
Proxy-Guided Load Balancing of Graph Processing
Workloads on Heterogeneous Clusters

Shuang Song, Meng Li, Xinnian Zheng, Michael LeBeane, Jee Ho Ryoo, Reena Panda, Andreas Gerstlauer, Lizy K. John

The University of Texas at Austin, Austin, TX, USA

{songshuang1990, meng li, xzheng1, mlebeane, jr45842, reena.panda, gerstl, ljohn}@utexas.edu

Abstract—Big data decision-making techniques take advantage
of large-scale data to extract important insights from them. One
of the most important classes of such techniques falls in the
domain of graph applications, where data segments and their
inherent relationships are represented as vertices and edges.
Efficiently processing large-scale graphs involves many subtle
tradeoffs and is still regarded as an open-ended problem. Fur-
thermore, as modern data centers move towards increased hetero-
geneity, the traditional assumption of homogeneous environments
in current graph processing frameworks is no longer valid. Prior
work estimates the graph processing power of heterogeneous
machines by simply reading hardware configurations, which leads
to suboptimal load balancing.

In this paper, we propose a profiling methodology leveraging
synthetic graphs for capturing a node’s computational capability
and guiding graph partitioning in heterogeneous environments
with minimal overheads. We show that by sampling the exe-
cution of applications on synthetic graphs following a power-law
distribution, the computing capabilities of heterogeneous clusters
can be captured accurately (<10% error). Our proxy-guided
graph processing system results in a maximum speedup of 1.84x
and 1.45x over a default system and prior work, respectively. On
average, it achieves 17.9% performance improvement and 14.6%
energy reduction as compared to prior heterogeneity-aware work.

I. INTRODUCTION

The amount of digital data stored in the world is considered

to be around 4.4 zettabytes now and is expected to reach

44 zettabytes before the year 2020 [1]. As data volumes are

increasing exponentially, more information is connected to

form large graphs that are used in many application domains

such as online retail, social applications, and bioinformatics

[2]. Meanwhile, the increasing size and complexity of the

graph data brings more challenges for the development and

optimization of graph processing systems.

Various big data/cloud platforms [3] [4] are available to

satisfy users’ needs across a range of fields. To guarantee

the quality of different services while lowering maintenance

and energy cost, data centers deploy a diverse collection

of compute nodes ranging from powerful enterprise servers

to networks of off-the-shelf commodity parts [5]. Besides

requirements on service quality, cost and energy consumption,

data centers are continuously upgrading their hardware in a

rotating manner for high service availability. These trends

lead to the modern data centers being populated with hetero-

geneous computing resources. For instance, low-cost ARM-

based servers are increasingly added to existing x86-based

server farms [6] to leverage the low energy consumption.

������
���	
���
�

�����

����������
�
�

�������	
�����

����
�

�������
�����

����	�����

������������
���

���

��
�
��
���
�

��
��������
���

����
���

Fig. 1: Uniform graph partition for heterogeneous cluster.

Despite these trends, most cloud computing and graph

processing frameworks, like Hadoop [7], and PowerGraph

[8], are designed under the assumption that all computing

units in the cluster are homogeneous. Since “large” and

“tiny” machines coexist in heterogeneous clusters as shown in

Figure 1, uniform graph/data partitioning leads to imbalanced

loads for the cluster. When given the same amount of data and

application, the “tiny” machines in the cluster can severely

slow down the overall performance whenever dependencies

or the needs of synchronization exists. Such performance

degradation has been observed in many prior works [5] [9]

[10] [11] [12]. Heterogeneity-aware task scheduling and both

dynamic and static load balancing [5] [13] [14] have been

proposed to alleviate this performance degradation. Dynamic

load balancing [13] is designed to avoid the negative impact

of insufficient graph/data partitioning information in the initial

stage, where heterogeneity-aware task scheduling [14] can be

applied non-invasively on top of load balancing schemes.

