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ABSTRACT
We develop the first non-intrusive power-based malware detection
method to ensure security of boot in an embedded system with the
Intel Xeon-class CPU. Existing approaches to power-based malware
detection are not effective for boot sequence because they consider
a full power trace non-discriminately. Yet in a long boot power trace,
security-relevant information is contained in a limited time interval.
We demonstrate that the features based on optimal strategically-
chosen phases are better in classification accuracy than those based
on the full trace, under different feature and classifier selections.

We investigate two threats: an untrusted device and a compro-
mised kernel. We evaluate a supervised approach, requiring prior
knowledge of malware, and an unsupervised approach, capable of
zero-day detection. Identifying optimal phases for each attack leads
to 10% improvement in average accuracy, compared to baseline
classifiers trained with full trace features directly. We demonstrate
an ensemble classification scheme which can be constructed with a
reduced training cost (a 4.3X reduction). The classifier ensembles
optimal phase classifiers of a limited, representative set of attacks.
Our results show that the ensemble classifier improves average ac-
curacy by 5% (to 77%) compared to the baseline full trace classifiers.

KEYWORDS
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1 INTRODUCTION
An increasing number of malicious exploits poses serious threat
to embedded systems deployed in various applications including
general purpose computers [3], mobile phones [9], medical devices
[8] and SCADA systems [18]. Investigation of more effective mal-
ware detection techniques against the increasingly sophisticated
malware is needed.

Signature-based malware detection extracting fingerprint from
the executable has been commonly adopted. However, polymorphic
and metamorphic malware which changes code in each infection,
while keeping the same functionality, can easily evade the signature-
based detection techniques [1, 21]. To overcome the limitation, de-
tection techniques based on program behavior observation have
been investigated [4, 24]. Among the various behavior-based de-
tection techniques, those monitoring the out-of-band side channel
information, such as power consumption or EM emanation, appear
promising [3, 5, 8, 9, 11, 16, 17, 27, 30].

The boot sequence is the initial process executed on any com-
puting system. Said process is especially important to an embedded
system since it is responsible for loading the kernel image and set-
ting up the operating system properly by executing a fixed set of
tasks. Boot is often the target of malicious exploits [7, 12, 15]. The
adversary attempts to tamper the components involved in boot,
including the bootloader [7] or BIOS [15], with the goal of gaining
control of the operating system or for other malicious goals. Con-
ventionally, various secure boot schemes that rely on cryptographic
primitives have been proposed [10, 20, 22]. Since the boot sequence
is well-defined, secure boot schemes aim to check integrity of the
next stage before stage transition. This integrity checking is con-
ventionally achieved by digital signature schemes [22] or hash
functions [10]. Although these schemes provide strong security
guarantees, implementation of a cryptographic module, execution
of the cryptographic primitive, and the storage of the signatures
incurs a large overhead that embedded systems can often not af-
ford. Furthermore, several attack vectors based on fault injection
[2] and malicious hardware insertion [13] have been reported to
circumvent secure boot schemes. In contrast, power-based malware
detection has the potential to overcome these challenges. However,
no prior work has investigated the feasibility of using power-based
malware detection for boot security.

Compared to other approaches, which require dedicated soft-
ware or hardware support, power-based malware detection is non-
intrusive and has low overhead. The basic premise is that a device’s
power signature relies on the behavior of the workload. Power-
based malware detection techniques require the following steps:
(1) instrumenting front-end sensors to measure power draw of the
device, (2) training a classification algorithm using power traces un-
der benign and malicious workloads (under supervised approach),
and (3) predicting in real-time whether the test workload is benign
or malicious using the observed power trace.

Power-based malware detection using machine learning (ML)
has been shown to achieve high performance in various applica-
tions. In [8], Clark et al. split the entire power trace into equal
length segments and extract time and frequency domain features
from each segment. The authors treat each segment as an indi-
vidual instance non-discriminately, and train ML classifiers with
both benign and malicious samples. The investigated malware ex-
hibits periodic pattern across the entire trace, and good accuracy is
achieved. In [3], Bridges et al. extract and characterize features from
the entire trace of a benign workload. They construct an ensemble
of one-class anomaly detectors each based on a single feature. Their
approach demonstrates great performance on the general-purpose



Table 1: A summary of leading works for power-based malware detection.

Methodology Work Target Attack Platform System Operating
Frequency

Sampling
Rate Algorithm

Direct
Workload

Classification

Clark et al. [8]
Untargeted malware for
clinical and industrial

environments

Compounder,
Substation
computer

664MHz 250KS/s 3-NN, RF,
MLP

Bridges et al. [3] Rootkits
General
purpose
computer

NA 59S/s
Detector
ensemble,

SVM

Caviglione et al. [5] Covert
channels Smartphone NA 1S/s NN, DT

Wei et al. [27] Micro-architectural
attacks SoC 2GHz 200S/s LSTM,

ocSVM

This work Boot sequence
tampering

Multi-core
server-class
CPU system

1.6GHz 2KS/s SVM, LR,
DT, ocSVM

Instruction
Sequence

Construction

Liu et al. [17] Instruction sequence
modification Microcontroller 11MHz 1.25GS/s HMM

