
GAPS: GPU-Acceleration of PDE Solvers for Wave Simulation
Bagus Hanindhito

Dimitrios Gourounas
hanindhito@bagus.my.id
dimitrisgrn@utexas.edu

The University of Texas at Austin
Austin, TX, USA

Arash Fathi
Dimitar Trenev

arash.fathi@exxonmobil.com
dimitar.trenev@exxonmobil.com
ExxonMobil Technology and

Engineering
Annandale, NJ, USA

Andreas Gerstlauer
Lizy K. John

gerstl@ece.utexas.edu
ljohn@ece.utexas.edu

The University of Texas at Austin
Austin, TX, USA

ABSTRACT
Large-scale simulations of wave-type equations have many in-

dustrial applications, such as in oil and gas exploration. Realistic
simulations, which involve a vast amount of data, are often per-
formed on multiple nodes of an HPC cluster. Using GPUs for these
simulations is attractive due to considerable parallelizability of the
algorithms. Many industry-relevant simulations have characteris-
tics in their physics or geometry that can be exploited to improve
computational efficiency. Furthermore, the choice of simulation
algorithm impacts computational efficiency significantly.

In this work, we exploit these features to significantly improve
performance for a class of problems. Specifically, we use the dis-
continuous Galerkin (DG) finite element method, along with the
Gauss-Lobatto-Legendre (GLL) integration scheme on hexahedral
elements with straight faces, which then greatly reduces the num-
ber of BLAS operations, and simplify the computations to Level-1
BLAS operations, reducing the turn around time for wave sim-
ulation. However, attaining peak performance of GPUs is often
not possible in these codes that exacerbate bottlenecks caused by
data movement, even when modern GPUs enjoying the latest high-
bandwidth memory are being used.

We have developed GAPS, an efficient and scalable, GPU-
accelerated PDE solver for Wave Simulation, by using hardware-
and data-movement-aware algorithms. While significant speed-up
over CPUs can be achieved, data movement still limits GPU perfor-
mance. We present several optimization strategies, including kernel
fusion, Look-Up-Table-based neighbor search, improved shared
memory utilization, and SM-occupancy-aware register allocation.
They improve performance up to 84.15x over CPU implementations
and 1.84x over base GPU implementations on average. We then
extend GAPS to support multi-GPUs on multi-node HPC clusters for
large-scale wave simulations, and perform additional optimizations
to reduce communication overhead. We also investigate the perfor-
mance of several MPI libraries in order to fully overlap communi-
cation and computation. We are able to reduce the communication
overhead by 70%, and achieve weak-scaling over 128 GPUs.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICS ’22, June 28–30, 2022, Virtual Event, USA
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9281-5/22/06. . . $15.00
https://doi.org/10.1145/3524059.3532373

CCS CONCEPTS
• Computing methodologies → Massively parallel and high-
performance simulations; Parallel algorithms; • Applied com-
puting → Earth and atmospheric sciences.

KEYWORDS
GPU acceleration, HPC, wave simulation, discontinuous Galerkin,
parallel algorithms, optimization strategies
ACM Reference Format:
Bagus Hanindhito, Dimitrios Gourounas, Arash Fathi, Dimitar Trenev, An-
dreas Gerstlauer, and Lizy K. John. 2022. GAPS: GPU-Acceleration of PDE
Solvers for Wave Simulation. In 2022 International Conference on Supercom-
puting (ICS ’22), June 28–30, 2022, Virtual Event, USA. ACM, New York, NY,
USA, 13 pages. https://doi.org/10.1145/3524059.3532373

1 INTRODUCTION
Wave simulations have become one of the important topics in

science and engineering, with applications in seismic hazard miti-
gation [34], medical imaging [13, 26], deriving the composition and
features of the Earth’s subsurface [19, 22, 29], oceanography [8],
or military [16]. We investigate the performance of discontinuous
Galerkin (DG) discretizations, when used with the Gauss-Lobatto-
Legendre (GLL) integration scheme, on straight-faced hexahedral
elements. While the computational cost of these types of wave sim-
ulations is considerably lower than those on general meshes, they
are still prohibitively expensive for many high-fidelity, industry-
relevant applications. Furthermore, reducing the computational
costs, in turn, proportionally increases the impact of data move-
ment. With its unique challenges, we explore the performance of
the wave computations on state-of-the-art GPUs in this work.

Modern GPUs and emerging architectures can potentially make
such high-fidelity simulations feasible [1]. A key challenge in de-
signing efficient algorithms for this type of wave solvers in partic-
ular is taming the communication cost between multiple kernels
and devices: due to keeping the local computations at a bare mini-
mum, the ratio of communication to computation cost increases,
which makes it harder to hide the communication overhead by
using conventional strategies, such as overlapping communication
and computation.

In this work, we explore strategies to efficiently use GPUs for this
type of wave computations, and alleviate some of the key data move-
ment and communication challenges for developing GAPS, an effi-
cient and scalable high-performance GPU-accelerated PDE solver
for Wave Simulation. After briefly reviewing some key application
areas, the equations to be solved, and discretization algorithms
that are better suited on modern architectures, we study how the

https://orcid.org/0000-0002-8485-581X
https://orcid.org/0000-0002-5011-9646
https://orcid.org/0000-0002-6809-9815
https://orcid.org/0000-0001-6131-8467
https://orcid.org/0000-0002-6748-2054
https://orcid.org/0000-0002-8747-5214
https://doi.org/10.1145/3524059.3532373
https://doi.org/10.1145/3524059.3532373

ICS ’22, June 28–30, 2022, Virtual Event, USA B. Hanindhito et al.

overhead of data movement between off-chip and on-chip memory
limits GPU performance, and implement several dataflow optimiza-
tions to reduce data movement and improve performance. We also
improve multi-GPU performance by using asynchronous, CUDA-
aware MPI communication, which has recently become available.
These optimizations lead to significant performance improvements,
which can be applied to many similar applications, especially HPC
applications that are often memory-bounded [7] due to how the
large data is processed. Our contributions include:

• We use hardware-informed algorithms and mesh configu-
rations in developing GAPS for wave simulation in GPUs,
to exploit the available parallelism and achieve significant
speed-up over CPUs.

• We characterize and identify key bottlenecks of each GPU
kernel, based on which we develop advanced dataflow-aware
optimization strategies, including kernel fusion, LUT-based
neighbor search, improved shared memory utilization, and
SM-occupancy-aware register allocation. Our base GPU im-
plementation yields 45.67x average speed-up over CPU, and
the optimized GPU implementation yields 84.15x speed-up.

• We extend the scalability of GAPS as a multi-GPU, multi-
node wave simulator, investigate the performance of several
MPI libraries, and reduce the communication overhead. Our
implementation achieves perfect weak-scaling.

2 BACKGROUND
2.1 Full-wavefield Inversion

Full-wavefield inversion [11, 22] is the state-of-the-art method to
estimatematerial properties of the earth’s subsurface. The estimated
material properties can then enable multiple opportunities, such
as finding regions that contain hydrocarbons (e.g., in oil and gas
exploration), identifying safe zones for carbon sequestration, as
well as finding appropriate locations for storing hydrogen, which
is a promising source of low-carbon energy.

Seismic waves are used as probing agents of the subsurface [39]
in full-wavefield inversion (Fig. 1- a○). Once waves are artificially
generated, typically on the surface of the unknown medium, they
propagate through the medium. Due to the heterogeneity of the
subsurface medium, these waves change their amplitude and di-
rection of propagation. Some of the reflected waves travel back to
the surface (Fig. 1- b○), and are recorded by receivers (Fig. 1- c○).
One then seeks to estimate subsurface material properties based on
known input waves, known output waves at receiver locations, and
amodel that describes physics of thewave-motion in the subsurface;
this is an iterative process, which requires repeated simulations of
the wave-motion [9]. Therefore, fast and efficient wave-solvers are
among the crucial elements of this framework.

Due to its high computational cost, full-waveform inversion
was not used in realistic settings before the advent of petascale
computers. The increase in computational power due to modern
and emerging architectures can substantially improve the resolution
and fidelity of subsurface images.

2.2 Acoustic and Elastic Wave Equation
The acoustic wave equation is used to model the propagation of

compressional waves in fluids, air, earth, body tissues, and many

other domains. It is described by partial differential equations:

𝜕𝑝

𝜕𝑡
+ 𝜅∇ · v = 0, (1a)

𝜕v
𝜕𝑡

+ 1
𝜌
∇𝑝 = 0, (1b)

where 𝑝 = 𝑝 (𝑥,𝑦, 𝑧, 𝑡), and v = v(𝑥,𝑦, 𝑧, 𝑡), denote the pressure
and velocity fields, respectively; 𝜅 and 𝜌 are material properties;
∇ · v =

𝜕𝑣𝑥
𝜕𝑥 + 𝜕𝑣𝑦

𝜕𝑦 + 𝜕𝑣𝑧
𝜕𝑧 is the divergence of the velocity field, and

∇𝑝 =
𝜕𝑝
𝜕𝑥 i +

𝜕𝑝
𝜕𝑦 j +

𝜕𝑝
𝜕𝑧 k is the gradient of the pressure field.

The elastic wave equation models the propagation of compres-
sional and shear waves within the earth and elastic solids, and is
described by:

𝜕S
𝜕𝑡

= 𝜇 (∇v + ∇v𝑇) + 𝜆∇ · v I, (2a)

𝜕v
𝜕𝑡

=
1
𝜌
∇ · S, (2b)

where S and I represent the second-order stress and identity ten-
sors, and 𝜆, 𝜇, and 𝜌 are material properties.

Upon spatial (Fig. 1- d○, e○, f○) and temporal discretization of
Equation (1) or Equation (2), a time-marching scheme can be con-
structed, where solution values at a future time step (𝑛 + 1) can be
computed based on solution values at a current time step (𝑛):

𝑢𝑛+1 = 𝐴𝑢𝑛, (3)

where 𝑢 represents the unknown fields that we wish to compute
(e.g., 𝑢 = {S, v} in the elastic case) [10]. The action of 𝐴 on 𝑢

primarily consists of Level-1 BLAS operations when tensor-product
hexahedral elements are used.

We remark the electromagnetic wave equations [2], and the Euler
equations (not shown) are structurally similar to Equations (1-2),
and have similarity in computational schemes [36].