Ideally, an optimal load balancing/graph partitioning should

correctly distribute the graph data according to each machine’s

computational capability in the cluster, such that heteroge-

neous machines can reach the synchronization barrier at the

same time. State-of-the-art online graph partitioning work [5]

estimates the graph processing speed of different machines

solely based on hardware configurations (number of hardware

computing slots/threads). However, such estimates cannot

capture a machine’s graph processing capability correctly.

Figure 2 shows that different applications and machines scale

differently with increasing computational ability. The dotted

line shows the resource-based estimates from prior work [5];

2016 45th International Conference on Parallel Processing

2332-5690/16 $31.00 © 2016 IEEE

DOI 10.1109/ICPP.2016.16

77

2016 45th International Conference on Parallel Processing

2332-5690/16 $31.00 © 2016 IEEE

DOI 10.1109/ICPP.2016.16

77

2016 45th International Conference on Parallel Processing

2332-5690/16 $31.00 © 2016 IEEE

DOI 10.1109/ICPP.2016.16

77

�

�

��

��

��

� 	 � ��

��

��
�

	
��������

���������
�
��
�
��!�"�#�"�����
���
��"������
#���������!�����

Fig. 2: Speedup estimated by prior work vs. real speedup.

the other lines show the actual scaling of different algorithms,

illustrating the diversity of various graph applications.

In order to capture the computing capabilities of heteroge-

neous machines accurately, profiling is often the most effective

methodology. However, computation demands also depend on

applications and input graphs. It is difficult to subsample from

a natural graph to capture its underlying characteristics, as

vertices and edges are not evenly distributed in it. Again, this

may lead to inaccurate modeling of machines’ capability.

In this paper, we present a methodology that uses synthetic

power-law proxy graphs’ profiling to guide the graph parti-

tioning for heterogeneous clusters. The specific contributions

of our work can be summarized as follows:

1) We demonstrate that synthetic graphs following power-
law distributions can be used as proxy graphs to measure

a machine’s graph processing capability in heterogeneous

data centers. We define a Computation Capability Ratio

(CCR) metric to represent the computing units’ diverse

and application-specific processing speeds in a heteroge-

neous cluster. Compared to state-of-the-art work [5], we

reduce the heterogeneity estimation error from 108% to

8% with negligible overhead, as we only need to generate

synthetic graphs once to cover real world graphs with a

wide distribution range. Furthermore, profiling only needs

to be done once for each reusable application in the

heterogeneous cluster.

2) We illustrate CCR-guided graph partitioning performance

and energy benefits in three cases. We achieve maximum

and average speedups of 1.45x and 1.16x in a hetero-

geneous cluster formed by two Amazon EC2 nodes, for

which prior work [5] cannot achieve any benefits. For a

cluster constructed from nodes with different numbers of

cores, we show a maximum and average speedup of 1.67x

and 1.45x, which is 17.7% better than prior work. As

“tiny” servers start to emerge as mainstream computing

resources, we configure a cluster with machines that

operate at different frequency ranges. In this case, our

approach achieves an average speedup of 1.58x while

prior work only sees a 1.37x speedup. Overall, we reduce

energy by 25%, where as prior work only saves 10.4%.

3) Besides runtime and energy improvements, our methodol-

ogy also shows advantages in measuring a machine’s cost

efficiency within commercial cloud computing platforms.

It is difficult to select the right machines that provide

high performance with reasonable cost simply by reading

their hardware configuration information. Synthetic graph

profiling can help to quantify the cost efficiency of formed

clusters, or select the nodes with better cost efficiency for

graph related work.

The rest of the paper is organized as follows. Section II

defines our heterogeneity metric CCR and discuss how we

incorporate it into the heterogeneity-aware graph partitioning

algorithms. Section III explains how to generate representative

synthetic power-law graphs and our profiling methodology in

detail. Section IV describes our experimental setup, including

machines, graphs and applications used in the experiments.

We evaluate the CCR estimation accuracy of synthetic proxy

graphs, demonstrate the performance and energy improvement

for three heterogeneous clusters, and discuss the cost efficiency

projection in Section V. We review the related state-of-the-art

work in Section VI and conclude our paper in Section VII.