Park et al. [19] Instruction sequence
modification Microcontroller 16MHz 2.5GS/s SVM,

Naive Bayes

Yilmaz et al. [29] Instruction sequence
modification

FPGA with
processor 50MHz 25.6MS/s Direct profile

comparison

computer rootkits which leave fingerprint across the entire power
trace. In [5], Caviglione et al. investigate both regression-based
and classification-based approaches to detect covert channels on
a mobile phone. The regression-based approach trains a regressor
based on the power trace of a clean state, and labels anomaly if
the real-time power trace deviates too much from prediction. The
classification-based approach trains a classifier based on features
extracted from each segment split from the entire trace. Both are
demonstrated to be effective on covert channels which leave repet-
itive patterns on a clean state power trace. In [27], Wei et al. aim
to detect anomaly in the various benign workloads with short and
repetitive patterns, such as face detection and room navigation. The
authors perform the Discrete Wavelet Transform (DWT) on each
segment of a full trace. One-class SVMs and LSTMs are trained
for classification which use transformed segments as features. The
detector is demonstrated to be effective on both ordinary and power
mimicry malware, which emulates the power signature of benign
applications. These prior works secure run-time applications which
typically have short, regular or periodic behavior. Compared to ear-
lier work on power-based malware detection, the boot process consists
of multiple unique stages and is much longer.

Instead of distinguishing malware directly by power signature,
another line of work aims to first construct the underlying instruc-
tion sequence from power measurements [17, 19, 29]. The recovered
instruction sequence is compared against known benign workloads.
These methods require expensive measurement setups, and have
been demonstrated only on relatively simple target system, such
as microcontrollers operating at tens of MHz [17, 19]. Although
instruction-level tracking can provide superior detection accuracy,
it is challenging to use this idea on the boot sequence. Boot is much
longer than the commonly profiled benchmarks. The cost to track
every instruction along the entire sequence is expensive. It also has
not been demonstrated on a modern multi-core system operating at

GHZ range frequency, which is our target platform. Therefore, we
follow the direct workload classification methodology established
by [8], [3], [5] and [27]. We summarize the works mentioned above
in Table 1.

We develop a detector for the boot process of the Linux operat-
ing system which is widely used in embedded systems. Existing
approaches are not suitable for the boot sequence because
they consider a full power trace non-discriminately. In re-
ality, boot sequence tampering signature is contained in a
limited time interval out of a long signal. We propose to ex-
tract features from the strategically-chosen phases of a trace to
improve classification accuracy. In order to identify such phases
efficiently, instead of performing an exhaustive brute-force search
on the full trace, we generate a limited set of candidate time inter-
vals, guided by the events in the boot process. The optimal phase
is picked from this set of candidate intervals. This methodology is
generalizable to different systems, as the boot sequence remains
fixed across different deployments.

Two threat models are investigated. The first is the untrusted
device threat model, which considers untrusted devices plugged in
a confidential system. The security of a confidential system can be
compromised by untrusted devices. The untrusted devices, owned
by an adversary, that are attached to the confidential system can
inject malware [14], exfiltrate sensitive data [23], or even physically
damage the system [25].We aim to detect untrusted devices plugged
in the system at boot time. Since the operating system loads device
drivers for the plugged-in devices during the boot process, we
emulate the untrusted devices threat model by loading un-intended
device drivers during boot.

The second model is the compromised kernel threat model and
it considers the system boots into a compromised kernel. Linux
kernel is the core of the Linux operating system and is responsible
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for managing the processes and hardware in the system. A compro-
mised Linux kernel can expose the system to various threats, such
as privilege escalation, information leakage, and denial-of-service
[6, 28]. The threat we consider is that the adversary tampers with
the boot loading process, such that a compromised kernel is loaded.
The second model is emulated by loading a Linux kernel of a dif-
ferent version. We design an experimental set-up for collecting
power traces from an embedded system with an Intel Xeon-class
CPU to demonstrate the effectiveness of the power-based malware
detection.

Several commonly adopted training approaches in literature are
evaluated, under the supervised approach, requiring prior knowl-
edge of malware, and the unsupervised approach that is able to
achieve zero-day detection. We show that features extracted from
the optimally chosen phases are significantly better than those
based on the full-trace analysis in both supervised and unsuper-
vised settings. The conclusion holds for different combinations of
features and classifiers. We show that the use of statistical features
with Support Vector Machine (SVM) or Logistic Regression (LR)
leads to optimal performance. We show that the technique out-
performs other leading classification-based and regression-based
techniques used in [8], [3], [5] and [27]. We investigate multiple
cases with varying amounts of deviation from the baseline boot, for
each threat model, and derive the operating range of the technique.

Our results show that even a single-driver difference anomaly
can be detected with 72% accuracy. The minimal kernel version
difference anomaly can be detected with 97% accuracy. We compare
our method to other techniques used in [8], [3], [5] and [27]. Other
work shows sub-optimal performance even with large differences
in observed workloads: we achieve a 9% and a 1% improvement
in accuracy under the supervised setting, for 20-driver/maximum
kernel version difference, respectively, and a 21% and a 13% im-
provement under the unsupervised setting. Across different attacks,
using optimal phases for each attack leads to a 10% improvement
in average accuracy, compared to the baseline classifiers trained
with the full-trace features directly. We demonstrate an ensemble
classification scheme, which can be constructed with a reduced
training cost (a 4.3X reduction). The classifier combines optimal
phase classifiers of a limited, representative set of attacks. Our re-
sults show that the ensemble classifier improves average accuracy
by 5% (to 77%) compared to the baseline full-trace classifiers.