2.3 Discontinuous Galerkin Discretization
There are several methods that are commonly-used for the nu-

merical simulation of the seismic (i.e., acoustic, or elastic) wave
equation1. These are: the finite difference method (FDM), spectral-
element finite element method (SEM), and spectral-element discon-
tinuous Galerkin method (DG). All three methods enable efficient,
explicit time-stepping, which helps parallel scalability.

The FDM is the most commonly-used method in practice. It is
typically used on a uniform grid, which leads to fast Level-1 BLAS
computations. On the downside, it entails higher communication
cost than SEM and DG2; moreover, it is difficult to develop stable
high-order schemes for non-conforming finite-difference grids.

The SEM is typically used in regional seismology, where, due
to the large size of the studied region, topography needs to be
represented accurately [34]. Unstructured mesh generation could
be very challenging and labor-intensive. Furthermore, efficient and
accurate fluid-solid coupling is challenging for SEM.

1See [35] for a comprehensive review.
2Here, we have cross-node HPC communication in mind. While only information at
the surface of an element in DG is needed for ghost exchange, deep ghost exchange is
needed in FDM when high-order methods are used. High-order methods are necessary
to limit the dispersion error [18].

GAPS: GPU-Acceleration of PDE Solvers for Wave Simulation ICS ’22, June 28–30, 2022, Virtual Event, USA

Seismic Wave
Sources

Reflected
Waves

Hydrophones

Subsurface
Formation

Problem Domain

a

b

c

d

e

f

Mesh with
2x2x2 Elements

Element with
3x3x3 Nodes

Discontinuity

n

n

CPU_0
CPU_1
CPU_2
CPU_3

from CPU_1
from CPU_3

from CPU_2
Ghost Layer on CPU_0

g

h

CPU_0 Ghost Layer Array:

from CPU_1 from CPU_2 from CPU_3

CPU_0 Ghost Buffer Array:

to CPU_1 to CPU_2 to CPU_3

j

Elements
for Ghost
Buffer

Mesh
Distribution

DG SEM FDM

Inter-Element Communication PatternNon-Conforming Mesh Structure

i

Figure 1: Marine seismic survey is used to collect data for full-waveform inversion by generating seismic waves a○. Reflected waves b○ are
recorded by hydrophones c○. For computer simulations, the problem domain needs to be discretized into smaller elements d○, each of which
has a number of nodes e○. Due to DG discretization, there are discontinuities at the boundaries of the elements f○, and the elements need to
communicate with each other to solve them. The inter-element communication pattern comparison between DG, SEM, and FDM is shown in g○.
DG only needs information on the face of neighboring elements, SEM needs face and corner information of neighboring elements, and FDM
needs face and behind the face information of neighboring elements. To support larger problem sizes, the mesh is partitioned and distributed
into multiple CPUs or GPUs h○, where Ghost Exchange is needed i○. A non-conforming mesh can add resolution where it is needed, resulting
in computational efficiency j○.

We believe DG [15, 44] has a better chance of harnessing the
computing power of modern and emerging architectures: its com-
munication cost is lower than FDM and SEM3 (Fig. 1- g○) with
potential for further reductions; recently, robust and stable algo-
rithms for non-conforming DG discretizations (Fig. 1- j○) have been
developed [21]. For many industry-relevant DG wave simulations,
Level-1 BLAS operations constitute the bulk of the computations.
Therefore, we use DG in this work.

2.4 Gauss-Lobatto-Legendre Integration Scheme
The use of Gauss-Lobatto-Legendre (GLL) [33] integration on

straight-faced hexahedral elements reduces the total required BLAS
operations, and simplifies those operations into Level-1 BLAS. This
way, computing derivatives and interpolations at each spatial di-
rection decouples from other directions, and will rely on a small
subset of nodes. This is different than cases that rely on curvilinear,
unstructured, or octree meshes that use other integration schemes.

2.5 Data Movement
Although our DG-based discretization yields algorithms that

have higher data locality, data movement is still needed. We outline
the main forms of data movement in our DG algorithm:

2.5.1 Intra-Device Data Movement. Due to the limited capacity of
the on-chip memory [48], the data must be fetched from off-chip
memory to perform computations. If not orchestrated carefully,
excessive data movement between on- and off-chip memory limits
performance and increases energy consumption [41].

3Communication cost is the key bottleneck in many industry-relevant applications.

2.5.2 Inter-Device, Intra-Node Data Movement. The capacity of off-
chip memory is not sufficient to store larger-size problems, and
thus adding more devices (e.g., CPUs or GPUs) is a viable option.
The problem is now distributed over multiple devices and each
device needs to exchange data through the PCIe or NVLink bus.

2.5.3 Inter-Device, Inter-Node Data Movement. Eventually, a single
compute node may not be sufficient to support the number of
devices required to perform the computations. Therefore, using
multiple compute nodes becomes necessary. The network (e.g.,
InfiniBand) that connects the compute nodes is the weakest link out
of the three, and thus it potentially limits the overall performance.

2.6 Related Work
Several groups studied acceleration of DG discretizations on

GPUs. Chan et al. [4] used a single GPU to accelerate applications
that use hybrid curvilinear meshes. Gandham et al. [12] used GPU
to accelerate DG methods for solving shallow water equations.
Karakus et al. [20] used GPU to accelerate DG methods for the
unsteady incompressible Navier-Stokes equation. Mu et al. [30]
used arbitrary, high-order DG (ADER-DG) for solving 3D elastic
wave equation on GPUs, using unstructured tetrahedral meshes.
They reached speed-up of 24.3x for single-precision and 12.8x for
double-precision arithmetic on Nvidia Tesla C2075 GPU, compared
to a single-core version of their CPU code that ran on Intel Xeon
W5880. The work by Modave et al. [28] analyzed GPU performance
for acoustic and elastic models, using a nodal DG method. Finally,
the research by Hanindhito et. al. uses digital processing in-memory
(PIM) to improve the performance of wave simulation based on
DG discretization with GLL integration scheme [14]. Although the

ICS ’22, June 28–30, 2022, Virtual Event, USA B. Hanindhito et al.

result is promising, this emerging technology is not ready for de-
ployment in HPC cluster in the near future. Furthermore, finding
the optimized data layout to reduce inter-memory block data trans-
fers is not automated at this point. None of the aforementioned
works consider DG discretizations with GLL integration on straight-
faced hexahedral elements on readily available multi-GPUs HPC
cluster.

3 METHODS
3.1 Code Optimization and Verification

Table 1: Platform Hardware Configuration

Platform PowerEdge R740 IBM AC922
CPU

Model (# Sockets) Intel Xeon 8160 (2) IBM POWER9 (2)
Base/Turbo Clock 2.10GHz/3.70GHz 2.30GHz/3.80GHz

Total Cores/Threads 48/48 40/160
Inter-socket Link UPI 41.6GBps X-Bus 64GBps

GPU
Model NVIDIA Tesla V100
GPUs 2 4

Form Factor PCIe FLFH SXM2
Memory Type/Size HBM2/16GB HBM2/16GB
Memory Bandwidth 900GBps 900GBps
CPU-to-GPU Link PCIe 3.0 NVLink 2.0
GPU-to-GPU Link PCIe 3.0 NVLink 2.0

Computation Nodes
Nodes (# GPUs) 2 (4) 32 (128)
Inter-node Link FDR MT27500 EDR MT28800

We have developed an optimized CPU-based code using DG
discretization of the acoustic and elastic wave equations with hexa-
hedral elements, along with tensor-product GLL quadrature (Sec-
tion 4). We refer to this code as PDEBlaster. It relies on p4est
[3] for mesh handling and MPI communication. Its accuracy has
been verified by examining problems for which an analytical solu-
tion exists. Based on the CPU code, we have developed GAPS, the
GPU-accelerated PDE solver for the corresponding wave simula-
tion, with multiple flavors. We identify major bottlenecks of the
code, and perform optimizations to improve performance (Section
6). Finally, we extend the scalability of GAPS to support multi-GPUs
and multi-nodes for the simulation of industry-relevant problems
(Section 7).

3.2 Environment and Platform
We use two different platforms for performance comparisons

(Table 1). The Intel-based platform is mainly used for single-device
code development, while the PowerPC-based platform is used for
multi-GPU, multi-node developments, due to the availability of
more GPUs per node, the number of nodes, and their connection
via a high-bandwidth NVLink bus. [24, 25].

3.3 Performance Assessment
All codes developed in this work report diagnostics, such as time

spent in each kernel, and 𝐿2 error between a computed result, and
the corresponding exact solution. For the purpose of performance
assessment, all of the experiments run for 1000 time-steps.

Table 2: Wave Simulator Configurations

Problem Name Flux
Solver Precision

Acoustic Riemann FP64
Elastic Central FP64
Elastic Riemann FP64
Acoustic Riemann FP32
Elastic Central FP32
Elastic Riemann FP32

Table 3: Configurations and Optimizations

Label Hardware MPI Library Optimization
CPU_1 2 x POWER9 Spectrum MPI1 Basic
CPU_2 2 x Xeon 8160 Intel MPI2 Basic

GAPS_base 1 x Tesla V100 None All Section 5

GAPS_fl 1 x Tesla V100 None All Section 5,
6.1, 6.2

GAPS_fls 1 x Tesla V100 None All Section 5,
All Section 6

1 We use IBM Spectrum MPI version 10.3.0.
2 We use Intel MPI version 2018.2.199.

To distinguish between the effects of different optimization tech-
niques, we label multiple versions of GAPS. PDEBlaster runs on
multi-core processors using MPI (Table 3). GAPS_base is the par-
allel GPU code implementation described in Section 5. GAPS_fl is
the optimized version of GPU code, which includes kernel fusion
(Section 6.1) and LUT-based neighbor and node search (Section
6.2). Finally, GAPS_fls implements all optimizations described in
Section 6, including improved utilization of the shared memory and
SM-occupancy-aware register allocation.

There are six simulator configurations as shown in Table 2 that
are used to assess performance both in single-GPU and multi-GPU
runs. In single-GPU runs, the performance of each GPU optimiza-
tion level is compared to the baseline multi-CPU runs (Section 8.1).
We also compare the performance of two different mesh configura-
tions (Section 8.3). In multi-GPU runs, the effect of ghost exchange
optimization (Section 8.4) and the performance of MPI libraries
(Section 8.5) are investigated. We also analyze the scalability of the
GAPS multi-GPU implementation (Section 8.6).

