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Abstract. A rising research challenge is running costly machine learn-
ing (ML) networks locally on resource-constrained edge devices. ML net-
works with large convolutional layers can easily exceed available mem-
ory, increasing latency due to excessive OS swapping. Previous memory
reduction techniques such as pruning and quantization reduce model ac-
curacy and often require retraining. Alternatively, distributed methods
partition the convolutions into equivalent smaller sub-computations, but
the implementations introduce communication costs and require a net-
work of devices. Distributed partitioning approaches can, however, also
be used to run in a reduced memory footprint on a single device by sub-
dividing the network into smaller operations. In this paper, we extend
prior work on distributed partitioning into a memory-aware execution on
a single device. Our approach extends prior fusing strategies to allow for
multiple groups of convolutional layers that are fused and tiled indepen-
dently. This enables trading off overhead versus data reuse in order to
specifically reduces memory footprint. We propose a memory usage pre-
dictor coupled with a search algorithm to provide optimized fusing and
tiling configurations for an arbitrary set of convolutional layers. When
applied to the YOLOv2 object detection network, results show that our
approach can run in less than half the memory, and with a speedup of
up to 2.78 under severe memory constraints. Additionally, our algorithm
will return a configuration with a latency that is within 6% of the best
latency measured in a manual search.
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1 Introduction

There has been a proliferation of complex machine learning (ML) problems in
edge applications. Running ML applications on the edge can increase privacy,
improve latency, reduce cloud communication, and require less energy [9]. How-
ever, most state-of-the-art ML networks have significant memory requirements
that can exceed available memory on a resource-constrained edge device. Even
with virtual memory enabled, exceeding memory bounds comes with severe la-
tency penalties due to excessive swapping between memory and disk. As a result,
it is a significant challenge to run networks locally on an edge device.

Numerous commonly used neural networks contain a series of convolutional
layers to process image data. Many convolutional layers, especially layers earlier
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in the network are feature-heavy, with a large amount of memory needed for
inputs and outputs. Previous approaches to reduce memory footprints such as
pruning [1], [6] and quantization [5], [7], [11] modify the network model, require
re-training, and experience accuracy degradation. Meanwhile, distributed solu-
tions such as [8] and [12] rely on partitioning convolutions into separate tasks
and running them on separate devices, but they require additional communica-
tion and a network of devices. However, such approaches can also be used to
reduce the memory footprint of a computation locally on a single device.

In this paper, we extend the fused tile partitioning (FTP) approach out-
lined in [12] to present a memory-aware fusing and tiling (MAFAT) strategy
for the execution of large feature-dominated early stages of convolutional neural
networks (CNNs) on a single resource-constrained edge device. The FTP ap-
proach from [12] combines all layers into one large layer group and fuses them
all together in order to reduce communication. By contrast, MAFAT creates two
smaller layer groups and tiles and fuses them separately. The smaller fusings
and different tilings resulting from more layer groups can reduce the maximum
memory footprint of a process. We also develop a model to predict the maximum
memory usage of a given MAFAT configuration. Finally, using this predictor,
we propose a search algorithm that uses this predictor to return an optimized
MAFAT configuration that fits within the provided memory requirement.

Results of applying our approach to a CNN used for object detection [10] show
that MAFAT configurations can provide a speedup of up to 2.78 over the original
model in tighter memory constraints. Furthermore, our search algorithm returns
a configuration with a latency that is within 6 percent of the best measured
latency for any configuration.

2 Motivational Example

Figure 1 depicts the latency and number of swapped bytes versus a decreasing
memory constraint from running the first 16 layers YOLOv2 [10] on a Raspberry
Pi3. The first 16 layers of the network are used because they are the most feature-
heavy and present the greatest feature challenge to memory. Using MAFAT
configurations on weight-heavy later layers will not have any added benefit and
a single partition or other methods should be considered if these layers exceed
memory requirements, which is out of the scope of this paper. In addition to
memory for weights and input and output features, Darknet allocates scratch
space in order to do a layer calculation. This scratch space can go as high as
100MB for some layers. The largest combined memory is for layer 2. If that
layer is loaded in its entirety, the processor needs at least 135 MB of memory
for YOLOv2 to run cleanly.