2 ML-BASED DETECTION USING BOOT
POWER: OVERVIEW

The basis for our methodology is the premise that deviation in boot
process is reflected in the power signature, and that such change
can be identified via an optimally constructed detection technique.

Boot process has unique characteristics compared to various
run-time programs. Fig.1 shows an averaged power trace of Linux
boot for kernel 4.15.0-45-generic with a default set of device drivers.
We see that the power signature has long duration compared to
run-time workloads, large variance, and a non-periodic pattern.

However, stealthy malware that tampers with the boot process
can only leave its footprint at specific stages instead of the entire
boot sequence. Thismeans that the deviation in power signature due
to the change of the boot process can only occur in limited highly
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Figure 1: A typical power trace of Linux boot has long dura-
tion, large variance, and a non-periodic pattern.
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Figure 2: A high-level view of different phases and events in
Linux boot.

localized time intervals. These characteristics of boot result in the
classifiers, that are trained on the entire trace non-discriminately to
perform poorly. This is because the power signature of other events,
along the entire trace, can hide the critical signal of malware.

To improve classification accuracy, we propose to focus on sev-
eral optimally selected phases, that represent the largest deviations
in power signature due to a change in boot. We explore different
feature extraction techniques and identify the statistical features to
be the optimal. We categorize the techniques to train the classifier
into supervised and unsupervised approaches. The supervised ap-
proach involves the power signatures of both benign and malicious
workloads in training data set, which requires prior knowledge
of potential malware [5, 8, 16]. The approach trains the classifier
with instances of all possible labels. The unsupervised approach
only uses power signatures of benign workloads in the training set,
aiming to achieve zero-day detection of potential malware [3, 5, 27].
In this case, the classifier is trained with instances of only a single
class.



2.1 Identifying Critical Time Intervals
The first set of features we select are based on statistical information
about the time series. Global mean, variance, and higher-order
statistical moments have been shown to be effective for time series
classification. We use the following features:

• Mean, variance, skew and kurtosis
• Root-mean-square (RMS)
• Maximum and minimum values
• Interquartile range (IQR)

The first 4 features, corresponding to the first to the fourth
moment, capture the shape of the power distribution. The RMS
captures the average of the sum of the squared power values. The
max/min values take the largest/smallest power values in a given
time interval, and the IQR calculates the difference between the
75% and 25% quantiles of the data, which reflects the spread of the
power values.

We further explore features based on the Principal Component
Analysis (PCA) and the Fast Fourier Transform (FFT). For the PCA-
based features, we select the components that preserve over 90%
of the training set’s variance. For the FFT-based feature extraction,
we first divide the (0, 𝑓𝑠/2) frequency range equally into 8 intervals,
where 𝑓𝑠 stands for the sampling frequency. Then, we use the energy
from each frequency interval of the power signal’s spectrum as
features.

We find the optimal time intervals by searching over a set of can-
didate intervals reflecting different phases of boot (Details presented
in Section 3.3). We first partition the entire trace into multiple inter-
vals, each corresponding to a different phase of the boot sequence.
Afterwards, we do a finer adjustment, and partition the kernel load
interval, which is the most critical point in boot, to obtain a more
localized characterization of the stage. Finally, we train a classifier
based on the features extracted from each interval, and select the
time intervals yielding the best classification performance.

2.2 Linux Boot
The Linux boot process consists of 4 phases: the Basic Input Out-
put File System (BIOS), the boot loader, the kernel, and the system
startup, Fig. 2. The BIOS phase executes the firmware code to ini-
tialize hardware, and reads the boot loader code from the Master
Boot Record (MBR), which is the first sector of the boot hard disk.
Next, the boot loader code is executed and the kernel and initial
ram disk (initrd) file system is loaded. The initrd file system of the
kernel is a temporary file system in memory which constrains the
size of the kernel and allows to load the necessary device drivers
dynamically. The kernel phase executes the init script in the initrd
file system which loads device drivers and locates the root file sys-
tem. Finally, in the system startup phase, the real root file system
is mounted and the init processes start to execute. These processes
perform initialization and begin the startup events to bring up a
fully functional operating system.

3 EXPERIMENTS
3.1 Threat Models
We emulate the untrusted devices threat model by loading un-
intended device drivers during boot. We pick 20 randomly-chosen

Table 2: Extra device drivers and Linux kernel versions.

Extra Device Drivers Kernel Versions
bfusb, bluecard_cs, btusb, 4.15.0-45-generic
clk_pwm, amdgpu, panel, 4.15.0-91-generic

horizon, pata_marvell, altera-msgdma, 4.15.1
mic_x100_dma, leds-regulator, dell_rbu, 4.16.0

apple-gmux, thunderbolt, phy-qcom-usb-hs 4.4.0-21-generic
hwmon-vid, max34440, gpio_charger,

netconsole, thunderbolt-net

Table 3: Kernel source code changes increasewithkernel ver-
sion difference. Baseline: kernel 4.15.0-45-generic.