3.4 GPU Kernel Profiling
To analyze the bottlenecks of our GPU implementation, we use

nvprof [6] to characterize each GPU kernel. The profiling results
help us identify the key bottlenecks, and perform necessary opti-
mizations to improve performance. We also present the roofline
chart [45] for each kernel (Section 8.2), where the NVIDIA Tesla
V100 GPU’s roofline model is obtained using the ERT [49].

4 CPU IMPLEMENTATION
4.1 Simulation Flow and Data Flow

PDEBlaster consists of two large loops as shown in Figure 2- c○.
The outer loop performs time-stepping, and is repeatedly executed
at each time-step. The inner loop is the integration loop for the
fourth-order, low-storage Runge-Kutta (LSRK4) integrator, which

GAPS: GPU-Acceleration of PDE Solvers for Wave Simulation ICS ’22, June 28–30, 2022, Virtual Event, USA

...Neighbor_s Variables...Neighbor_s Variables...Neighbor_s Variables...Neighbor_s Variables...Neighbor_s Variables...Neighbor_s Variables
...Variables

Compute FluxCompute Volume

...Auxiliaries
...Contributions

Integrator

Single Element Data Flow

To Neighbor
Elements

Up-to 6 Neighbor Elements

Flux
Contributions

Volume
Contributions Auxiliaries

Update

Variables Update
for next integration
step

5 integration steps per
1 time step

Acoustic

Vx VzVy

P Vx

VzVy

Elastic

S12 S13 S23

S11 S22 S33

Variables

Init.

t<tfinalt=0

no

t=t+tstep

no

i=0

Ghost
Exchange

Compute
Volume

Compute
Flux

Integration Report &
Diagnostics

i=i+1

i<5

Integration
Loop

Time-Step
Loop

Async.
ProcessSimulation Flow

a

b

c

Figure 2: a○ The data flow of each element; b○ the Variables for both
acoustic and elastic problems; c○ and the simulation flow.

has 5 steps [15]. Finally, the simulation kernels are called inside
the integration steps, and are: Volume, Flux, and Integration.
Therefore, each kernel is called five times per time-step.

There are 4 unknown variables for the acoustic, and 9 unknown
variables for the elastic wave, respectively (Fig. 2- b○). The Volume
and Flux use Variables to compute the volume contributions and
flux contributions, respectively (Fig. 2- a○). Both volume and flux
contributions are accumulated as Contributions, and then used
by Integration to update the Variables for the next time-step.
Moreover, Integration updates Auxiliaries, which is temporary
storage for temporal integration using LSRK4 integrator.

4.2 Simulation Kernels
The acoustic and elastic wave simulators have different Volume

and Flux kernels, although they both share the same Integration
kernel, which operates on all nodes of an element (Variables and
Contributions), and updates Variables.

Volume computations are local, and involve computing spatial
derivatives of different quantities within an element. Using straight-
faced hexahedral elements, along with GLL quadrature, decouples
derivative calculations in each direction from other directions, and
simplifies them into dot-products between a subset of Variables
and a constant differential vector (Algorithm 1). These derivatives
are then used to compute Volume Contributions.

We only have implemented the Riemann Flux for acoustic wave
simulations, whereas, for the elastic case, we have implemented
Central and Riemann Fluxes. Discussing the differences between
different flux formulations is beyond the scope of this paper. Instead,

Algorithm 1: Volume kernel
Inputs: Variable vector of 3D tensors u𝑒 and constant
differential vectors 𝑐𝑜𝑛𝑠𝑡_𝑑𝑥, 𝑐𝑜𝑛𝑠𝑡_𝑑𝑦, 𝑐𝑜𝑛𝑠𝑡_𝑑𝑧
Outputs: Contribution vector of tensors

1 for all 𝑁 3 nodes (i,j,k) within an element do
2 for offset 𝑜 = 0, . . . , 𝑁 − 1 do
3 for variable 𝑟 = 0, . . . , 𝑅 do some of

do
4

𝜕𝑢𝑒
𝑟,𝑖,𝑗,𝑘

𝜕𝑥 += 𝑢𝑒
𝑟,(𝑖+𝑜)%𝑁,𝑗,𝑘

∗ 𝑐𝑜𝑛𝑠𝑡_𝑑𝑥𝑜

5
𝜕𝑢𝑒

𝑟,𝑖,𝑗,𝑘

𝜕𝑦 += 𝑢𝑒
𝑟,𝑖,(𝑗+𝑜)%𝑁,𝑘

∗ 𝑐𝑜𝑛𝑠𝑡_𝑑𝑦𝑜

6
𝜕𝑢𝑒

𝑟,𝑖,𝑗,𝑘

𝜕𝑧 += 𝑢𝑒
𝑟,𝑖, 𝑗,(𝑘+𝑜)%𝑁 ∗ 𝑐𝑜𝑛𝑠𝑡_𝑑𝑧𝑜

7 end
8 end
9 ∀𝑟 : 𝑐𝑒

𝑣𝑜𝑙,𝑟,𝑖, 𝑗,𝑘
= 𝑓 (∇𝑢𝑒0,𝑖, 𝑗,𝑘 , . . . ,∇𝑢

𝑒
𝑅,𝑖, 𝑗,𝑘

)
10 end

Algorithm 2: Flux kernel

Inputs: u𝑒 (𝑓 1) , u𝑒
′ (𝑓 2) : 2D variable tensors of element 𝑒 and

neighbor 𝑒 ′ ∈ N (𝑒) on faces 𝑓 1 and 𝑓 2
Outputs: Flux vectors of 2D tensors c𝑒 (𝑓 1)f , c𝑒 (𝑓 2)

′

f

1 for all 𝑁 2 face nodes (i,j) do
2 for variable 𝑟 = 0, . . . , 𝑅 do
3 𝑐

𝑒 (𝑓 1)
𝑓 ,𝑟,𝑖, 𝑗

, 𝑐
𝑒 (𝑓 2)′
𝑓 ,𝑟,𝑖, 𝑗

= 𝑔(𝑢𝑒 (𝑓 1)
𝑤,𝑖,𝑗

, 𝑢
𝑒′ (𝑓 2)
𝑤,𝑖′, 𝑗 ′ ,𝑤 = 0, . . . , 𝑅)

4 end
5 end

we focus on common computational patterns involved in different
flux computations.

Flux computations occur at the nodes that reside on the shared
interfaces between two elements, and require information from
both sides (Algorithm 2), which then yield Flux Contributions.

4.3 Mesh Generation and Partitioning
PDEBlaster uses p4est to generate and partition non-

conforming meshes. In this work, we focus only on uniformmeshes,
where all elements have the same size. Themesh is built at the begin-
ning of a simulation and does not change throughout the simulation.
The foundation that has been established in this work can be easily
extended to support non-conforming meshes (Fig. 1- j○).

The p4est manages the elements using a tree structure that
allows iteration over elements using the provided p4est_iterate
method. This method allows to iterate over each element for interior
computation (needed for Volume), and to iterate over shared faces
between neighboring elements (needed for Flux). The neighboring
elements can be looked-up using pointer operations.

In PDEBlaster, each element is represented by a data structure
called ElementDataBase. Inside, the values of each node in the ele-
ment are stored in the Variables, Contributions, Auxiliaries
and Mass Inverse arrays.We denote the total number of Variables
as NUM_VARIABLES and the total number of nodes inside each ele-
ment as NNODE, where NNODE = NNODE_1D3. Therefore, the length

ICS ’22, June 28–30, 2022, Virtual Event, USA B. Hanindhito et al.

Table 4: ElementDataBase Data Structure Size

Nodes Size (Bytes)
Problem Precision (NNODE) Standard Ghost
Acoustic FP32 512 32,832 8,200
Acoustic FP64 512 65,640 16,400
Elastic FP32 512 63,556 18,444
Elastic FP64 512 127,088 36,888

of each array can be calculated as NUM_VARIABLES * NNODE. The
standard size of each element is given in Table 4.

The total number of elements in PDEBlaster can be controlled
by adjusting the refinement level. With higher refinement level,
the problem domain is discretized into higher number of elements,
where each element has smaller physical size to better represent
the physical features. We denote the total number of elements as
NUM_ELEMENT.

4.4 Ghost Exchange
For multi-CPU simulations, p4est creates load-balanced parti-

tions of the mesh, and distributes them onmultiple CPUs (Fig. 1- h○).
The p4est uses MPI to perform inter-CPU communications (e.g.,
during the computation of Flux, which needs neighboring ele-
ments’ data). The neighboring element that is located on a different
processor core is called ghost element, and MPI communication
must be performed to exchange the ghost element data. This com-
munication is called Ghost Exchange.

To perform a Ghost Exchange, p4est maintains two data struc-
tures called Ghost Layer and Ghost Buffer on each processor
(Fig. 1- i○). Ghost Layer is used to receive and store data from all
ghost elements during a Ghost Exchange from neighboring proces-
sors. During the look-up operation for an element’s neighbor, the
pointer will automatically point to the Ghost Layer if the neigh-
boring element lives in another processor. Ghost Buffer is used
to store the local elements’ data that will become ghost elements
for a neighboring processor. The Ghost Buffer is updated just
before Ghost Exchange. To overlap communication and compu-
tation, Ghost Exchange is performed asynchronously during the
computation of Volume. (Fig. 2- c○).

5 BASIC SINGLE-GPU IMPLEMENTATION
5.1 Basic Implementation

The development of the GPU code for GAPS in this section gen-
erally follows the CPU code (PDEBlaster) with some adjustments.
GAPS tries to extract as much parallelism as possible to keep the
Streaming Multiprocessors (SMs) of the GPU busy. Simulation re-
sults of GAPS are compared against PDEBlaster to ensure the GPU-
accelerated version of the simulator retains the same numerical
accuracy as the CPU counterpart.

The basic GPU code for GAPS implements each simulation kernel
as a single CUDA kernel, and can only utilize a single GPU, which
limits the size of the problem. We use p4est for mesh generation on
CPU, copy the mesh data onto GPU memory, and then use our own
developed tools for mesh handling on GPU. Then, the inner-loop
and the outer-loop are executed as usual, except now they launch

GPU kernels. At the end of the simulation, the results are copied
back to the CPU memory.