Figure 1 shows a significant increase in the latency of an inference at tighter
memory constraints. The CNN exceeds memory constraints at over 192 MB.
Once the program goes over memory, the OS must swap data between the
memory and disk. This swapping process has a demonstrated adverse affect
on latency. As the memory constraints continue to shrink, the inference latency
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Fig. 1. The original YOLOv2 implementation for varying memory constraints.

increases dramatically, with a 16MB memory constraint over 6.5× slower than
the original. This motivates a need for optimizations as presented in this paper
to reduce the latency overhead due to swapping.

3 Related Work

The primary approaches to reduce memory on a single device are pruning and
quantization. Pruning attempts to remove a portion of the model, such as weights
in a filter, but this can result in asymmetric computations that can be difficult
to implement [1]. Entire filters can be removed, too, such as in [6]. In both
of these cases, pruning severely degrades accuracy and expensive retraining is
required afterwards. Quantization of a CNN [5], [7] reduces the number of bits
necessary to store weights. Similarly, retraining is often needed to get better
accuracy [11]. Quantization also removes model information, i.e. it also degrades
the accuracy of the model. By contrast, MAFAT is able to preserve model ac-
curacy while decreasing the memory footprint. MAFAT is orthogonal to both
pruning and quantization. Because the model is preserved, MAFAT can easily
be applied to a pruned or quantized network. Combinations of MAFAT and
quantization or pruning have the potential to shrink the memory footprint of
convolutions significantly. Some prior work has considered memory balancing
and swapping overhead when scheduling multiple DNNs on edge devices [2].
By contrast, MAFAT is aimed at reducing memory swapping overhead for each
individual DNN.

In addition to pruning and quantization, partitioning of models across mul-
tiple devices has been applied in distributed settings. For example, MoDNN [8]
uses a one-dimensional partitioning scheme where a map-reduce algorithm can
execute many of the partitions in parallel. DeepThings [12] uses Fused Tile Par-
titioning (FTP) to split layers into an even 2D grid and combines them via a
fusing process in order for corresponding grid sections to be executed indepen-
dently. Furthermore, DeepThings proposes data reuse and scheduling approaches
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such that adjacent partitions can use previously computed data where possible.
However, all of these works are designed for computation among several devices.
Because of this, communication is a primary consideration. Since MAFAT uses
only a single device, alternative techniques such as partial fusing and re-tiling
after a certain number of layers can result in more optimal memory usage.

4 Memory-Aware Fusing and Tiling (MAFAT)

This paper proposes memory-aware fusing and tiling (MAFAT) [4], which builds
on the fused tile partitioning (FTP) method from [12]. FTP allows a set of
convolutional layers to be split into multiple smaller sub-convolutions. Each sub-
convolution consists of a tile of the original input and output feature maps,
where the sub-convolutions combine and fuse corresponding tiles across all layers
to execute as one unit. Instead of fusing all layers to minimize communication,
MAFAT separates layers into up to two layer groups to provide additional control
over memory usage. For example, if the early layers take up significantly more
data than the later ones, it may make sense to tile the earlier layers more heavily.
In this case, there is less memory being used in the earlier layers, but there is no
significant added overhead in later layers from unnecessary tiling. Additionally,
for a smaller number of fused layers, the overlap incurred will be less. This means
that there is less redundant computation, and the grid of earlier layers does not
have large task size disparities. In a standard 3 × 3 fused tiling with data reuse,
the middle task does not reuse any data. Because of this, it is much larger than
the surrounding tiles and its memory usage is disproportionately larger.

MAFAT currently takes any set of n convolutional and maxpool layers. The
layers are configured in a single layer group with all layers fused or two layer
groups separated by a cut < n. This cut is the point at which the two layer
groups are split. The first layer group will be from layer 0 to layer cut− 1, and
the second rom layer cut to layer n. In this way, each layer is part of one of the
two layer groups. There is some additional overhead for storage of additional
parameters be stored, and the cut layer must be merged in memory and re-tiled.