II. HETEROGENEITY-AWARE GRAPH PARTITIONING

In this section, we define our heterogeneity-aware CCR

metric and discuss its incorporation into the heterogeneity-

aware graph partitioning algorithms proposed in [5].

A. Definition of CCR

CCR is used to characterize the cluster’s heterogeneity.

It represents the application-specific relations between graph

processing speeds of different types of machines in the cluster.

Formally, for a given application i and machine j, CCRi, j is

defined as follow:

CCRi, j =
max(ti, j) ∀ j

ti, j
, (1)

where max(ti, j) denotes the execution time of the slowest

machine in the cluster. Several factors can affect CCR, such

as the heterogeneity of the cluster, the degree distribution of

synthetic graphs, and the graph applications themselves. Graph

size is a trivial factor, since it only affects the magnitude

of execution time while not reflecting the relative speedups

in a heterogeneous cluster. A cluster’s heterogeneity is the

main component impacting CCR, as it is the variation on

computing resources that determines the graph processing

speeds and maximum parallelisms for graph applications. As

shown in Figure 2, graph applications exhibit diverse scaling

on the executing machines depending on the level of avail-

able parallelisms. The Pagerank application saturates at the

“Medium” machine case. However, the other three applications

still gain benefits from the increased number of hardware

threads. The degree distribution also impacts the CCR in the

way that denser graphs require more computation power and

hence result in more speedup on fast machines. Our profiling

process can completely cover these three important factors

and generate accurate CCRs to guide the heterogeneity-aware

graph partitioning algorithms and thus achieve load balancing.

787878

�

���� ����!����

����"#������

����
���$ ����
���%

�

� #

�

�

�

� #

�

�

�

� #

� �

�

� #

�

�

�

�

�

�

� #

�

������ �
���

Fig. 3: Illustration of edge cuts vs. vertex cuts.

B. Vertex Cuts Algorithms

Graph partitioning algorithms can choose either edge cuts or

vertex cuts, as shown in Figure 3. Vertex cuts split the vertices

by assigning edges to different machines. Graphs with non-

negligible amount of high-degree vertices prefer the vertex cut

methods, as this can reduce the amount of replications of graph

segments (defined as mirrors). Random Hash, Oblivious, and

Grid are three partitioning algorithms using vertex cuts only.

In this paper, we adopt the heterogeneity-aware algorithms

proposed in [5] and extend the algorithms by employing a

CCR-based partitioning.

1) Heterogeneity-aware Random Hash: The Random Hash

is the baseline algorithm developed in [8] and reused in

all other partitioning methods described in this section. To

assign an edge, a random hash of edge e is computed and

used as the index of the machine to assign the edge to. As

shown in Figure 4, each machine has the same probability of

receiving an incoming edge. In order to embed heterogeneity

information, we extend the algorithm to weigh machines

differently, such that the probability of generating indexes for

each machine strictly follows the CCR.

2) Heterogeneity-aware Oblivious: The Oblivious parti-

tioning algorithm is designed to enhance data locality by

partitioning based on the history of edge assignments. The

Original Oblivious algorithm is based on several heuristics

that aim to assign an edge accounting for the load situation

and the assignment of source and target vertices. To enable

heterogeneity-aware partitioning, we follow similar ideas as

in random hashing to assign machines different weights based

on the CCR. Besides considering the load situation, this allows

weights of different machines to be incorporated to guide the

assignment of each edge. Note that the heuristics combined

with CCR-guided weight assignment do not guarantee an exact

balance in accordance with CCR.

�������	

�������	
�

�������	
�

&��#�
������#�����

�������	

'()

'()

'()

'()

�������	

�������	
�

�������	
�

&��#�
������#�����

�������	

*+)

,()

,()

-+)

��!���� ��!����
&��#��.��� .��������
��/�0����

&��#��.���

Fig. 4: Random Hash vs. heterogeneity-aware Random Hash.

