pass, backward pass and weight
update at layer l for a 2x2 tile partition. Xl and Xl+1 are the input and output
feature maps of layer l, respectively. Assuming a tiling into an NxM grid, in
the forward pass, each of the tiles in Xl with the necessary boundary data are
convolved with the filter Fl to produce the NxM tiled output feature-maps Xl+1.

For back-propagation, we need to compute two gradients, the delta loss gra-
dients and the weight updates. The delta loss gradients are obtained through
recursive back-propagation starting with the loss gradients at the output of the
last layer. To calculate the loss gradients ∂Loss

Xl+1
, each output tile of the next

layer’s loss gradients, ∂Loss
Xl+2

, together with the necessary boundary data is con-
volved with the 180◦ rotated filter to produce the corresponding tile in ∂Loss

Xl+1
.

Finally, to compute the weight updates, the feature map tiles of Xl are first
convolved with the corresponding tiles of the delta loss gradient ∂Loss

Xl+1
to produce

NxM filter gradient sets, one for each tile. These NxM weight updates are partial
sums pertaining to the region of the map the tile is associated with, and the final
weight gradients ∂Loss

Fl
can simply be obtained by summing them up.

This final gradient can then be used to update Fl as illustrated in the figure.
The summation requires each device to communicate their partial sums to a
common device that performs the summation and transmits the updated weight
gradients back to each tile. To minimize overhead, the summation can be done
once for all filters in all layers at the end of the training cycle of a single batch.



6 Pranav Rama et al.

(a) Fusing without grouping (b) Fusing with grouping

Fig. 3: Fusing and grouping illustration.

4.2 Fusing and Grouping

As introduced earlier, matching tile partitions in the forward and backward
passes are fused across all convolutional and pooling layers in that they stay local
on the same device. Fig. 3 illustrates the fusing and grouping across 2 layers for
a forward pass (the backward pass is symmetrical). The center region of each
tile (dark green) is fused across layers, stays local on the device and is never
exchanged with other devices (in both forward and backward passes). However,
the devices also exchange some neighboring boundary data (light green portion)
required to complete the convolutions/pooling. Fig. 3(a) shows the case without
grouping where boundary exchange occurs at the input to both layers thus having
minimal redundant computation and storage. By contrast, Fig. 3(b) shows the
case where the exchange only occurs at the input to first layer. However, in
this case, the amount of shared boundary data per tile increases leading to
more storage and redundant computation on each tile. In other words, grouping
reduces the redundant computation and storage at the expense of additional
communication and synchronization overhead, i.e. there is a trade-off between
computation and communication.

Fig. 4 illustrates a granular view of communication at the group boundary.
Each device both transmits and receives the required boundary data to/from
up to 8 neighboring tiles, where devices transmit data from the internal border
of the locally computed tile while receiving boundary data external to it. These
exchanges happen at the group input layers in forward and backward passes.
The double ended arrows at the feature map in device 1 indicate that similar
exchanges occur with the other 7 neighboring tiles, if present. The same happens
at group input delta maps and feature maps across all tiles.

The span of each tile (i, j) with boundary data at layer l can be represented
by its top-left (x1l,(i,j), y1l,(i,j)) and bottom-right (x2l,(i,j), y2l,(i,j)) co-ordinates.
Furthermore, we represent the filter/kernel size and stride at layer l as Kl ×Kl

and Sl, respectively. A group starting at the input to layer s and ending at the
input to layer e (output of layer e− 1) is represented as a tuple (s, e).



Distributed CNN Training on Mobile and Edge Clusters 7

Fig. 4: Group boundary communication illustration.