Different opportunities for parallelization exist for each kernel,
as described below.

5.1.1 Volume kernel. The Volume computation, a completely local
operation, is the most compute-intensive kernel of the simulation.
It is highly parallelizable since each node within an element can
be computed independently, and each element can be processed
in-parallel. Thus, we extract the parallelism at element-level and
node-level, with potential parallelism of NUM_ELEMENT * NNODE.

5.1.2 Flux kernel. The Flux computation is a less compute-
intensive kernel, since it is non-local, and requires neighbor in-
formation. In 3D space with NNODE=512 and NNODE_1D=8, Flux
performs computations on all 6 faces of an element, each with 64
nodes. However, due to branches [47], this kernel is the most in-
efficient kernel for GPU. The branches are used to determine the
neighboring elements. We need to serialize each face computation
due to data hazard for nodes that touch more than one neighboring
node (i.e., on the edge, or at the corner of the element). Moreover,
the flux contributions for a pair of neighboring elements must be
computed exactly once, and thus, we need a flag mechanism to
avoid double computation. Therefore, potential parallelism will be
less than NUM_ELEMENT * NNODE_1D * NNODE_1D.

5.1.3 Integration kernel. The Integration computation is the small-
est kernel, where memory accesses dominate kernel behavior. The
potential parallelism that can be extracted is NUM_ELEMENT * NNODE
* NUM_VARIABLES.

5.2 Data Structure
The tree-based data structure used by p4est is not suitable for

GPUs, since pointer operations are too slow on GPUs, which hurts
performance significantly. Therefore, we replace the tree-based data
structure with an array, which is GPU-friendly, and aids obtaining
the highest possible parallelism. Accordingly, all elements are stored
in an array of ElementDataBase inside GPU memory.

5.3 Neighbor Look-up and Node Look-up
Because of moving from a tree-based data structure to an array-

based data structure, we lose the mechanism of inferring neighbor
elements by using pointer operations. In fact, traversing the mesh
structure stored in linked-list is not GPU-friendly. Thus, we de-
veloped a method that allows inferring neighbor elements, which
consists of simple loop calculations. This algorithm only works for
conforming meshes, and thus we develop a LUT-based neighbor
search, which will be discussed later. Moreover, we have developed
algorithms to efficiently find corresponding nodes on an element’s
face, which is needed for Flux computations.

5.4 Judicious Pre-computations
On modern architectures, it is often more efficient to re-compute,

than to pre-compute, store, and re-use [31]. However, pre-computing
certain small-in-size, but frequently-used variables may improve ef-
ficiency. This strategy has been used in parts where it improved per-
formance. For example, derivatives of shape functions are needed
repeatedly, each time Volume is evaluated. We pre-compute the

GAPS: GPU-Acceleration of PDE Solvers for Wave Simulation ICS ’22, June 28–30, 2022, Virtual Event, USA

derivatives of shape functions. With NNODE=512, only 64 double- or
single-precision constants were needed to be stored inside constant
(symbol) memory of GPU, which is as fast as the register.

5.5 Loop Refactoring
Another basic optimization is loop refactoring, which reduces

the number of branching operations that cause degradation in GPU
performance. Loop refactoring includes flattening nested loops and
merging independent loops. If a loop is short and has a constant
number of iterations, we unroll the loop to eliminate the branching
operations.

6 GPU OPTIMIZATIONS
The basic GPU code in Section 5 contains many optimizations,

such as loop refactoring and judicious precomputations. However,
we introduce additional GPU optimizations in this section.

6.1 Kernel Fusion
The basic GAPS implementation in Section 5 yields satisfactory

performance improvements over the baseline CPU code of Section
4. However, it does not lead to peak GPU performance. Upon pro-
filing the GPU code developed for GAPS in Section 5, the overall
wave simulator is memory-bounded, even with 900 GBps of HBM2
memory bandwidth of the NVIDIA Tesla V100. Therefore, the next
set of optimizations aim to reduce data movement.

Kernel fusion [42, 43] tries to merge two or more GPU kernels
into one. Single kernel launch likely preserves the needed data
near the SMs throughout kernel execution. This eliminates fetching
data from global memory each time a small kernel is launched. A
possible candidate for kernel fusion is merging Volume and Flux.
The Integration must be kept as a separate kernel, since it up-
dates the Variables, causing a data hazard. We want to update
the Variables after the computations for all Contributions are
completed. Thus, we do implicit grid-level synchronization using a
separate kernel launch.

Multi-GPU and multi-node implementations, which will be dis-
cussed in the next section, require Ghost Exchange. To support
the Ghost Exchange while Volume and Flux are fused, small mod-
ifications in Flux are needed. We split the Flux computation into
Internal Flux and External Flux. The former indicates situa-
tions where neighbor elements are located on the same processor
or GPU, whereas the latter indicates circumstances when a neigh-
boring element is located on a different GPU.

Internal Flux can be computed based on data already available
on a GPU, whereas External Fluxmust wait for Ghost Exchange
to complete. Ghost Exchange will be overlapped with the compu-
tation of Volume and Internal Flux to hide inter-GPU communi-
cation overhead. With the fusion of these two kernels, one thread
will handle one node throughout the kernel execution, and thus the
potential parallelism that can be achieved is NUM_ELEMENT * NNODE.

6.2 Look-Up-Table-based Neighbor and Node
Search

6.2.1 LUT-based Neighbor Search. Our implementation of the neigh-
bor look-up algorithm on Section 5.3 is sub-optimal, since it involves
a non-deterministic loop to determine the neighboring element.

Ghost
Elements

Local
Elements

0 1 2

3 4 5

0

1

0 1 - 3 0 2 - 4 4 2- -

1 0 2 0 0 0 0 0 02 2 2

ID

Properties

...

...

Element 0 Element 1 Element 5

Figure 3: The look-up table structure used for neighbor search con-
tains the ID and Properties arrays. The ID array stores indexes to
the ElementDataBase array or GhostLayer, while the Properties ar-
ray indicates whether the neighbor is a local element (0), a ghost
element (1), or does not exist (2).

Moreover, this implementation does not support non-conforming
meshes, where elements can have a different number of neighbors
per face. Therefore, we propose a LUT-based neighbor search. The
look-up table is implemented using two arrays inside GPU memory
as shown in Figure 3. Both arrays are NUM_ELEMENT * NUM_CHILD *
NUM_FACE long. The NUM_CHILD determines the number of neigh-
boring elements on each face of an element. For a conforming mesh,
NUM_CHILD is always equal to 1. NUM_FACE is the number of faces
of each element. In 3D space, the NUM_FACE is 6.

The first array stores the neighbor elements identification (ID)
using 32-bit integers, which is basically the index to the array of
ElementDataBase (or Ghost Layer, if it is a ghost element), stored
in GPU memory. The second array stores the properties of the
neighbor elements. The properties are stored using 8-bit integers,
and indicate whether the neighbor lives on the same processor
(local element), on a different processor (ghost element), or does
not exist (i.e., for element located in boundary).

During simulation initialization, we construct the look-up table
by calling p4est_iterate on the CPU. Then, the look-up table
is copied to the GPU memory. Since our mesh structure remains
identical throughout the simulation, the LUT only needs to be
constructed once.

6.2.2 LUT-based Node Search. We also implement a LUT-based
node search to replace our algorithm in Section 5.3. For NNODE=512,
we need an array of 512, 8-bit integers. The 6 lower bits are used to
identify in which side of the element a particular node is located
at, while the upper 2 bits are unused. If a node is located in the
interior of the element, then the bit value should be 0b00000000.
If a node is located at the corner between face 0, face 2, and face
4, then the bit value should be 0b00010101. Without this LUT, we
find the face nodes using multiple conditional branches, which is
not GPU-friendly since it will introduce thread divergence.

6.3 Shared Memory and Register Allocation
6.3.1 Improved Shared Memory Utilization. Shared memory is a
fast, user-managed, small, on-chip memory, which is available for
each streaming multiprocessor (SM) of a GPU, and is used to share
data between threads inside a thread block [46]. The sharedmemory
is allocated when the kernel starts and de-allocated when the kernel

ICS ’22, June 28–30, 2022, Virtual Event, USA B. Hanindhito et al.

completes. Starting with the Volta architecture, both the L1 cache
and the shared memory are fused together; if the shared memory is
not used, all of this unified memory is used as hardware-managed
L1 cache. In other words, the use of the shared memory will reduce
the L1 cache capacity and, thus, choosing the right data to be stored
in the shared memory is crucial for performance.

There are two data candidates to be stored in shared memory.
First, the Contributions, which are written repeatedly during
Flux and Volume. Second, the Variables, which are read repeat-
edly during Flux and Volume. Storing both Contributions and
Variables may not be the best idea for two reasons. First, as more
shared memory is consumed, the capacity of L1 cache becomes
smaller, which may degrade performance. Second, due to the na-
ture of the memory accesses in Volume, storing Variables inside
the shared memory complicates the memory accesses, potentially
leading to no performance gain, especially when all nodes inside an
element cannot be processed under the same thread block. There-
fore, we only store Contributions inside shared-memory.

6.3.2 SM-Occupancy-Aware Register Allocation. Another concern
is SM occupancy, which is determined by the number of thread
blocks that can be scheduled on each SM. If there are enough blocks
to occupy the SM, the scheduler will aggressively switch to an-
other thread block and schedule it to run, while waiting for the
previous block to finish its memory accesses, in order to hide the
latency. We can instruct nvcc to allocate registers accordingly, en-
abling the SM to schedule more than one thread block using decora-
tor __launch_bounds__. There may be some register spills, which
means that the local memory is used due to insufficient registers
[37]. A few register spills may not hurt performance, but we refactor
the code to reduce the spills.

7 MULTI-GPU MULTI-NODE
IMPLEMENTATION

7.1 Multi-GPU/Multi-Node Approach
While p4est (Section 4.3) is powerful for generation, partition-

ing, and handling of non-conforming meshes on CPUs, it does not
support GPUs. In this section, we outline our strategy for adapting
p4est for our multi-GPU, multi-node implementation: we generate
and partition the mesh on the CPU, and then copy it to appropriate
data structures on the GPU, thus improving workloads described
in Sections 5.2 and 5.3.