3) Heterogeneity-aware Grid: The Grid method is designed

to limit the communication overheads by constraining the

number of candidate machines for each assignment. The

number of machines in the cluster has to be a square number,

as they are used to form a square matrix grid as displayed in

Figure 5. A shard is defined as a row or column of machines in

this context. Similar to the concept of heterogeneous Random

Hash, each shard has its weight, which is determined from the

weights of machines in the shard. Differently, every vertex is

hashed to a shard instead of single machine. For each edge,

two selected shards corresponding to the source and target

vertices generate an intersection. Considering the current edge

distribution and the edge placements suggested by CCR, each

machine in the intersection receives a score. The edge will be

allocated to the machine with the maximum score.

C. Mixed Cut Algorithms

Compared to vertex cuts, edge cuts shown in Figure 3 can

significantly reduce mirrors for graphs with huge amount of

low-degree vertices and few high-degree vertices. Different

from all three algorithms discussed in Section II-B, mixed cut

algorithms, including Hybrid and Ginger partitioning schemes

proposed in [15], take advantage of both vertex and edge cuts.

1) Heterogeneity-aware Hybrid and Ginger: Hybrid and

Ginger use two-phase methods to accomplish the partitioning.

In the first phase, edge cuts are used to partition the graph.

All edges are assigned to nodes based on the random hashes

of target vertices. After the first pass, all in-degree edges of

vertices with a small amount of edges are grouped with target

vertices and no mirrors would be created. As the entire graph

has been scanned through in the first phase, the total number

of edges of each vertex can be easily obtained. In the second

phase, all vertices with a large amount of in-degree edges

(higher than a certain threshold) are randomly re-assigned by

hashing their source vertices. For high-degree vertices, the

number of mirrors are constrained by the number of partitions

rather than the degree of vertices.

Ginger is a heuristic version of Hybrid, which was proposed

by Fennel [16]. For high-degree vertices, it operates the same

as Hybrid. For low-degree vertices, Ginger uses reassignment

to achieve minimal replication in the second round. The

reassignment of vertex v must satisfy equation 2 below.

score(v, i)> score(v, j),∀ j ∈ cluster, (2)

where score[v, i] =
∣
∣N(v)∩Vp

∣
∣−γ ∗b(p) is the score function.

Vp denotes v in machine p and N(v) represents the number

of neighboring vertices of v. b(p) is a balance function to

express the cost of assigning v to machine p, which considers

both vertices and edges located on machine p.

The way of modifying the first pass and second pass (for

high-degree vertices only) to be heterogeneity-aware is exactly

the same as in the Random Hash method described above. A

heterogeneity factor 1−CCRp is incorporated into the score

calculation formula such that a fast machine has a smaller

factor to gain a better score. The function score.max() returns

the machine ID with the maximum score in the list.

797979

����#

��������
�

Fig. 5: Illustration of Machine Grid and Shards

III. METHODOLOGY

Our approach consists of utilizing synthetic proxy graphs

following power-law distributions for profiling and CCR esti-

mations. First, we give an overview of power-law distribution

and describe how we generate synthetic proxy graphs. Sec-

ondly, we demonstrate the profiling process for the heteroge-

neous cluster using proxies. Lastly, we illustrate the execution

flow of the graph processing framework with integrated CCRs.

A. Synthetic Power-Law Graph Generation

This section reviews the power-law distribution and demon-

strates the algorithm that is used to generate synthetic proxy

graphs following power-law distributions. A numerical proce-

dure is used to compute the parameter α in the power-law

distribution for real graphs. As we will show, the parameter

can be used to tune the distribution/density of synthetic graphs

to form samples with better coverage.

1) Power-law Distribution: It has been widely observed

that most natural graphs follow power-law distributions [8]

[17] [18] [19]. In our proposed methodology, we therefore

generate synthetic power-law proxy graphs to characterize a

machine’s graph processing speed. A power-law distribution

is a functional relationship between two objects in statistics,

where one object varies as a power of another. A graph is

defined to follow the power-law distribution if the distribution

of the degree d of a vertex follows:

P(d) ∝ d−α , (3)

where the exponent α is the positive constant that controls

the degree distribution. For instance, a high degree d leads to

smaller probability P(d), which results in a fewer amount of

vertices with high degrees in the graph. Similarly, small values

of the exponent α induce high graph density, where a small

number of vertices have extremely high degrees, as shown in

Figure 6 obtained from Friendster social network graph [20].