Suppose we have a grid of tiles and want to create the grouping profile in the
forward pass. To derive required boundary and tile data, we begin at the feature-
map output of the last layer of the last group and recursively traverse backward
among intermediate layers and groups. For any group, (s, e), the feature map
output of the last layer of the group, e, is partitioned length and breadth wise
equally among the tiles. Then, we recursively compute the dependent region
in the previous layers to produce the required feature map for each tile in each
intermediate layer l within the group, where s < l ≤ e. Given the tile co-ordinates
at the input to layer l (output of layer l−1), the required tile region at the input
to layer l − 1 is

x1l−1,(i,j) = x1l,(i,j) × Sl−1 − ⌊Kl−1

2
⌋ (1a)

y1l−1,(i,j) = y1l,(i,j) × Sl−1 − ⌊Kl−1

2
⌋ (1b)

x2l−1,(i,j) = x2l,(i,j) × Sl−1 + ⌊Kl−1

2
⌋+ (Sl−1 − 1) (1c)

y2l−1,(i,j) = y2l,(i,j) × Sl−1 + ⌊Kl−1

2
⌋+ (Sl−1 − 1) (1d)

for convolutional layer l − 1.
For the backward pass, computing group boundary data bounds is similar

except that we go in the opposite direction, i.e. we start computing the co-
ordinates from the delta gradient map output of the first layer of the network.
For any group, (s, e), given the tile co-ordinates of the delta map at intermediate
layer l, where s ≤ l < e, the tile co-ordinates of the delta map at layer l + 1 are

x1l+1,(i,j) = ⌈
x1l,(i,j) − ⌊Kl

2 ⌋
Sl

⌉ (2a)

y1l+1,(i,j) = ⌈
y1l,(i,j) − ⌊Kl

2 ⌋
Sl

⌉ (2b)

x2l+1,(i,j) = ⌊
x2l,(i,j) + ⌊Kl

2 ⌋
Sl

⌋ (2c)



8 Pranav Rama et al.

Fig. 5: Execution time split and speedup with number of tiles and devices.

y2l+1,(i,j) = ⌊
y2l,(i,j) + ⌊Kl

2 ⌋
Sl

⌋ (2d)

for convolutional layer l.
After completing the forward and backward passes, the partial filter gradients

are computed by convolving the corresponding delta gradients with the feature-
maps as described in Section 4.1. For this, just ⌈Kl

2 ⌉ element wide boundary
data would be required in the feature-map at layer l. However, this data is
already gathered during the forward pass and can be re-used to avoid additional
communication for this step.

5 Experiments and Results

We implemented our distributed training approach in C on top of the Darknet
framework and validated our model using the first 16 layers of the Yolov2 CNN. A
reference implementation is available at [20]. Our primary experimental test-bed
consisted of 6 Raspberry-Pi3 devices with quad-core ARM Cortex-A53 CPUs
and 1 GB of RAM each running a Linux kernel. Each tile was executed as an
individual Linux process and we allocated upto 4 tiles per device to run on
the 4 cores. The devices were all part of a local 100Mbps Ethernet network.
For communication between processes within the same device, we used shared
memory and local sockets to minimize overhead. TCP network sockets were used
to communicate between processes across devices on the network. More details
and results can be found in [21].

5.1 Speedup

Fig. 5 shows the execution times for a single training sample (batch size of 1)
across different combinations of devices and cores ranging from 1 to 6 devices,



Distributed CNN Training on Mobile and Edge Clusters 9

Fig. 6: Memory utilization with number of tiles.

each using 1 to 4 of their cores. The number of tiles in a given device/core com-
bination is the total number of cores across all devices. Each tile was scheduled
as an independent process. Results are broken down into execution times for
back-propagation and forward inference computations, communication times for
filter weight updates and boundary data exchanges, and input/output communi-
cation overheads. A single device with 1 tile (1 process - single core) took around
7 minutes to finish the training cycle (forward pass, backward pass and weight
updates) on a single sample. The speedup for the different configurations are
shown with respect to this baseline. Since filter weight updates are only done
once per batch, we show 2 speedup factors for a baseline batch size of 1, where
weight communication overhead dominates, and for infinite batch size where
weight update cost is negligible compared to other components and excluded.
The actual speedup should be between these 2 depending on the batch size.