Potential cuts are determined in a memory-aware fashion. Collecting all the
tiled data into a single input tensor and re-tiling can be memory intensive. To
make this as efficient as possible, the cuts were chosen to be directly after max-
pool layers. After these layers, the tensors are significantly smaller, as they have
effectively just been down-sampled. In the YOLOv2 example, these potential
cuts are at layers 2, 4, 8, and 12. For the two layer groups, the tiling for each
group is independent of the other. This means that the first layer group could
be tiled at 5 × 5 while the second could be tiled at 2 × 2. The potential tilings
were all even on height and width, and were 1× 1, 2× 2, 3× 3, 4× 4, and 5× 5.

4.1 Predicting Maximum Memory Usage

We also developed a predictor of the maximum memory usage of a given MAFAT
configuration based on the maximum memory usage of the largest tile in each
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Algorithm 1: Memory predictor for a single layer group

1 predictLayerGroup(N,M,W,H,F,S, top, bottom)
2 max← 0;
3 for i ∈ 0..N do
4 for j ∈ 0..M do
5 l← bottom;
6 while l ≤ top do
7 win, hin, wout, hout, cin, cout ← Grid(l, N,M,Wl, Hl, i, j);
8 scratch← wout × hout × cin × (Fl)

2/Sl;
9 input← win × hin × cin;

10 output← wout × hout × cout;
11 mem← scratch + output + (input× 2);
12 if mem > Max then
13 Max← mem;

14 l← l − 1;

15 return Max + bias;

layer group. Layer groups generally exceed memory towards the beginning and
middle of their execution. It was found that the factors that best predicted
maximum memory usage were the largest combination of: (1) scratch space of
tile t, (2) input to tile t, (3) output of tile t, and (4) output of previous layer to tile
t. While other parameters such as the size of data reuse and size of tasks waiting
in the processing queue were considered, these were found to negatively affect
the ability of the predictor to accurately predict memory usage. Additionally,
weights for all layers in the fusing are assumed to be in memory constantly, as well
as a significant amount of additional overhead devoted to network parameters,
system variables, and other data. A constant bias term of 31 MB was empirically
determined to account for these. This bias depends on the operating system,
network and hardware platform.

A memory prediction is obtained as the maximum over predicted memory
usage for all tiles in all layer groups in a given cut configuration. The memory
predictor for one layer group is shown in Algorithm 1. This algorithm predicts the
maximum memory usage of a given layer group and tiling strategy. The inputs
to Algorithm 1 are the parameters of a layer group spanning from layer top to
layer bottom with an N ×M tiling strategy, as well as a network configuration
W,H,F,S with each layer l having width Wl and height Hl, filters of size Fl

and a stride of Sl. The stride is how much the filter moves each computation.
The Grid function in Algorithm 1 calculates and returns the dimension of a tile
in layer l including additional overlap following the traversal function in [12].

Figure 2 depicts the predicted memory limit and the measured limit for a
single layer group and for the MAFAT configurations with a cut at layer 8 and a
2×2 bottom tiling strategy. The measured limit was determined using the setup
in Section 5 by decreasing the memory constraint in 1 Megabyte increments until
swaps were observed. The predictor performs well in both cases.
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Fig. 2. Memory usage prediction for fully fused 16 layers (left) and for 8 fused layers
with a 2x2 fused tiling on layers 9-16 (right).

4.2 Configuration Algorithm

To determine the ideal MAFAT configuration, Algorithm 2 performs a greedy
search over a subset of the configuration space to find the configuration with the
fewest tiles. Its goal is to return a near-optimal configuration of the network such
that the end latency will be as small as possible. The inputs to the algorithm
are the layer parameters and the memory limit. The relevant layer parameters
are width (Wl), height (Hl), filter size (Fl), stride (Sl), and the total number
of layers to be fused (n). The vector of potential cuts (Cuts) here is specific
to YOLOv2, due to the location of the maxpool layers. A further restriction
of the search space is based on a manual configuration. Specifically, no latency
advantage was found for cuts at layer 4, and when there were cuts made, the
best performing second layer group tiling was 2×2. The tiling strategies are also
currently limited to even squares.