We assign an MPI process to each GPU. The local rank identity
for each MPI process is used to index the GPU. Therefore, the
number of MPI ranks on a compute node is equal to the number of
GPU cards living on that node. Once an MPI process is created and
able to initialize its corresponding GPU, the flow will be similar
to that in Section 5 and 6, with the addition of Ghost Exchange
between GPUs.

7.2 CUDA-Aware MPI
CUDA-Aware MPI allows MPI to send and receive memory

buffers instantiated in GPU memory. Without CUDA-aware MPI,
the GPU memory buffer must be staged first on CPU memory
using cudaMemcpy, before sending and receiving data through
MPI communication, which is inefficient. Another feature that

Table 5: Comparison of MPI Implementations

MPI Name Developer CUDA-
Aware

Async.
Progress

MVAPICH1 [32] Ohio State Univ. Yes Yes
Spectrum MPI IBM Yes Yes

Intel MPI Intel No Yes
1 We use MVAPICH2-GDR version 2.3.4.

CUDA-Aware MPI supports is NVIDIA GPUDirect technologies for
high-bandwidth, low-latency communications between NVIDIA
GPUs, both intra- and inter-node. GPUDirect P2P allows the
GPU-instantiated memory buffers to be exchanged directly be-
tween GPUs inside the same node via the fastest bus available
between them (e.g., NVLink) while GPUDirect RDMA allows the
GPU-instantiated memory buffers to be sent and received directly
through a network adapter (e.g., InfiniBand NIC) without staging
through CPU memory [24, 25].

7.3 Ghost Layer and Ghost Buffer
Implementation

We briefly discussed Ghost Exchange for CPUs in Section 4.4.
In Multi-GPU implementation, we move both Ghost Layer and
Ghost Buffer arrays to the GPU’s memory. Then, by utilizing
GPUDirect RDMA in CUDA-aware MPI, the MPI send and receive
for these arrays can be instantiated directly in GPU memory, with
no CPU-GPU communication overhead.

We develop a GPU kernel to update Ghost Buffer contents
before Ghost Exchange is initiated, since it is no longer updated
by p4est. This kernel uses our efficient scheme to map between
Ghost Buffer array and ElementDataBase array, since not all lo-
cal elements are ghost elements for neighboring processors. More-
over, Ghost Layer does not need special kernel treatments, since
GPUDirect RDMA stores the ghost elements received after Ghost
Exchange, directly inside GPU memory. The LUT-based neighbor
search discussed in Section 6.2 will automatically index the Ghost
Layer array, if the neighboring element is a ghost element.

7.4 Ghost Exchange Optimization
During Ghost Exchange, ghost elements are still represented us-

ing the ElementDataBase data structure, as discussed in Section 4.3,
which is inefficient for communication. Instead of sending thewhole
ElementDataBase, we only send data that is needed by the neigh-
bor processor. These are the Variables and the Materials. There-
fore, we create a new data structure, called ElementDataBaseGhost.
On average, this ghost data structure has only 27% of the size of a
standard ElementDataBase (Table 4).

7.5 Asynchronous Progress Support in MPI
In MPI standard [23, 27], the non-blocking semantics do not guar-

antee asynchronous progression when MPI_Isend and MPI_Irecv
are being used. The actual data transfer is usually delayed until
MPI_Wait is called [38, 40], and thus some parts of communication
may not be overlapped with computation.

Some MPI implementations support asynchronous progression
if explicitly enabled [17]. This should minimize the communication

GAPS: GPU-Acceleration of PDE Solvers for Wave Simulation ICS ’22, June 28–30, 2022, Virtual Event, USA

overhead during Ghost Exchange, thus improving overall perfor-
mance in multi-GPU Multi-Node runs. Table 5 lists MPI libraries
in our cluster that support asynchronous progression. We explore
MVAPICH-GDR and IBM Spectrum MPI in our work as they are
both CUDA-Aware, and support asynchronous progression.

8 EVALUATION
8.1 Performance Analysis

PDEBlaster uses multiple CPU cores to run wave simulations
(e.g., 40 cores for CPU_1, and 48 cores for CPU_2). This leads to com-
munication overhead between CPU cores during Ghost Exchange.
On average, this overhead accounts for 9.5%, and 17% of total sim-
ulation time, for CPU_1 and CPU_2, respectively. The MPI library
has an important role in communication performance, and thus,
obtaining a suitable configuration is important.

Although both Intel MPI and Spectrum MPI have asynchronous
progress support, using it does not improve the performance of
our CPU runs. On the contrary, it leads to overall performance
degradation: on average, 9.3% and 73.5% longer simulation times
for CPU_1 and CPU_2, respectively. This degradation is due to over-
subscription4: the number of MPI threads that are running (i.e.,
worker threads, plus asynchronous progression threads) are more
than the available physical cores on the system. In our case, de-
creasing the number of worker threads would not help either since
our simulator prefers to have more processing cores to be able to
extract the parallelism. The CPU_2 has an average speed-up of 1.36x
over CPU_1 for a problem with 32,768 elements.

Figure 4- a○ illustrates the speed-up of different flavors of the
GAPS over PDEBlaster. For a problem with 32,768 elements, the av-
erage speed-up over CPU_1 is 45.67x, 69.30x, and 84.15x for
GAPS_base, GAPS_fl, and GAPS_fls, respectively. The kernel fu-
sion, LUT-based neighbor search and node look-up provide sig-
nificant improvements across all simulator configurations, with
an average speed-up of 1.74x over GAPS_base. Using shared mem-
ory and SM-occupancy-aware register allocation further improves
performance, although each simulator configuration behaves differ-
ently. On average, these optimizations improve simulation speed
by 1.17x over GAPS_fl; this is better than what NVIDIA claimed
in [5], where combining L1 cache and shared memory can achieve
93% performance compared to when shared memory is used. The
acoustic problems enjoy the benefit of these optimizations with
up-to 1.5x speed-up over GAPS_fl, while the elastic problem with
a Riemann flux solver sees the least performance improvement.

The acoustic problem has relatively short kernels, with less in-
termediate results, and thus, reduces the register spills, and allows
multiple thread blocks to be scheduled in each SM to hide memory
access latency. The elastic problem with Riemann flux solver has
the longest kernels, with lots of intermediate results, which leads

4When asynchronous progress is enabled, both Intel MPI and Spectrum MPI spawn
additional helper threads for each MPI process to handle communication. It is called
“oversubscription” even though such threads are required for asynchronous progress.
Such extra threads incur OS overhead, which can negate benefits and lead to perfor-
mance degradation due to the reduced computing resources or overhead of thread
context switching and core contentions. Note that GPU runs do not suffer from this
problem when asynchronous progress is enabled since all computation is offloaded to
the GPU and is thus unaffected by asynchronous communication handled by the CPU.

to more register spills, decreasing the number of thread blocks that
can be scheduled by SMs for latency hiding.

Figure 4- b○ provides detailed insights about the time spent in
each kernel during a simulation. For GAPS_base, the simulation
spent most of the time in computing Volume, due to its higher
arithmetic operations, followed by Flux, due to its execution in-
efficiencies caused by branches. In GAPS_fl and GAPS_fls, both
Volume and Flux are fused into one kernel, which takes signifi-
cantly less time compared to Volume plus Flux in GAPS_base.

8.2 GPU Kernel Profiling
Figure 4- c○ shows the GPU kernel characteristics in both FP64

and FP32 runs. The Integration kernel is clearly a memory-bound
kernel. We ignored this kernel during our optimizations, since
it is very short and it has little effect on the overall simulation
performance. The Flux kernel also has a low execution efficiency,
due to thread divergence, which is evident by the kernel being on
the left side of the roofline plot, both for FP32 and FP64 runs. The
Volume kernel is mostly located on the right side of the roofline
plot; while it is still memory-bound, the arithmetic intensity of
Volume is significantly higher than other kernels.

Fusing Volume and Flux moves the combined kernel character-
istics to the top and right of their original position in the roofline
model. This indicates the fused kernel has more GFLOPs/sec and
more FLOPs/byte, which translates to an average of 1.74x speed-up.
Finally, using shared memory moves the fused kernel to the top
(increases GFLOPs/sec), albeit, slightly to the left of their original
position, due to reduced L1-cache capacity. This translates to an
average of 1.17x speed-up over the fused kernels without shared
memory.

8.3 Effects of Element Order on Performance
High-order discretizations (i.e., elements with a larger number

of nodes) are favored in many wave simulators, due to their ability
to limit the dispersion error. We investigate whether high-order
elements also have advantages from a hardware perspective. We
use NNODE=64 and NNODE=512, which are labeled as N64 and N512.
We keep the aggregate number of nodes the same, at approximately
63 Million for both cases, and run the simulation using GAPS_fls
optimization for 1000 time-steps.

Figure 5 shows N512 is on average 1.12x faster than N64. The
N512 case has 216 out of its 512 nodes assigned purely to Volume
computations, which has high arithmetic intensity. Only 8 out of
the 64 nodes in N64 perform purely Volume computations, meaning
N64 needs to do more Flux computations for the same aggregate
number of nodes, causing more inefficiencies due to the Flux kernel.
Therefore, having high-order elements is also preferable from a
hardware perspective. Figure 5 shows performance of each of these
cases in a roofline model.

8.4 Ghost Exchange Overhead
By reducing the size of ElementDataBaseGhost to 27% of

ElementDataBase, we are able to reduce the inter-GPU commu-
nication overhead inside the same node by as much as 72.81%
(Fig. 6). The Baseline and Optimized use ElementDataBase and
ElementDataBaseGhost for Ghost Exchange, respectively. The

ICS ’22, June 28–30, 2022, Virtual Event, USA B. Hanindhito et al.