Kernel Version 4.15.0-91 4.15.1 4.16.0 4.4.0-21
Changed Lines 197960 126517 540217 3599691

pre-compiled device drivers supported by the operating system. We
configure the system to load a varying number of said drivers in
addition to the default drivers. The boot of the default set of device
drivers is selected as baseline. Ubuntu 16.04.6 LTS is used as the
operating system. The pre-compiled device drivers for a specific
kernel version can be accessed under the directory /lib/modules/
<kernel_version>. At boot time, the system will load the extra
drivers listed in file /etc/modules, in addition to the default drivers.
Table 2 shows all the device drivers used in the study.

We emulate the compromised kernel model by configuring the
system to boot into a kernel version different from the baseline ver-
sion. We install 5 different versions of Linux kernel and arbitrarily
select one as the baseline. Table 2 shows the kernels used. Ubuntu
OS uses GRUB2 as the boot loader. To configure the boot loader to
automatically load a specific kernel image at boot time, we modify
the GRUB_DEFAULT entry to the desired kernel version in file
/etc/default/grub. Next, we run the update-grub command to
update the boot loader configuration. The selected kernel version
is loaded in subsequent boots.

While the boot sequence deviation in the untrusted devices threat
model can be quantified by the number of unintended drivers,
the measure of deviation in the compromised kernel model is not
straightforward. Since the Linux kernel version number indicates a
modification to current kernel source code, we assume that the boot
sequence deviation is proportional to the kernel version difference.
We run the diff command to quantify the number of lines of kernel
source code that were changed, using kernel 4.15.0-45-generic as
baseline, and summarize results in Table 3. In general, the number
of changed lines increases with kernel version difference.

3.2 Experimental Setup
We use a Portwell PCOM-B700G Computer On Module (COM)
housing a 8-core Intel Xeon D-1539 CPU running at 1.6 GHz with
16GB DDR4 RAM. This COM sits on a PCOM-C700G carrier board
which provides power connectivity and additional peripheral inter-
faces. We take power measurements from the 12V power rail, which
supplies the CPU and memory system. In order to obtain power
measurements, we splice the power rail and instrument an Adafruit
INA169 analog DC current sensor breakout board in series. The
breakout board consists of a 0.1Ω shunt resistor and a current sense
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Figure 3: Power trace differences for two threat models. The
largest deviation from baseline appears in kernel and sys-
tem startup phases.

amplifier measuring voltage drop across the resistor. We capture
amplifier output with a Picoscope 2408B oscilloscope.

We capture a single power trace for each run of Linux boot at
a 2KS/s sampling rate. The data buffer is configured to store 250
seconds of power samples. We note that the actual boot sequence
takes less than 250 seconds to finish. For example, with kernel 4.15.0-
45-generic the time between launching the reboot command and
displaying the login screen is about 65 seconds, corresponding to
time interval 10s to 75s in Fig. 1. We configure a larger data buffer
size in order to capture the power signature of more system startup
events and guarantee one entire boot process finishes within the
250-second interval, since we observe the system will halt for a
while for some runs of boot after launching reboot command. The
halt behavior appears randomly in the boot runs and power traces
of such runs are discarded in data analysis.

3.3 Extracting Features from Selected Time
Interval

We now describe our methodology for finding time intervals with
the largest power signature deviation produced by boot modifica-
tion. For illustration, we consider the cases producing the largest
deviation to baseline. In the untrusted device model, 20 extra dri-
vers are loaded (we call it TM1-20-driver case). In the compromised
kernel model, the kernel with the largest difference, kernel 4.4.0-21-
generic is loaded (we call it TM2-kernel-4 case). Each training set
consists of approximately 200 boot power traces, and each test set
consists of approximately 90 boot power traces. Both data sets have
similar number of benign and malicious boot runs. Fig. 3 shows
the averaged power traces of benign and malicious boot runs for
both TM1-20-driver case and TM2-kernel-4 case. We observe that
in both cases the largest divergence of power signatures occurs in a
small time range within the kernel and system startup phases. This
supports our hypothesis that the boot attacks leave a signature only
in a limited time interval out of the long signal.

We first pre-process each power trace by removing the global
minimum, i.e. background power. Next, we apply a moving average
filter with a window size of 500 samples to reduce noise and smooth
the time series.

We then reduce the search space to a set of candidate time inter-
vals based on actual boot events. Optimal features are found via an
extensive grid search on the interval set.

Table 4: Performance of models trained with features
from different time intervals in TM1-20-driver case
(Accuracy/ROC-AUC). Optimal phase features are signifi-
cantly better than full trace or sub-optimal phase features.
Optimal interval: (40, 60), (60, 90).

Interval (0, 250) (0, 75) 1-window
avg.

2-window
avg. Optimal

SVM 0.73/0.76 0.74/0.74 0.75/0.69 0.82/0.89 0.86/0.95
ocSVM 0.61/0.54 0.73/0.75 0.63/0.66 0.64/0.66 0.82/0.92
Avg. 0.67/0.65 0.73/0.75 0.69/0.68 0.73/0.78 0.84/0.94

Table 5: Performance of models trained with features
from different time intervals in TM2-kernel-4 case
(Accuracy/ROC-AUC). Optimal phase features are sig-
nificantly better than full trace or sub-optimal phase
features. Optimal interval: (40, 52), (52, 75 or 90 or 95).