2) Synthetic Graph Generation: We implement a simple

graph generator that can quickly produce graphs following

power-law distributions. Since the performance of most graph

applications is highly dependent on input graph distribution

and sparsity, generated synthetic proxy graphs and real graphs

need to follow similar distributions to achieve accurate profil-

ing. However, it is impossible to use real graphs for profiling

and CCR generation, as it is too expensive to profile the

cluster once receiving a new graph. Furthermore, it is difficult

to form a comprehensive sample graph set by randomly

$

$%

$%%

$%%%

$%%%%

$%%%%%

$%%%%%%

$ $% $%% $%%% $%%%% $%%%%%

&�
�
��

���
��	

��

��
�'

(����'
$%% $%$ $%� $%� $%� $%)

$%%

$%$

$%�

$%�

$%�

$%)

$%*

Fig. 6: Friendster Graph [20] following Power-law distribution.

selecting natural graphs. However, these difficulties can easily

be avoided by synthetic graphs. Note that having similar

distributions does not guarantee the capability to predict real

execution time. However, as we will show in experimental

results, it is sufficient to detect heterogeneous machines’ graph

processing capabilities.

Our synthetic graph generator is illustrated in Algorithm 1.

It takes the number of vertices N and α parameter as inputs.

Based on distribution factor α , the probability of each vertex

is calculated and associated with the number of degrees that

will be generated later. Then, the probability density function

(pd f) will be transformed into a cumulative density function

(cd f). The total number of degrees of any vertex is generated

by the cdf function. All the connected vertices are produced

by a random hash. If directional edges are needed, the order of

edge(u,v) could be understood as the graph having an edge

from u to v and vice verse. To omit self-loops, a condition

check on vertex u being unequal to vertex v is added in the

process, if necessary. The overhead of generating synthetic

graphs depends on the graph size and distribution. Generating

three deployed proxies took 67 seconds in total.

Algorithm 1 Synthetitc Graph Generator

1: procedure GRAPH GENERATION

2: for i≤ N do
3: pd f [i] = i−α

4: end for
5: cd f = trans f orm(pd f)
6: hash = constant value
7: for u≤ N do
8: degree = multinomial(cd f)
9: for d ≤ degree do

10: v = (u+hash)mod N
11: out put edge(u,v)
12: end for
13: end for
14: end procedure

3) Numerical Method for Computing α: In order to ar-

tificially generate power-law graphs for performance sam-

pling, the parameter α that determines the sparsity level

of the underlying graphs is essential. To precisely generate

representative synthetic proxy graphs, we need to explore

the distribution diversity of real graphs. In this section, we

808080

describe a numerical procedure for computing the tunable

parameter α of an existing natural graph with only the number

of vertices and edges given. From the power-law distribution

in Equation 3, we note that a characterization of the power-
law distribution does not explicitly show the normalization

constant. For the purpose of estimating α , it is convenient to

work with the following characterization

P(d) =
d−α

∑i=D
i=1 i−α , (4)

where D denotes the total number of degrees. We compute the

first moment of the discrete random variable d as follow,

E[d] =
d=D

∑
d=1

dP(d) =
d=D

∑
d=1

d−α+1

∑i=D
i=1 i−α . (5)

Let E and V denote the sets of edges and vertices in a

graph, respectively. We can approximate the average degree

of a graph E[d] empirically as follow,

E[d] =
|E |
|V | , (6)

where |X | denotes the cardinality of the set X . Since the

total number of edges and vertices of the input graph is given,

we thus compute α by equating (5) with (6). Thus, we can

express α as the root of the following function,

F(α) =
d=D

∑
d=1

d−α+1

∑i=D
i=1 i−α −

|E |
|V | = 0. (7)

We then apply a standard Newton method for solving the root

of the equation F(α) = 0. Once α is computed, we can feed

it into the synthetic graph generator. Normally, generating

several synthetic proxy graphs with different α is a one-

time procedure, which covers a wide range of real graphs,

as most natural graphs follow power-law distribution with α
parameters varying only within a limited range (from 1.9 to

2.4). However, in order to verify the coverage of generated

synthetic graphs, we can calculate the α of each natural input

graph. If its α is beyond the covered range, an additional

synthetic graph can be generated and added to the current set.