G
A

P
S
_
b
as

e

G
A

P
S
_
fl

G
A

P
S
_
fl
s

S
im

u
la

ti
o
n
 R

u
n
ti

m
e

(S
ec

on
d
s)

50

100

150

200

S
p
ee

d
-u

p
 O

v
er

 C
P

U
_
1

140

20

40

60

80

100

120

0

0
1

a

Volume

Flux

Integrate

Overhead

CPU_1

CPU_2

GAPS_base

GAPS_fl

GAPS_fls

32,768 Elements

Higher is Better

b 0.1 1 10 100

Acoustic_Volume_base

Acoustic_Flux_base

Acoustic_VolumeFlux_fl

Acoustic_VolumeFlux_fls

Acoustic_Integration

Elastic_Volume_base

Elastic_FluxCentral_base

Elastic_VolumeFluxCentral_fl

Elastic_VolumeFluxCentral_fls

Elastic_Integration

Elastic_FluxRiemann_base

Elastic_VolumeFluxRiemann_fl

Elastic_VolumeFluxRiemann_fls

G
F
L
O

P
s/

S
ec

FP32 15550.2
GFLOPs/sec

70
6.6

GB/s

100

1000

10000

Acoustic_Volume_base

Acoustic_Flux_base

Acoustic_VolumeFlux_fl

Acoustic_VolumeFlux_fls

Acoustic_Integration

Elastic_Volume_base

Elastic_FluxCentral_base

Elastic_VolumeFluxCentral_fl

Elastic_VolumeFluxCentral_fls

Elastic_Integration

Elastic_FluxRiemann_base

Elastic_VolumeFluxRiemann_fl

Elastic_VolumeFluxRiemann_fls

G
F
L
O

P
s/

S
ec

FP64

7819.6 GFLOPs/sec

FLOPs/bytec

Acoustic
(FP64)

Elastic-
Riemann
(FP64)

Elastic-
Central
(FP64)

Acoustic
(FP32)

Elastic-
Riemann
(FP32)

Elastic-
Central
(FP32)

G
A

P
S
_
b
as

e

G
A

P
S
_
fl

G
A

P
S
_
fl
s

G
A

P
S
_
b
as

e

G
A

P
S
_
fl

G
A

P
S
_
fl
s

G
A

P
S
_
b
as

e

G
A

P
S
_
fl

G
A

P
S
_
fl
s

G
A

P
S
_
b
as

e

G
A

P
S
_
fl

G
A

P
S
_
fl
s

G
A

P
S
_
b
as

e

G
A

P
S
_
fl

G
A

P
S
_
fl
s

32,768 Elements

Lower is Better

100

1000

10000

79
2.5

GB/s

Figure 4: PDEBlaster compared against GPU simulations for 32,768 elements and 1000 time-steps. a○ Columns show speed-up over CPU_1, where
higher is better; b○ time consumed by each GPU kernel, improvements due to optimizations, where lower is better; c○ Each GPU kernel can be
characterized via the roofline model.

benefits of this optimization become apparent for multi-node runs
that uses Infiniband as the communication link between nodes,
where the communication overhead is reduced as much as 75.83%.

8.5 MPI Asynchronous Progress Impacts
We compare performance of different MPI libraries (Table 5) for

1 node with 4 GPUs (1N4G), and 4 nodes with 16 GPUs (4N16G)
using the optimization described in Section 7.4 to reduce commu-
nication overhead. The MVAPICH2-GDR does not have asynchro-
nous progress explicitly enabled while both MVAPICH2-GDR_async
and SpectrumMPI_async have asynchronous progress explicitly
enabled. Results are shown in Fig. 7.

With asynchronous progress enabled (MVAPICH2-GDR_async),
the communication overhead is reduced by an average of 56.74%
for both 1N4G and 4N16G, compared to MVAPICH2-GDR. On
POWERPC-based platform, SpectrumMPI_async has an average of
51.27% less communication overhead on 1N4G, when compared
to MVAPICH2-GDR_async, for obvious reasons, but falls behind
MVAPICH2-GDR_async in 4N16G with 33% more communication
overhead, due to the InfiniBand multi-rail utilization inefficiency.
Overall, the asynchronous progress improves the ability to overlap
the Ghost Exchange with Volume and Internal Flux computa-
tion, and thus hiding the communication overhead.

8.6 Multi-GPU Multi-Node Scalability
Ourmulti-GPU andmulti-node implementation of GAPS achieves

weak-scaling over 128 GPUs on 32 compute nodes. Figure 8 shows
the scalability of our simulator, using SpectrumMPI_async. Due to
limited space, we only show elastic simulations with a central flux
solver, for FP32 and FP64. However, other cases enjoy the same
characteristics. The four GPUs run (i.e., single node) enjoys the
benefit of high-bandwidth NVLink. When multiple nodes are used,
InfiniBand becomes the weakest link, which limits performance.

9 FUTUREWORK
There are still room to be explored for further improving our

wave-simulation performance. Reducing the data movement over-
head, both intra-device and inter-device, will be the focus of our
future research.

To reduce intra-device data movement overhead that limits
single-GPU performance, better shared-memory utilization is still
our main focus, especially with newer GPU that has even larger
shared-memory size. Furthermore, exploring the extension of the
CUDA programming model called Cooperative Groups allow us
to organize threads at a granularity that matches with the appli-
cations (i.e., at element- or node-level). This specifically useful for
synchronization of threads during Flux computation to avoid race

GAPS: GPU-Acceleration of PDE Solvers for Wave Simulation ICS ’22, June 28–30, 2022, Virtual Event, USA

0

100

200

300

400

500

600

700

0.1

Elastic-
Central

S
im

u
la

ti
on

 R
u
n
ti

m
e

(s
ec

on
d
s)

S
im

u
la

ti
on

 R
u
n
ti

m
e

(s
ec

on
d
s)

N64
N512

FP64

Acoustic_N64

Acoustic_N512

Elastic-Riemann_N64

Elastic-Riemann_N512

Elastic-Central_N64

Elastic-Central_N512

T
F
L
O

P
s/

S
ec

7819.6
GFLOPs/sec

79
2.
5G

B
/s

1

10

FP32

70
6.
6G

B
/s

15550.2
GFLOPs/sec

Acoustic_N64

Acoustic_N512

Elastic-Riemann_N64

Elastic-Riemann_N512

Elastic-Central_N64

Elastic-Central_N512

T
F
L
O

P
s/

S
ec

FLOPs/Byte
0.1

1

10

1001010.1

Elastic-
Riemann

Acoustic
0

100

200

300

400

500

600

700

FP64

FP32

N64
N512

Figure 5: Simulation performance and roofline model of GAPS_fls
under different mesh configurations for NNODE=64 and NNODE=512 in
FP64 (top) and FP32 (bottom) simulation runs.

0.00

0.20

0.40

0.60

0.80

1.00

1.20

Acoustic
(FP64)

Elastic-
Riemann
(FP64)

Elastic-
Central
(FP64)

Acoustic
(FP32)

Elastic-
Riemann
(FP32)

Elastic-
Central
(FP32)

0.00

0.20

0.40

0.60

0.80

1.00

1.20

Relative Ghost Exchange Overhead (Lower is Better) Baseline Optimized

4N16G 1M Elements16 x V100

1N4G 262K Elements4 x V100

Figure 6: Ghost exchange overhead before and after optimization
described in Section 7.4.

conditions. Furthermore, we plan to explore whether it is possible
to fuse the Integration kernel to improve locality.

On the other hand, reducing the overhead of inter-device data
movement is important for multi-GPU scalability. While weak-
scaling is achieved in our current work, exploring strategies to
reduce the communication overhead even further will improve
the overall simulation performance. For example, sending only the
nodes data that are located on the face of elements can reduce the
communication overhead even more, compared to the optimized

0

50

100

150

200

250

300

350

400

450

Acoustic
(FP64)

Elastic-
Riemann
(FP64)

Elastic-
Central
(FP64)

Acoustic
(FP32)

Elastic-
Riemann
(FP32)

Elastic-
Central
(FP32)

0

50

100

150

200

250

300

350

S
im

u
la

ti
o
n
 R

u
n
ti

m
e

(s
ec

o
n
d
s)

4N16G 1M Elements16 x V100

1N4G 262K Elements4 x V100

MVAPICH2-GDR

MVAPICH2-GDR_async

SpectrumMPI_async

Computation
Some Potentials

Overlap

Computation
No Potential

Overlap

Ghost
Exchange*

S
im

u
la

ti
on

 R
u
n
ti

m
e

(s
ec

o
n
d
s)

Figure 7: Ghost exchange overhead in single-node multi-GPU (top)
and multi-node multi-GPU (bottom) runs under different MPI li-
braries with or without asynchronous progression explicitly enabled.
The solid color indicates ghost exchange overhead, while the stripe
color and white color indicate time spent in computation that can
(volume and internal flux) or cannot (external flux and integration)
be overlapped, respectively.

Ghost Exchange presented in Figure 6. This modification requires
slightly more complicated indexing to access the data, and thus
additional computation. Furthermore, the use of mixed-precision,
where the lower precision is used for communication to reduce
the communication overhead while higher precision is used for
computation to maintain numerical accuracy and stability, is also
promising.

10 CONCLUSIONS
We explored the performance of a class of wave simulations

that use DG finite element method, along with GLL integration
scheme on hexahedral elements with straight faces. These simu-
lations have lower arithmetic intensity compared to simulations
that use general meshes. This makes attaining peak performance
of GPUs challenging, primarily due to excessive data movement
between off-chip and on-chip memory, and larger communication
to computation ratio in multi-GPU configurations. Algorithms with
these properties are pervasive in industrial applications.

We deployed several optimization strategies for GPU kernels,
yielding satisfactory improvements across various wave-simulator
configurations. Kernel fusion and LUT-based neighbor search opti-
mizations yield up to 2.6x speed-up over the basic GPU implemen-
tation, while improved shared memory usage and SM-occupancy-
aware register allocation provided an additional 1.49x speed-up.

ICS ’22, June 28–30, 2022, Virtual Event, USA B. Hanindhito et al.

0

2.5M

5M

7.5M

10M

12.5M

100

200

300

400

500

S
im

u
la

ti
on

 R
u
n
ti

m
e

(S
ec

on
d
)

N
u
m

b
er

 o
f
E
le

m
en

ts

#nodes

#GPUs

1
4

0

4
16

8
32

12
48

16
64

20
80

24
96

28
112

32
128

0

5M

10M

15M

20M

25M

0

100

200

300

400

500

S
im

u
la

ti
on

 R
u
n
ti

m
e

(S
ec

on
d
)

N
u
m

b
er

 o
f
E
le

m
en

ts

FP32

Ghost Exchange* Computation Problem Size

FP64

Figure 8: The multi-GPU multi-node scalability on the elastic prob-
lem with a central flux solver for FP32 run (top) and FP64 run (bot-
tom). The problem size distributed to each GPU is kept the same as
we scale to more GPUs.