Interval (0, 250) (0, 75) 1-window
avg.

2-window
avg. Optimal

SVM 0.99/1.00 0.97/0.98 0.95/0.98 1.00/1.00 1.00/1.00
ocSVM 0.87/0.99 0.72/0.74 0.78/0.87 0.90/0.95 1.00/1.00
Avg. 0.93/0.99 0.84/0.86 0.87/0.93 0.95/0.98 1.00/1.00

We use the said optimal features to train several ML classifiers.
For a supervised setting, we perform experiments with the Sup-
port Vector Machine (SVM), Logistic Regression (LR), and Decision
Tree (DT). For each trace from a test set, we perform the above
pre-processing steps. We adopt one-class SVM (ocSVM) for the
unsupervised learning setting. To train ocSVM, we remove traces
of the malicious runs from the training sets of both TM1-20-driver
and TM2-kernel-4 cases.

We now describe how to generate the set of candidate time in-
tervals, noting that a similar process can be applied to different
systems, since the boot process executes a well-defined sequence of
tasks independent of a specific deployment. We start by partitioning
the entire time window into two time intervals: from launching
to when the OS is ready for login, (0s, 75s), and the rest of system
startup events, (75s, 250s). We further partition the launch to login
window (0s, 75s) into two intervals: one corresponding to BIOS
and boot loader phases, and the other corresponding to kernel and
system startup phases. As the single-window time interval provides
a nice localized view of the boot trace, we explore finer-grained lo-
calization. We split the single-window interval of kernel and system
startup phase into two concatenated time intervals, and extract fea-
tures individually from each. Themain intuition comes from the fact
that the two phases involve different boot events, such as loading
device drivers and mounting root file system, and the observation
that the power samples corresponding to the two phases have a
large variation. Evaluating two phases as a whole cannot precisely
capture tiny malware signature within each individual phase, due
to the large cross-phase variance. By concatenating features from
each window of the double-window interval, we can better monitor
the activities within the phases and improve classifier sensitivity
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Figure 5: Performance of models trained with different ML pipeline configurations in TM1-20-driver case and TM2-kernel-4
case.
to malicious samples. Specifically, we split the (40s, 75s) time inter-
val. Since there is no clearly defined break point between the two
phases, we sweep the location of break point starting from 50s until
60s with a step of 2s. This results in 6 double-window time intervals,
Fig. 4a. Finally, we adjust the upper bound of the (40s, 75s) time
interval to control the amount of information regarding system
startup events. We sweep the upper bound from 70s until 95s with
a step of 5s. For each resulting single-window time interval, we
repeat the above process to generate multiple double-window time
intervals. We finally obtain a set with 46 candidate time intervals
(including single-window intervals, double-window intervals and
full trace). Fig. 4b illustrates the described candidate time interval
generation process.

For each candidate time interval, we train SVM, LR, DT, and
ocSVM. We extract the statistical features, PCA features, and FFT
features, described in Section II, from each single-window inter-
val and the doubled number of features from each double-window

interval (concatenated by the features of each window). The im-
plementation of the classifiers is based on the Python scikit-learn
package. For SVM and ocSVM, we use different kernels (Linear,
RBF, and Poly) and perform a grid search on the remaining tunable
parameters (regularization, kernel coefficient, and polynomial de-
gree). For LR, we vary the solver type, regularization strength and
stopping criteria. For DT, we vary the splitter type, split quality
measure, and the parameters to control the regularization strength.
The process results in 54 SVMmodels, 150 LR models, 80 DTmodels
and 60 ocSVM models for each candidate time interval. We show
the performance of the optimal models in Fig. 5a and Fig. 5b.

As shown in Fig. 5a and Fig. 5b, the models trained with the
strategically-chosen phase features are better than the models
trained with the full-trace features, regardless of the feature selec-
tion and the classifier used. Using statistical features with SVM/LR
is optimal, with a near 90% accuracy for the TM1-20-driver case.
The models trained with the FFT features extracted from the full
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trace show the worst performance. We anticipate this is due to the
non-periodic nature of the boot sequence. Since the optimal SVM
model and the optimal LR model have close accuracy, we keep the
ML pipeline, which adopts statistical features and SVM (ocSVM
for the unsupervised setting), for all remaining experiments. Table
4 and 5 elaborates the performance of SVM and ocSVM models
trained with features from different time intervals. We report the
interval with the highest average accuracy and ROC-AUC score
over the SVM model and ocSVM model as the optimal time interval.