Our α computing process is extremely quick (less than 1ms),

and the overhead is negligible.

TABLE I: Amazon Virtual Machine [3] and Local Physical

Machine Configurations

Name HW Threads Computing Threads Cost Rate Type

c4.xlarge 4 2 $0.209/hour Virtual

c4.2xlarge 8 6 $0.419/hour Virtual

m4.2xlarge 8 6 $0.479/hour Virtual

r3.2xlarge 8 6 $0.665/hour Virtual

c4.4xlarge 16 14 $0.838/hour Virtual

c4.8xlarge 36 34 $1.675/hour Virtual

Xeon Server S 4 2 N/A Physical

Xeon Server L 12 10 N/A Physical

B. Profiling for Heterogeneous Cluster

The main idea of graph partitioning in heterogeneous envi-

ronments, is to distribute input graphs onto different machines

proportional to their CCRs. To accurately generate CCRs, we

have to cover all the impacting factors, such as the hetero-

geneous machines, graph applications, and the distributions

of the graphs. To do so, we need to profile graph applica-

tions executing in the heterogeneous cluster using synthetic

graphs with diverse distributions. As shown in Figure 7a, we

take the generated synthetic graphs as inputs and combine

them with each graph application to form independent pro-

filing sets. It is necessary to profile each application because

graph applications are naturally diverse, as demonstrated in

Figure 2. This implies that a single profiling set is not

enough to cover all application characteristics. Moreover,

our application-specific profiling methodology provides more

flexibility, as any special-purpose application can be sampled

and fit into our flow.

For a given heterogeneous cluster, we have to classify

machines into different groups and select only one machine

from each group, in order to minimize the profiling overhead.

For instance, if the heterogeneous cluster is formed by Amazon

EC2 virtual nodes [3], all C4.xlarge machines within the

deployed cluster should be treated as one group, but only one

of them needs to be profiled. After grouping, each profiling set

is executed on one machine from each group in parallel. The

purpose of running profiling sets on machines individually is

that each machine’s graph computation power can be captured

without communication interference. Minimizing communica-

tion overheads for distributed graph frameworks is beyond the

scope of this paper and is considered for future work.

After the parallel profiling process, the runtime of each

machine group can be obtained. This runtime information is

used to compute the speedup among machines. The CCR for

the application is created from this speedup data. For example,

if machine A runs profiling set X two times faster than the

baseline machine B, the CCR for these two machines on

profiling set X is 2 : 1. After the profiling process finishes,

each application’s CCR will be collected into a CCR pool for

future use. CCR profiling is a one-time offline process. The

CCR pool needs to be updated whenever computing resources

in the heterogeneous cluster change. However, re-profiling

is only required if new machines types are deployed or

machine characteristics otherwise change. Varying the cluster

composition among existing machines does not require CCR

updates. Given its low overhead, dynamic changes in resources

can be captured by running the profiler and updating the CCR

pool online at regular intervals. The benefits of our profiling

method will be discussed in the Section V.

In contrast to our methodology, prior work [5] proposed to

simply read a machine’s hardware configuration (number of

virtual cores) for estimating node computing capabilities. For

example, the CCR between machine A with four hardware

threads and machine B with eight hardware threads is 1 : 3

(4−2 : 8−2), as two logical cores on each node are reserved

818181

+�������,�
-����	

+
������,�
-����	

�1��������
�	
��

����2	����	

����2�

����

����

.���	3������������	

(a) Illustration of profiling for CCR generation.