Algorithm 2 returns the number of tiles for the first layer group LG1, the
cut cut, and the tiling for the second layer group LG2. It performs the modified
search starting at the highest memory value, and slowly creates more even con-
figurations that require more overhead, but fit in smaller memory footprints. If
a configuration is found that fits in the memory limit, there is no unexplored
configuration in the search space that will produce a higher memory predic-
tion. Therefore, the latency returned should be the lowest. If virtual memory is
enabled, this algorithm assumes that any additional swaps from the operating
system will be slower than picking a better configuration. If no configuration
can be found, then the algorithm returns the most even configuration: 5×5 into
2 × 2 with a cut at layer 8.

5 Experimental Results

We applied MAFAT to the YOLOv2 object detection network. The measure-
ments were all carried out on a Raspberry Pi3 running Raspian. The Raspberry
Pi was equipped with a quad-core 1.2GHz ARM Cortex-A53 processor and a to-
tal memory size of 1 GB. During the measurements, we restricted the Raspberry
Pi to a single core and a variable amount of memory from 16MB up to 256MB.
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Algorithm 2: Configuration search algorithm

1 getConfig(W,H,F,S, n,MemoryLimit)
2 Cuts← {16, 12, 8};
3 T iles← {1, 2, 3, 4, 5};
4 LG2 ← 4;
5 N2 ← LG2; M2 ← LG2;
6 l← getMaxLayer(NetworkParams);
7 for cut ∈ Cuts do
8 for tile ∈ T iles do
9 LG1 ← tile;

10 N1 ← LG1; M1 ← LG1;
11 if predictMem(N1,M1, N2,M2,W,H,F,S, cut, n) < MemoryLimit

then
12 return LG1, LG2, cut;

13 return LG1, LG2, cut

A separate measurement thread was created to measure system swaps in and
out of memory each second. This gives information about likely places for a
bottleneck. This was achieved using the vmstat command. Due to the vmstat

only working at a full system level, it was crucial to keep the test environment
free of as many other running processes as possible. Despite this, there is some
noise in the swap measurement.

To measure memory usage of just the process, an additional thread was used
that polled the process using the ps command. This way we could filter out
other processes without as much added system noise. This was useful in seeing
more accurately where the swapping would line up with the program.

Both of these threads however added some additional memory usage and
could potentially increase swaps or create conflicts with the process. Therefore,
when the latency for the process was calculated, internal measurements were used
via the chrono.h library in C++ for accurate, wall clock times at a millisecond
granularity. This also allowed for precise measurements at the beginning and end
of an inference. In this paper, the latency was measured before the input image
was loaded and after the first 16 layers had executed.

To mimic a smaller edge device with minimal effort, this paper used control
groups. Specifically, the cpuset and memory control groups were used to restrict
the experiment to a single core and a smaller amount of memory, respectively.
This allowed for finer adjustments of memory constraints without the need for
rebooting. For predictability and reproducibility, as few active processes as pos-
sible were running during final latency measurements.

5.1 Manual Exploration

To develop the algorithm, and to better understand the configuration perfor-
mance, we first performed a manual search of different possible configurations.
In the following, a MAFAT configuration with a top layer group tiling of N1×M1,
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Fig. 3. Latency for different tilings cut at layer 8 (left) and for different cuts (right).

a cut a layer c, and a bottom layer group tiling of N2 × M2 is written as
N1 × M1/c/N2 × M2 Using prior knowledge, the search space of possible cuts
was restricted. As mentioned before, intermediate data is reduced the most by
cutting the network into two layer groups at layers 4, 8, and 12, or no cut at all.
In each case, all layers up to and after the cut were fused together. Additionally,
the final layers were split into either 2 × 2 or 3 × 3 tiles for reducing maximum
memory while still allowing for faster processing times. The tilings for the top
layer group were swept from 1 × 1 to 5 × 5.

Figure 3 shows the effect of top and bottom layer group tiling strategies on
measured latency across a shrinking memory limit. In the graph on the left,
each line represents the tiling of the top layer group, which is then cut at layer 8
and fed into a 2 × 2 bottom layer group. Results demonstrate the superiority of
finer tilings in smaller memory footprints, but also the additional overhead they
generate when more memory is available. For high memory values in excess of
200 MB, the 1x1 tiling is best. On the other hand, using a 4 × 4 or 5 × 5 tiling
scheme yields much better results for lower memory values.