Beyond the superior accuracy against the full trace models, we
also observe in Table 4 and Table 5 that models trained with optimal
time intervals show a higher accuracy compared to models trained
on the (0s, 75s) time interval, which corresponds to the duration
of the actual boot sequence from launching to when the OS is
ready for login. This confirms that the localized extraction of features
improves model performance. In addition, we observe that models
trained with features from single-window time intervals are sub-
optimal compared to double-window time intervals in general. The
identified optimal phases for both TM1-20-driver and TM2-kernel-4
cases are double-window time intervals. The superior performance
is not simply a result of the increased number of features. The main
contribution comes from the further partition of the kernel and
system startup phase of boot sequence. We observe that the power
signature of kernel and system startup phases itself has a large
variation across time since power-consuming system events such as
disk access andmounting root file system are involved in the phases.
These events dominate the statistics of power samples, and hide
the small change in power caused by malware executing in limited
locations. In contrast, we can reduce the effect of those power-
dominant events by having a more localized view of power sample
statistics achieved by the further partition to kernel and system
startup phases. The features extracted from double-window time
interval are more sensitive to the boot sequence changes resulting
in a higher classification accuracy.

The optimal time intervals of TM1-20-driver case and TM2-
kernel-4 case have different break points for the kernel phase and
system startup phase. The TM1-20-driver case has a longer interval
for kernel phase. This is due to the event of loading device drivers
which happens in later kernel phase is more critical to the TM1-20-
driver case, while the TM2-kernel-4 case is more sensitive to the
start of the kernel phase where the initrd file system is being loaded.
The initrd file system is kernel specific. The system startup events
after OS is ready to login also help to distinguish malicious cases.
The optimal time intervals for both cases include system startup
information beyond 75s. We can further observe that SVM mod-
els out-perform ocSVM models, as prior knowledge of malicious
instances is included in the training process.

3.4 Comparison with Algorithms in Related
Work

We compare our approach, where features are extracted from op-
timally selected phases, to other approaches demonstrated in lit-
erature, where the full trace is considered non-discriminately. To
represent supervised approaches, we implement the algorithms of
[8], [5] and [3]. The algorithm in [8] first splits an entire trace into
5-second segments. Each segment corresponds to a single training

Table 6: Supervised learning approaches: accuracy

Algorithm TM1-20-driver TM2-kernel-4
Statistics of optimal interval

+ SVM [This work] 0.86 1.00

Statistics of each segment
+ Random Forest [8] 0.72 0.72

Statistics of each segment
+ Neural Net [8] 0.68 0.69

Statistics of each segment
+ Decision Tree [5] 0.67 0.57

Statistical features of full trace
+ SVM [3] 0.77 0.99

instance, and its label is determined by whether the workload is
benign or malicious. Features are extracted from both time and fre-
quency domains. Random Forest and Neural Networks are used for
classification. The algorithm in [5] creates segments using a sliding
window over the full trace. Features, extracted from each segment,
are fed into a Decision Tree classifier. In [3], sophisticated features
of the time series, such as permutation entropy and data-smashing
distances, are utilized besides statistical moments. An SVM is used
for classification. We apply the same data pre-processing steps (re-
moving background power and applying a moving average filter)
on traces from the training set of both TM1-20-driver and TM2-
kernel-4 cases, train the algorithms, and report their accuracy in
Table 6.

Similarly, for unsupervised approaches, we implement the algo-
rithms from [27], [3] and [5]. These techniques assume no prior
knowledge of malware during training phase. They are typically
based on one-class SVMs or regression. In [27], the full trace is first
broken into segments, and a Discrete Wavelet Transform (DWT) is
performed on each segment. In the bag-of-words technique [26],
each transformed segment of the full trace is first converted to
a code-word, and the histogram of the code-words is used as a
training feature. In the LSTM regression technique, a vanilla LSTM
regressor is trained using the transformed segments. The regressor
predicts the last value of each segment using the previous values
of the segment. During inference, if the difference between the
actual and predicted power is greater than a threshold, the work-
load is classified as an anomaly. The techniques in [3] construct
an ensemble of classifiers with a single feature. Each classifier is
based on the mean and standard deviation of the corresponding
feature from the benign workloads. The majority voting is used
when classifying a workload. Finally, we evaluate Decision Tree
based regression on each power trace segment [5]. We follow the
same steps as described in section 3.3 to pre-process data. Accuracy
of models used in prior works are shown in Table 7.

As shown in Table 6 and Table 7, both the classification-based
and regression-based detection techniques demonstrated in related
work show sub-optimal performance on boot. The main reason is
that these algorithms consider the full power trace non-discriminately.
While these algorithms can achieve excellent performance on reg-
ular run-time workloads, which have periodic patterns and a rel-
atively short duration, they are not suitable for boot where the
largest deviation in signature due to tampering occurs only in a
few time intervals.



Table 7: Unsupervised learning approaches: accuracy

Algorithm TM1-20-driver TM2-kernel-4
Statistics of optimal interval

+ ocSVM [This work] 0.82 1.00

DWT + bag-of-words
+ ocSVM [27] 0.61 0.87

DWT + vanilla LSTM [27] 0.50 0.53
Statistical features of full trace
+ single feature ensemble [3] 0.55 0.47

Decision Tree Regression
on each segment [5] 0.46 0.52
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Figure 6: Averaged power traces of benign and malicious
boot runs for untrusted devices cases. The power signature
difference increases with the number of extra device drivers
to load.