We observe that computation times dominate for small number of devices
and tiles, but scale down with increasing number of devices and cores (more
tiles). Due to the shared memory implementation within devices, there is no
overhead for communication between tiles on the same device. Consequently,
the communication overhead is uniform across different numbers of cores with
the same number of devices. However, boundary data and weight communica-
tion overhead increases with more devices, where overhead for weight updates
dominates for a larger number of devices. This limits speedup for small batch
sizes and can outweigh savings in computation times, where 6 devices perform
worse than 4. At the same time, we do observe strong scaling in the speedup for
large batch sizes. We will further analyze results with varying batch size later.

5.2 Memory

Fig. 6 shows the peak physical memory utilization per tile measured while the
training cycle of a single sample on the Raspberry-Pis was in progress. The
figure also shows the split of the major memory usage components - feature



10 Pranav Rama et al.

Fig. 7: Comparison with batch size and grouping.

maps, delta maps, filters and other implementation-related components such as
a preallocated buffer for intermediate computation, communication buffers and
code space. The memory consumption is ∼400 MB per tile and drops to ∼50 MB
per tile when using 24 tiles. In general, by tiling in a finer granularity, memory
requirements per tile and hence per device are reduced. However, while memory
requirements for feature, delta maps and other buffers decreases linearly with the
number of tiles, filter memory usage is constant leading to diminishing returns.

5.3 Batching and Grouping

We further conducted experiments on a batch of samples of various sizes. We also
performed a comparison between grouping profiles - with and without grouping.
Fig. 7 shows the result of running the training cycle on a batch size of 1 to 8
samples. We conducted this experiment using all 4 cores on the 6 Rapberry Pi
devices using 24 tiles. We observe that synchronizing every layer (no grouping)
performs significantly better than with grouping across all batch sizes. In case of
the Raspberry Pis, total execution time is dominated by computation times or
weight updates, and the improvement comes from optimization of computation.
Computation costs scale proportionally with the number of samples in the batch,
but the filter updates are done once per batch and take roughly the same time
across batch sizes. As such, the relative contribution of weight update costs
decreases with larger batches. At the same time, the boundary communication
and input/output communication overhead increases with larger batch size, but
is negligible compared to computation cost. Overall, Raspberry-Pi devices are
computation limited and hence the synchronizing at every layer to minimize
redundant computation is optimal.



Distributed CNN Training on Mobile and Edge Clusters 11

Fig. 8: 2-tile experiment with GPUs.

5.4 GPU experiments

We also conducted experiments on a pair of Nvidia-Jetson Nano boards to illus-
trate the case of a communication-limited setup. Each board had a quad-core
ARM Cortex-A57 CPU and a Maxwell architecture GPU with 128 CUDA cores.
The 2 boards were connected using a 10Gbps Ethernet link.

Fig. 8 illustrates the single batch training cycle time for different batch sizes
for a 2-tile setup (each board training on the GPU). On the GPUs, the infer-
ence plus backprop computation is much faster than on the Pis, thus making
communication and synchronization overhead the limiting factor. In this case,
the difference in boundary communication overhead among different groupings
though small is noticeable. The case of with grouping performs better than
without grouping since it synchronizes less frequently. On the GPUs, the extra
redundant computation in the grouping case has negligible effect on computa-
tion time. By contrast, the extra communication and frequent synchronization,
which includes transferring data to and from the GPU incurs a relatively larger
overhead. Hence, it is more optimal to synchronize less frequently, and grouping
is optimal.