We considered strategies to reduce the intra- and inter-node
communication overhead for large-scale simulations on multi-GPU,
multi-node configurations. These include: a) reducing the data size
that needs to be exchanged, leading to (on average) 70.27% less
communication time; and b) using an MPI implementation that
supports GPUDirect RDMA, GPUDirect P2P, and asynchronous
progression, which further reduces the overhead by 82.03%. Finally,
our implementation achieves weak-scaling over 128 GPUs.

ACKNOWLEDGMENTS
This research was supported in part by ExxonMobil Technol-

ogy and Engineering, agreement no. EM10480.36, National Science
Foundation (NSF) grant number 1763848, and computational re-
sources from Texas Advanced Computing Center (TACC) with
allocation number ASC20005, DMS21075, and A-ee6. Any opinions,
findings, conclusions, or recommendations are those of the authors
and not of the sponsors.

REFERENCES
[1] Daniel S Abdi, Lucas C Wilcox, Timothy C Warburton, and Francis X Giraldo.

2019. A GPU-accelerated continuous and discontinuous Galerkin non-hydrostatic
atmospheric model. The International Journal of High Performance Computing
Applications 33, 1 (2019), 81–109.

[2] Aria Abubakar, Gong LiWang, Lin Liang, TarekM. Habashy, andMaokun Li. 2016.
Electromagnetic modeling and inversion application for oil and gas industry. In
2016 Progress in Electromagnetic Research Symposium (PIERS). 938–938. https:
//doi.org/10.1109/PIERS.2016.7734532

[3] Carsten Burstedde, Lucas C Wilcox, and Omar Ghattas. 2011. p4est: Scalable
algorithms for parallel adaptive mesh refinement on forests of octrees. SIAM
Journal on Scientific Computing 33, 3 (2011), 1103–1133.

[4] Jesse Chan, ZhengWang, Axel Modave, Jean Francois Remacle, and T. Warburton.
2016. GPU-accelerated discontinuous Galerkin methods on hybrid meshes. J.

Comput. Phys. 318 (2016), 142–168. https://doi.org/10.1016/j.jcp.2016.04.003
arXiv:1507.02557

[5] NVIDIA Corporation. 2017. NVIDIA TESLA V100 GPU ARCHITECTURE: THE
WORLD’S MOST ADVANCED DATA CENTER GPU. https://images.nvidia.com/
content/volta-architecture/pdf/volta-architecture-whitepaper.pdf.

[6] NVIDIA Corporation. 2019. NVIDIA CUDA Toolkit Documentation. https:
//docs.nvidia.com/cuda/profiler-users-guide/index.html/.

[7] Aditya M. Deshpande and Jeffrey T. Draper. 2015. Modeling Data Movement
in the Memory Hierarchy in HPC Systems. In Proceedings of the 2015 Inter-
national Symposium on Memory Systems (Washington DC, DC, USA) (MEM-
SYS ’15). Association for Computing Machinery, New York, NY, USA, 158–161.
https://doi.org/10.1145/2818950.2818972

[8] T. Duda, J. Bonnel, E. Coelho, and K. Heaney. 2019. Computational Acoustics in
Oceanography: The Research Roles of Sound Field Simulations. Acoustics Today
15 (2019), 28–37. Issue 3.

[9] Arash Fathi, Loukas F Kallivokas, and Babak Poursartip. 2015. Full-waveform
inversion in three-dimensional PML-truncated elastic media. Computer Methods
in Applied Mechanics and Engineering 296 (2015), 39–72.

[10] Arash Fathi, Babak Poursartip, and Loukas F. Kallivokas. 2015. Time-domain
hybrid formulations for wave simulations in three-dimensional PML-truncated
heterogeneous media. Internat. J. Numer. Methods Engrg. 101, 3 (2015), 165–198.

[11] Arash Fathi, Babak Poursartip, Kenneth H. Stokoe II, and Loukas F. Kallivokas.
2016. Three-dimensional P- and S-wave velocity profiling of geotechnical sites
using full-waveform inversion driven by field data. Soil Dynamics and Earthquake
Engineering 87 (2016), 63 – 81.

[12] Rajesh Gandham, DavidMedina, and TimothyWarburton. 2015. GPUAccelerated
Discontinuous Galerkin Methods for Shallow Water Equations. Communications
in Computational Physics 18, 1 (2015), 37–64. https://doi.org/10.4208/cicp.070114.
271114a arXiv:1403.1661

[13] Lluís Guasch, Oscar Calderon Agudo, Meng-Xing Tang, Parashkev Nachev, and
Michael Warner. 2020. Full-waveform inversion imaging of the human brain. npj
Digital Medicine 3 (2020), 1 – 12.

[14] Bagus Hanindhito, Ruihao Li, Dimitrios Gourounas, Arash Fathi, Karan Govil,
Dimitar Trenev, Andreas Gerstlauer, and Lizy John. 2021. Wave-PIM: Accelerating
Wave Simulation Using Processing-in-Memory. In 50th International Conference
on Parallel Processing (Lemont, IL, USA) (ICPP 2021). Association for Computing
Machinery, New York, NY, USA, Article 8, 11 pages.

[15] J.S. Hesthaven and T. Warburton. 2010. Nodal Discontinuous Galerkin Methods:
Algorithms, Analysis, and Applications. Springer.

[16] S. B. Hong, N. Vlahopoulos, R.M.Mantey, andD. J. Gorsich. 2004. A computational
approach for evaluating the probability of acoustic detection of a military vehicle.
In Targets and Backgrounds X: Characterization and Representation, Wendell R.
Watkins, Dieter Clement, and William R. Reynolds (Eds.), Vol. 5431. International
Society for Optics and Photonics, SPIE, 150 – 159.

[17] Masashi Horikoshi, Balazs Gerofi, Yutaka Ishikawa, and Kengo Nakajima. 2022.
Exploring Communication-Computation Overlap in Parallel Iterative Solvers on
Manycore CPUs Using Asynchronous Progress Control. In International Confer-
ence on High Performance Computing in Asia-Pacific Region Workshops (Virtual
Event, Japan) (HPCAsia 2022 Workshop). Association for Computing Machinery,
New York, NY, USA, 29–39. https://doi.org/10.1145/3503470.3503474

[18] Frank Ihlenburg. 1998. Finite element analysis of acoustic scattering. Springer.
[19] L.F. Kallivokas, A. Fathi, S. Kucukcoban, K.H. Stokoe, J. Bielak, and O. Ghattas.

2013. Site characterization using full waveform inversion. Soil Dynamics and
Earthquake Engineering 47 (2013), 62 – 82.

[20] A. Karakus, N. Chalmers, K. Świrydowicz, and T. Warburton. 2019. A GPU
accelerated discontinuous Galerkin incompressible flow solver. J. Comput. Phys.
390 (2019), 380–404. https://doi.org/10.1016/j.jcp.2019.04.010 arXiv:1801.00246

[21] J.E. Kozdon and L.C. Wilcox. 2018. An Energy Stable Approach for Discretizing
Hyperbolic Equations with Nonconforming Discontinuous Galerkin Methods.
Journal of Scientific Computing 76 (2018), 1742–1784.

[22] Martin-D Lacasse, Laurent White, Huseyin Denli, and Lingyun Qiu. 2018. Full-
wavefield inversion: An extreme-scale PDE-constrained optimization problem.
In Frontiers in PDE-Constrained Optimization. Springer, 205–255.

[23] Ignacio Laguna, Ryan Marshall, Kathryn Mohror, Martin Ruefenacht, Anthony
Skjellum, and Nawrin Sultana. 2019. A Large-Scale Study of MPI Usage in Open-
Source HPC Applications. In Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis (Denver, Colorado)
(SC ’19). Association for Computing Machinery, New York, NY, USA, Article 31,
14 pages. https://doi.org/10.1145/3295500.3356176

[24] Ang Li, Shuaiwen Leon Song, Jieyang Chen, Jiajia Li, Xu Liu, Nathan R. Tallent,
and Kevin J. Barker. 2020. Evaluating Modern GPU Interconnect: PCIe, NVLink,
NV-SLI, NVSwitch and GPUDirect. IEEE Transactions on Parallel and Distributed
Systems 31, 1 (2020), 94–110. https://doi.org/10.1109/TPDS.2019.2928289

[25] Ang Li, Shuaiwen Leon Song, Jieyang Chen, Xu Liu, Nathan Tallent, and Kevin
Barker. 2018. Tartan: Evaluating Modern GPU Interconnect via a Multi-GPU
Benchmark Suite. In 2018 IEEE International Symposium on Workload Characteri-
zation (IISWC). 191–202. https://doi.org/10.1109/IISWC.2018.8573483

https://doi.org/10.1109/PIERS.2016.7734532
https://doi.org/10.1109/PIERS.2016.7734532
https://doi.org/10.1016/j.jcp.2016.04.003
https://arxiv.org/abs/1507.02557
https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
https://docs.nvidia.com/cuda/profiler-users-guide/index.html/
https://docs.nvidia.com/cuda/profiler-users-guide/index.html/
https://doi.org/10.1145/2818950.2818972
https://doi.org/10.4208/cicp.070114.271114a
https://doi.org/10.4208/cicp.070114.271114a
https://arxiv.org/abs/1403.1661
https://doi.org/10.1145/3503470.3503474
https://doi.org/10.1016/j.jcp.2019.04.010
https://arxiv.org/abs/1801.00246
https://doi.org/10.1145/3295500.3356176
https://doi.org/10.1109/TPDS.2019.2928289
https://doi.org/10.1109/IISWC.2018.8573483

GAPS: GPU-Acceleration of PDE Solvers for Wave Simulation ICS ’22, June 28–30, 2022, Virtual Event, USA

[26] Elena Lucano, Micaela Liberti, Gonzalo G. Mendoza, Tom Lloyd, Maria Ida Iacono,
Francesca Apollonio, Steve Wedan, Wolfgang Kainz, and Leonardo M. Angelone.
2016. Assessing the Electromagnetic Fields Generated By a Radiofrequency
MRI Body Coil at 64 MHz: Defeaturing Versus Accuracy. IEEE Transactions on
Bio-Medical Engineering 63, 8 (8 2016).