3.5 Operating Range: Untrusted Devices
We explore the operating range of power-based malware detection
for attacks in which a smaller number of extra device drivers is
loaded during boot. Specifically, we investigate the use of 1, 5,
10 and 15 extra device drivers. We load an increasing number of
device drivers following the order in Table 2, to create an increasing
amount of deviation from baseline. For the single extra device driver
case, we collect power traces where one of the bfusb, bluecard_cs,
btusb, clk_pwm and amdgpu drivers (the first 5 drivers in Table 2)
is loaded during the boot process. A similar number of power traces
is collected for each driver. The data set construction for each case
follows similar specifications as TM1-20-driver case (Section 3.3).
Fig. 6 shows the averaged power traces of benign and malicious
boot runs.

Fig. 6 shows that power signature deviation from baseline in-
creases as the number of extra device drivers to load increases. As
before, the largest deviation in power signature occurs in the ker-
nel and system startup phases. We further evaluate the achievable
detection performance, using the same data pre-processing and
optimal time search as in the TM1-20-driver case. The optimal time

Table 8: Model performance of untrusted devices cases
(Accuracy/ROC-AUC).

Driver Amount 1 driver 5 drivers 10 drivers 15 drivers
Optimal 0.72/0.75 0.80/0.85 0.76/0.82 0.85/0.90

SVM (0, 250) 0.66/0.64 0.67/0.66 0.68/0.71 0.73/0.76
(0, 75) 0.69/0.70 0.65/0.62 0.73/0.72 0.70/0.75
Optimal 0.67/0.67 0.75/0.84 0.76/0.83 0.85/0.92

ocSVM (0, 250) 0.56/0.54 0.61/0.57 0.57/0.62 0.59/0.56
(0, 75) 0.67/0.70 0.69/0.65 0.64/0.62 0.67/0.66

70

Cases with
significant deviation 
across entire trace

SVM: 0.72
ocSVM: 0.67

SVM: 0.97
ocSVM: 0.80

Figure 7: Averaged accuracy over SVM and ocSVM models
for different attacks. Strategically-chosen features perform
better than full-trace features overall.

interval is selected via the average accuracy and ROC-AUC score
over the SVM and ocSVM. We summarize the results in Table 8 and
plot the operating range in Fig. 7.

Overall, the classifier performance increases as the number of
extra drivers increases. The classifier with 1 extra driver achieves
a 72% accuracy in supervised training, and 67% accuracy in unsu-
pervised training. The classifier with 15 extra drivers achieves a
85% accuracy in both approaches. This is within expectation since
different amount of change is introduced to boot. Models trained
with optimal features out-perform models trained with a full power
trace, Fig. 7. The run-to-run variance of noisy boot power trace
causes some instances to be placed at incorrect sides of decision
boundary. This leads to non-perfect detection accuracy, and pos-
sible evasion of attacks which only leave small signature in boot
trace. We expect a finer measurement setup will boost accuracy
and will explore the EM-based malware detection in future work.

3.6 Operating Range: Compromised Kernel
Now we continue exploring operating range for the compromised
kernel threat model. We investigate cases where kernel 4.15.0-91-
generic, 4.15.1 and 4.16.0 are loaded during the boot process. Kernels
with smaller version difference to the baseline are expected to show
smaller deviation in boot sequence. The data set construction is
similar as before. We plot the averaged benign and malicious boot
power traces of the various compromised kernel cases in Fig. 8.

We observe that the signature deviations of kernel 4.15.1 and
kernel 4.16.0 from baseline are significantly greater than that of
4.15.0-91-generic and even 4.4.0-21-generic demonstrated in Fig.
3b. It takes longer for the boot loader to load kernel 4.15.1 and
4.16.0. However, among all kernel versions that we investigated,
kernel 4.4.0-21-generic has the largest version difference to baseline.
Although we observed that kernel code line changes increase with
kernel version difference in Table 3, it does not guarantee that
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Figure 8: Averaged power traces of benign and malicious
boot runs for compromised kernel cases. The power signa-
ture difference is kernel-specific.

signature deviation increases accordingly. Some specific changes
in code can cause larger deviation in boot behavior, such as kernel
4.15.1 and 4.16.0. Therefore, we cannot draw a clear conclusion that
signature deviation from baseline is proportional to kernel version
difference. We follow the same procedures as before to train the
model and select optimal time interval, and show the results in
Table 9 and plot the operating range in Fig. 7.

The optimal models achieve near perfect accuracy across the
compromised kernel cases, Table 9. The classifiers trained with fea-
tures from both selected time intervals or full power traces achieve
perfect or near perfect detection accuracy in kernel 4.15.1 and ker-
nel 4.16.0 cases. This is because the significant power signature
deviation from baseline over the entire time window. However,
the kernel 4.15.0-91-generic case exhibits similar behavior as the
previous cases: the models trained with optimal phase features
show significantly higher accuracy than the full trace features or
sub-optimal phase features. The reason is that the power signa-
ture deviation only occurs in limited phases and a localized feature
extraction increases SNR of the critical signal.

4 UNIFIED-WINDOW CLASSIFIER
While classifiers based on optimal features of each unique attack
have the highest detection accuracy, the complexity of training
increases with the number of attacks. In this section, we evaluate
the performance of a classifier which trains on a limited set of
attacks, identifies corresponding optimal intervals, and then adopts
features from the same time intervals across different attacks.