6 Summary and Conclusions

In this paper, we proposed a method for distributed mobile and edge training
in feature-map dominated convolutional and pooling layers. Our method ex-
ploits locality in convolutional layers to partition feature maps and the delta
gradients in forward and backward passes. It parallelizes training at a granu-
lar level within each sample. All intermediate layers are fused in that the core
feature maps and delta maps remain local on the device with only a small over-
head of shared data communication between neighboring tiles. Layers are further
grouped based on a grouping profile that affects tradeoffs between computation,



12 Pranav Rama et al.

shared boundary communication and synchronization overhead. A grouping op-
timization algorithm including cost model and additional results are discussed
in [21]. A reference implementation of our approach is available at [20]. Future
work will explore weight partitioning techniques and how to extend our approach
to other weight-dominated layers.

References

1. W. Ren et al., “A Survey on Collaborative DNN Inference for Edge Intelligence,”
arXiv preprint arXiv:2207.07812, 2022.

2. Yousefpour et al., “All one needs to know about fog computing and related edge
computing paradigms: A complete survey,” JSA, vol. 98, p. 289–330, Sep. 2019.

3. R. Stahl et al., “DeeperThings: Fully Distributed CNN Inference on Resource-
Constrained Edge Devices,” IJPP, vol. 49, no. 4, pp. 600–624, 2021.

4. L. Zhou et al., “Adaptive Parallel Execution of Deep Neural Networks on Hetero-
geneous Edge Devices,” in SEC, 2019.

5. J. Du et al., “A Distributed In-Situ CNN Inference System for IoT Applications,”
in ICCD, 2020.

6. T. Li et al., “Federated Learning: Challenges, Methods, and Future Directions,”
IEEE Signal Processing Magazine, vol. 37, no. 3, pp. 50–60, 2020.

7. Z. Zhao et al., “DeepThings: Distributed Adaptive Deep Learning Inference on
Resource-Constrained IoT Edge Clusters,” IEEE TCAD, vol. 37, no. 11, pp. 2348–
2359, 2018.

8. J. Mao et al., “MoDNN: Local distributed mobile computing system for Deep
Neural Network,” in DATE, 2017.

9. S. Zhang et al., “DeepSlicing: Collaborative and Adaptive CNN Inference With
Low Latency,” IEEE TPDS, vol. 32, no. 9, pp. 2175–2187, 2021.

10. M. Alwani et al., “Fused-layer CNN accelerators,” in MICRO, 2016.
11. R. Stahl et al., “Fused depthwise tiling for memory optimization in TinyML deep

neural network inference,” in TinyML Research Symp., 2023.
12. Z. Wang et al., “CoopFL: Accelerating federated learning with dnn partitioning

and offloading in heterogeneous edge computing,” Comput. Netw., vol. 220, 2023.
13. T. Sen and H. Shen, “Distributed Training for Deep Learning Models On An Edge

Computing Network Using Shielded Reinforcement Learning,” in ICDCS, 2022.
14. P. P. Ray, “A review on TinyML: State-of-the-art and prospects,” JKSUCI, vol. 34,

no. 4, pp. 1595–1623, 2022.
15. M. M. Grau et al., “On-device Training of Machine Learning Models on Microcon-

trollers With a Look at Federated Learning,” in GoodIT, 2021.
16. J. Lin et al., “On-device training under 256KB memory,” in NeurIPS, 2022.
17. H. Cai et al., “TinyTL: Reduce Activations, Not Trainable Parameters for Efficient

On-Device Learning,” in NeurIPS, 2020.
18. H.-Y. Chiang et al., “MobileTL: On-device Transfer Learning with Inverted Resid-

ual Blocks,” in AAAI/IAAI/EAAI, 2023.
19. Y. Chen et al., “Exploring the Use of Synthetic Gradients for Distributed Deep

Learning across Cloud and Edge Resources,” in HotEdge, 2019.
20. http://github.com/SLAM-Lab/Dist-CNN-Training.
21. P. Rama et al., “Distributed convolutional neural network training on resource-

constrained mobile and edge clusters,” UT Austin, Tech. Rep. UT-CERC-24-02,
May 2024.