[27] Message Passing Interface Forum. 2015.MPI: AMessage-Passing Interface Standard
Version 3.1. https://www.mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf

[28] A. Modave, A. St-Cyr, and T. Warburton. 2016. GPU performance analysis of a
nodal discontinuous Galerkin method for acoustic and elastic models. Computers
and Geosciences 91 (2016), 64–76. https://doi.org/10.1016/j.cageo.2016.03.008
arXiv:1602.07997

[29] Nazmul Haque Mondol. 2015. Seismic Exploration. In Petroleum Geoscience.
Vol. 41. Springer Berlin Heidelberg, Berlin, Heidelberg, 427–454. https://doi.org/
10.1007/978-3-642-34132-8_17

[30] Dawei Mu, Po Chen, and Liqiang Wang. 2013. Accelerating the discontinuous
Galerkin method for seismic wave propagation simulations using the graphic
processing unit (GPU)-single-GPU implementation. Computers and Geosciences
51 (2013), 282–292. https://doi.org/10.1016/j.cageo.2012.07.017

[31] Catherine Olschanowsky, Michelle Mills Strout, Stephen Guzik, John Loffeld,
and Jeffrey Hittinger. 2014. A Study on Balancing Parallelism, Data Locality, and
Recomputation in Existing PDE Solvers. In SC ’14: Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analysis.
793–804. https://doi.org/10.1109/SC.2014.70

[32] Dhabaleswar Kumar Panda, Hari Subramoni, Ching-Hsiang Chu, and Moham-
madreza Bayatpour. 2021. The MVAPICH project: Transforming research into
high-performance MPI library for HPC community. Journal of Computational
Science 52 (2021), 101208. Case Studies in Translational Computer Science.

[33] Seymour V. Parter. 1999. On the Legendre–Gauss–Lobatto Points and Weights.
Journal of Scientific Computing 14, 4 (1999), 347–355. https://doi.org/10.1023/a:
1023204631825

[34] Babak Poursartip, Arash Fathi, and Loukas F. Kallivokas. 2017. Seismic wave
amplification by topographic features: A parametric study. Soil Dynamics and
Earthquake Engineering 92 (2017), 503–527.

[35] Babak Poursartip, Arash Fathi, and John L. Tassoulas. 2020. Large-scale simulation
of seismic wave motion: A review. Soil Dynamics and Earthquake Engineering
129 (2020), 105909.

[36] A. Quarteroni and A. Valli. 1994. Numerical Approximation of Partial Differential
Equations. Springer.

[37] Prashant Singh Rawat, Fabrice Rastello, Aravind Sukumaran-Rajam, Louis-Noël
Pouchet, Atanas Rountev, and P. Sadayappan. 2018. Register Optimizations
for Stencils on GPUs. In Proceedings of the 23rd ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming (Vienna, Austria) (PPoPP ’18).
Association for Computing Machinery, New York, NY, USA, 168–182. https:
//doi.org/10.1145/3178487.3178500

[38] Amit Ruhela, Hari Subramoni, Sourav Chakraborty, Mohammadreza Bayatpour,
Pouya Kousha, and Dhabaleswar K. Panda. 2018. Efficient Asynchronous Com-
munication Progress for MPI without Dedicated Resources. In Proceedings of

the 25th European MPI Users’ Group Meeting (Barcelona, Spain) (EuroMPI’18).
Association for Computing Machinery, New York, NY, USA, Article 14, 11 pages.

[39] R. L. Sengbush. 1983. Seismic Exploration Methods. Springer Netherlands, Dor-
drecht.

[40] Min Si and Pavan Balaji. 2017. Process-Based Asynchronous Progress Model for
MPI Point-to-Point Communication. In 2017 IEEE 19th International Conference
on High Performance Computing and Communications; IEEE 15th International
Conference on Smart City; IEEE 3rd International Conference on Data Science
and Systems (HPCC/SmartCity/DSS). 206–214. https://doi.org/10.1109/HPCC-
SmartCity-DSS.2017.27

[41] Didem Unat, Anshu Dubey, Torsten Hoefler, John Shalf, Mark Abraham, Mauro
Bianco, Bradford L. Chamberlain, Romain Cledat, H. Carter Edwards, Hal Finkel,
Karl Fuerlinger, Frank Hannig, Emmanuel Jeannot, Amir Kamil, Jeff Keasler, Paul
H J Kelly, Vitus Leung, Hatem Ltaief, Naoya Maruyama, Chris J. Newburn, and
Miquel Pericás. 2017. Trends in Data Locality Abstractions for HPC Systems.
IEEE Transactions on Parallel and Distributed Systems 28, 10 (2017), 3007–3020.
https://doi.org/10.1109/TPDS.2017.2703149

[42] MohamedWahib andNaoyaMaruyama. 2014. Scalable Kernel Fusion forMemory-
Bound GPU Applications. In SC ’14: Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis. 191–202.
https://doi.org/10.1109/SC.2014.21

[43] Jiajun Wang, Ahmed Khawaja, George Biros, Andreas Gerstlauer, and Lizy K.
John. 2016. Optimizing GPGPU Kernel Summation for Performance and Energy
Efficiency. In 2016 45th International Conference on Parallel Processing Workshops
(ICPPW). 123–132. https://doi.org/10.1109/ICPPW.2016.32

[44] L.C. Wilcox, G. Stadler, C. Burstedde, and O. Ghattas. 2010. A high-order discon-
tinuous Galerkin method for wave propagation through coupled elastic–acoustic
media. J. Comput. Phys. 229, 24 (2010), 9373 – 9396.

[45] Samuel Williams, Andrew Waterman, and David Patterson. 2009. Roofline: An
Insightful Visual Performance Model for Multicore Architectures. Commun. ACM
52, 4 (apr 2009), 65–76. https://doi.org/10.1145/1498765.1498785

[46] Bo Wu, Guoyang Chen, Dong Li, Xipeng Shen, and Jeffrey Vetter. 2015. Enabling
and Exploiting Flexible Task Assignment on GPU through SM-Centric Program
Transformations. In Proceedings of the 29th ACM on International Conference
on Supercomputing (Newport Beach, California, USA) (ICS ’15). Association for
Computing Machinery, New York, NY, USA, 119–130. https://doi.org/10.1145/
2751205.2751213

[47] Bo Wu, Zhijia Zhao, Eddy Zheng Zhang, Yunlian Jiang, and Xipeng Shen. 2013.
Complexity Analysis and Algorithm Design for Reorganizing Data to Minimize
Non-Coalesced Memory Accesses on GPU. In Proceedings of the 18th ACM SIG-
PLAN Symposium on Principles and Practice of Parallel Programming (Shenzhen,
China) (PPoPP ’13). Association for Computing Machinery, New York, NY, USA,
57–68. https://doi.org/10.1145/2442516.2442523

[48] Wm A Wulf and Sally A McKee. 1995. Hitting the memory wall: implications of
the obvious. ACM SIGARCH computer architecture news 23, 1 (1995), 20–24.

[49] Charlene Yang. 2015. Berkeley CS Roofline Toolkit. https://bitbucket.org/
berkeleylab/cs-roofline-toolkit.

https://www.mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf
https://doi.org/10.1016/j.cageo.2016.03.008
https://arxiv.org/abs/1602.07997
https://doi.org/10.1007/978-3-642-34132-8_17
https://doi.org/10.1007/978-3-642-34132-8_17
https://doi.org/10.1016/j.cageo.2012.07.017
https://doi.org/10.1109/SC.2014.70
https://doi.org/10.1023/a:1023204631825
https://doi.org/10.1023/a:1023204631825
https://doi.org/10.1145/3178487.3178500
https://doi.org/10.1145/3178487.3178500
https://doi.org/10.1109/HPCC-SmartCity-DSS.2017.27
https://doi.org/10.1109/HPCC-SmartCity-DSS.2017.27
https://doi.org/10.1109/TPDS.2017.2703149
https://doi.org/10.1109/SC.2014.21
https://doi.org/10.1109/ICPPW.2016.32
https://doi.org/10.1145/1498765.1498785
https://doi.org/10.1145/2751205.2751213
https://doi.org/10.1145/2751205.2751213
https://doi.org/10.1145/2442516.2442523
https://bitbucket.org/berkeleylab/cs-roofline-toolkit
https://bitbucket.org/berkeleylab/cs-roofline-toolkit

	Abstract
	1 Introduction
	2 Background
	2.1 Full-wavefield Inversion
	2.2 Acoustic and Elastic Wave Equation
	2.3 Discontinuous Galerkin Discretization
	2.4 Gauss-Lobatto-Legendre Integration Scheme
	2.5 Data Movement
	2.6 Related Work

	3 Methods
	3.1 Code Optimization and Verification
	3.2 Environment and Platform
	3.3 Performance Assessment
	3.4 GPU Kernel Profiling

	4 CPU Implementation
	4.1 Simulation Flow and Data Flow
	4.2 Simulation Kernels
	4.3 Mesh Generation and Partitioning
	4.4 Ghost Exchange

	5 Basic Single-GPU Implementation
	5.1 Basic Implementation
	5.2 Data Structure
	5.3 Neighbor Look-up and Node Look-up
	5.4 Judicious Pre-computations
	5.5 Loop Refactoring

	6 GPU Optimizations
	6.1 Kernel Fusion
	6.2 Look-Up-Table-based Neighbor and Node Search
	6.3 Shared Memory and Register Allocation

	7 Multi-GPU Multi-Node Implementation
	7.1 Multi-GPU/Multi-Node Approach
	7.2 CUDA-Aware MPI
	7.3 Ghost Layer and Ghost Buffer Implementation
	7.4 Ghost Exchange Optimization
	7.5 Asynchronous Progress Support in MPI

	8 Evaluation
	8.1 Performance Analysis
	8.2 GPU Kernel Profiling
	8.3 Effects of Element Order on Performance
	8.4 Ghost Exchange Overhead
	8.5 MPI Asynchronous Progress Impacts
	8.6 Multi-GPU Multi-Node Scalability

	9 Future Work
	10 Conclusions
	Acknowledgments
	References