To monitor the entire boot sequence and leverage the advan-
tage of localized feature extraction, we train classifiers at optimal
phases of the attacks as well as the remaining phases of boot. The
classifier ensemble predicts anomaly if any phase predicts anomaly.
Specifically, we train 4 ocSVMs: one based on optimal phase of
TM1-20-driver case, one based on optimal phase of TM2-kernel-4
case, one based on BIOS and boot loader phase, and the last one
based on additional system startup events. The final prediction

Table 9: Model performance of compromised kernel cases
(Accuracy/ROC-AUC).

Kernel Version 4.15.0-91-generic 4.15.1 4.16.0
Optimal 0.97/0.99 1.00/1.00 1.00/1.00

SVM (0, 250) 0.78/0.86 0.99/1.00 1.00/1.00
(0, 75) 0.80/0.84 1.00/1.00 1.00/1.00
Optimal 0.80/0.86 1.00/1.00 1.00/1.00

ocSVM (0, 250) 0.71/0.72 0.99/1.00 0.99/1.00
(0, 75) 0.74/0.74 0.99/1.00 0.99/1.00

BIOS and Boot 
Loader Phase

TM1-20-driver 
Optimal Phase

TM2-kernel-4 
Optimal Phase

Additional 
System Startup 

Events

Full Boot Trace

ocSVM1

(0, 250)

ocSVM2 ocSVM3 ocSVM4

(0, 40) (40, 60), (60, 90) (40, 52), (52, 90) (90, 250)

OR

Final Prediction

Figure 9: The construction of the classifier ensemble from
classifiers based on different boot phase.

is given by a logical OR of predictions from each classifier. Fig. 9
illustrates the classifier construction.

We train the classifier ensemble with TM1-20-driver and TM2-
kernel-4 cases. We first perform a grid-search for optimal phases,
using the same procedure as in Section III-C. The optimal models
deployed in the classifier ensemble are ocSVM2 and ocSVM3, Fig. 9.
Next, we search for hyper-parameters of the other ocSVMs to obtain
optimal accuracy. The same ensemble is adopted for other attacks.
We note that the classifier ensemble requires smaller training effort
compared to an earlier method, which determines optimal phase
and model for each attack. It only trains on two attacks (malicious
cases). For example, searching the optimal phases of the 9 untrusted
device and compromised kernel attacks requires training on 9×46 =
414 time intervals. In contrast, the classifier ensemble only trains
on 2 × (46 + 2) = 96 time intervals. This leads to a 4.3X reduction
in training effort.

Since we aim to evaluate a unified classifier across different at-
tacks, the baseline classifier is selected to be a fixed ocSVM model,
trained with features extracted from the full boot trace. Its hyper-
parameter is selected such that the optimal accuracy is achieved
for both TM1-20-driver and TM2-kernel-4 cases. We report the per-
formance of both the classifier ensemble and the baseline classifier
across all untrusted devices and compromised kernel attacks in
Table 10.

We observe that the classifier ensemble has worse performance
compared to the optimal classifier trained for each attack. It has a
8% drop in averaged accuracy. The degradation in performance is



Table 10: Model performance of the unified classifier and op-
timal classifiers: accuracy.

Malicious cases Classifier
ensemble

Full-trace
classifier

Optimal
classifier

1-driver difference 0.67 0.56 0.67
5-driver difference 0.74 0.53 0.75
10-driver difference 0.76 0.52 0.76
15-driver difference 0.77 0.53 0.85
20-driver difference 0.80 0.56 0.82

Kernel 4.15.0-91-generic 0.64 0.71 0.80
Kernel 4.15.1 0.85 0.36 1.00
Kernel 4.16.0 0.85 0.36 1.00

Kernel 4.4.0-21-generic 0.89 0.85 1.00
Average 0.77 0.55 0.85

due to non-optimal selection of features, and false positives from
the classifiers of other non-optimal phases. We also observe that
the classifier ensemble still out-performs the baseline full-trace
classifier in most cases. This confirms the advantage of the local-
ized feature extraction for Linux boot. Although the optimal time
intervals for the untrusted devices threat model, and those for the
compromised kernel threat model are different, we can combine
the optimal intervals from both classes to capture the anomaly
signature for both and improve the generality of the deployment.

5 CONCLUSION
In this work, we develop the first power-based malware detection
technique for Linux boot. We demonstrate the technique’s effec-
tiveness on an embedded system with an Intel Xeon-class CPU.
Conventional approaches are not effective for the boot sequence
because they consider a full power trace non-discriminately. In
a boot power trace, security-relevant information is contained in
a limited time interval of the full boot duration. We propose to
extract statistical features from the strategically-chosen phases of a
trace to improve classification accuracy. We investigate two threats:
an untrusted device and a compromised kernel. We evaluate a su-
pervised approach, requiring prior knowledge of malware, and an
unsupervised approach, capable of zero-day detection. Identifying
optimal phases for each attack leads to a 10% improvement in av-
erage accuracy, compared to the baseline classifiers trained with
full-trace features directly. We demonstrate an ensemble classifica-
tion scheme which can be constructed with a reduced training cost
(a 4.3X reduction). The classifier combines optimal-phase classifiers
of a limited, representative set of attacks. Our results show that
the ensemble classifier improves average accuracy by 5% (to 77%)
compared to the baseline full-trace classifiers.
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