The graph on the right shows the effect of cut placement and bottom layer
group tiling strategy. The top tiling for this line is the tiling strategy (from 1×1
to 5 × 5) that yields the smallest latency for the given cut and bottom tiling.
The best top tiling for each configuration is also annotated onto the graph at
each memory point. For example, the min/8/3× 3 line represents a cut at layer
8 with the best top tiling and a 3×3 bottom tiling. It can therefore be viewed as
the optimized top tiling for a given cut and bottom tiling. As seen in the graph,
middle cuts at layer 8 have the fastest latency at tighter memory restrictions. It
is also clear that the absence of a cut becomes costly at tighter restrictions due
to additional layer overlapping. This figure also reinforces top tiling results to
show that finer tilings perform better at tighter memory restrictions.

Figure 4 compares the best measured latency obtained by the MAFAT man-
ual exploration and search algorithm to the original latencies measured from
the standard Darknet implementation across decreasing memory limits. It is
clear that MAFAT outperforms Darknet and reduces the latency and swaps.
Interestingly, the minimum configuration for the algorithm, 5 × 5/8/2 × 2, is
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Fig. 4. Darknet latency compared to algorithm and minimum latency measured.

predicted to have a maximum memory usage of 66 MB. Currently, therefore,
there is not a MAFAT configuration that does not run in less than a 66 MB
footprint without swapping. However, as memory restrictions get even tighter,
the latency increases at a much slower rate than Darknet. This shows that the
MAFAT configuration also performs much better under swapping due to more
even memory usage across the execution of the network.

5.2 Algorithm Performance

Figure 4 also plots the measured performance for the configurations produced
by our optimization algorithm. The differences between the algorithm and the
best measured are shown to be minimal. The algorithm’s specific configuration
compared to the best measured can be found in Table 1. To evaluate algorithm
performance, the outputs of the algorithm were calculated for the memory values
in the table. This allowed for easy comparison with the existing measured data.
Notably, the latency values are quite similar and are all within 6 percent of the
best measured from manual exploration. Given how the algorithm relies on prior
knowledge and some of the data already recorded, this level of performance is

Table 1. Comparison of configurations and latencies.

Best Measured Algorithm
MB Configuration Latency (ms) Configuration Latency (ms)

256 1x1/NoCut 15065 1x1/NoCut 15065
192 1x1/NoCut 15023 1x1/NoCut 15023
128 2x2/12/2x2 16757 2x2/NoCut 16795
96 3x3/4/2x2 17048 2x2/12/2x2 17543
80 3x3/8/2x2 16968 3x3/8/2x2 16968
64 4x4/8/2x2 17753 5x5/8/2x2 18679
48 5x5/8/3x3 19749 5x5/8/2x2 19991
32 5x5/8/2x2 22215 5x5/8/2x2 22215
16 5x5/8/2x2 31095 5x5/8/2x2 31095
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not surprising. However, the intuition behind the algorithm and the basic results
should help apply it in other domains.

6 Summary and Conclusions

This paper presents memory-aware fusing and tiling (MAFAT), an expansion of
existing fusing and tiling strategies in order to make feature-heavy convolutional
neural network layers feasible on smaller edge devices. Originally, edge devices
would have increasing latency measurements due to swapping data between the
memory and disk. Many edge devices cannot spare 200 MB to run early convo-
lutional layers, so we break up each layer into sub-convolutions that can then be
grouped together and executed in a much smaller memory footprint. This paper
shows that certain configurations of tiling can offer a respectable 1.37 speedup
compared to the naive approach at 64 MB and up to a 2.78 speedup with only 16
MB available. Additionally, the intuition and structure behind the memory us-
age of the process is explored, and a simple algorithm is proposed to predict the
maximum memory usage of a MAFAT configuration. Given this, an appropriate
configuration can be returned for a user to use that is within 6 percent of the
best measured latency from a manual exploration. The code used to take these
measurements can be found at [3]. This research area can be further improved
by use variable tiling, where each end tile is not the same size to allow for re-
duced task size variation and thus smaller footprints. We also want to generalize
this algorithm to other tiling strategies and other CNNs. Currently, the end user
must pre-determine what cuts make sense.
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