�	
����
���3

�����
���3

����2�

4��
�����3�
�	
���"�������

��
�

.���	3������
�������3�������	

�	
���
2
	�������3

��
��
�	
���

������
���

(b) Flow of the modified PowerGraph framework.

Fig. 7: Synthetic graphs profiling and heterogeneity-aware graph processing flow.

for communication. The inaccuracy caused by this naive

estimation has been shown in Figure 2. Compared to this

prior work, the overhead of our purposed profiling method

may seems costly. However, each profiling set only needs to be

executed once on a small subset of machines in the cluster. All

generated CCR information is reusable over future executions,

as graph applications are often reused to analyze dozens of

different real world graphs.

C. Graph Processing Flow

We evaluate our proposed methodology using the Pow-

erGraph [8] framework. Since the profiling work is done

completely offline, our scheme is independent of the under-

lying setup and can be equally applied to other distributed

graph processing frameworks. Figure 7b shows the execution

flow of our current platform. Generally, graph processing

inputs are the application, the graph, and other graph-related

information, such as number of edges/vertices and the format.

The framework first loads input graph files and the applica-

tion. Then, based on the application, one corresponding CCR

set would be picked from the pool, which is pre-generated

by the offline profiling process described in Section III-B.

Based on the application specific CCR and user selected

partitioning algorithm (heterogeneity-aware partitioning algo-

rithms described in Section II), the graph partitioner splits

the graph into multiple chunks and distributes them onto

nodes in the cluster accordingly. After the partitioning phase,

the framework needs to finalize the graph by constructing

the connections among machines, to achieve point-to-point

communication and synchronization during execution. The last

step of the flow is the application execution.

IV. EXPERIMENT SETUP

This section introduces our experimental setup, including

the heterogeneous machine configurations, data sets, and graph

applications used in the evaluation. As shown in Table I, we

deploy both Amazon EC2 Virtual nodes [3] and local physical

servers. We use EC2 virtual machines from three popular

categories in our experiments, including C type (computation

optimized), M type (general purpose) and R type (memory op-

timized). Due to the high heterogeneity provided by Amazon

virtual computers, we verify the accuracy of our methodology

among different machines under the same category and among

machines with the same number of hardware threads across

different categories. Performance studies are done in two

parts. First, we compare application runtime achieved by

our methodology to the performance achieved by the state-

of-the-art work [5] using the cluster formed by m4.2xlarge
and c4.2xlarge. These two types of machines have the same

number of computing threads but behave differently. However,

such performance differences will be ignored by prior work

[5], which only differentiates machines by looking at the

number of computing threads. Additionally, a performance

comparison for a cluster consisting of machines with different

amounts of hardware compute units is done on a local servers

as this allows us to monitor the energy savings, which is

not provided on Amazon EC2 platform [3]. Moreover, local

servers provide us an opportunity to manipulate processor

frequency ranges to emulate “mini” servers (such as ARM

processors with lower compute capabilities or operating at

lower frequencies) populated with modern data centers. This

allows us to study and project a setup in future data centers

future heterogeneous system designs.

Our cost study is entirely performed on Amazon, as it is

one of the most popular cloud service providers and lists all

the price information publicly [3]. All physical nodes on local

servers have Intel Xeon E5 processors, and are connected via

high-speed router. All performance information is measured

and reported by the PowerGraph [8] platform. The processor

and memory energy consumption data is recorded using Intel

RAPL counters read by the Linux GNU perf toolset. For our

studies, we select four real world graphs and generate three

synthetic proxy graphs as shown in Table II. The size of the

graph data varies from 40 Megabytes to over 1 Gigabyte with

diverse edge density.

We selected four popular graph applications from machine

learning and data mining (MLDM) fields. Those applications

are briefly described as follows:

TABLE II: Real world graphs [20] and synthetic graphs.

Name Vertices Edges Footprint Alpha α
amazon 403,394 3,387,388 46MB 2.004

citation 3,774,768 16,518,948 268MB 2.169

social network 4,847,571 68,993,773 1.1GB 1.950

wiki 2,394,385 5,021,410 64MB 2.478

SyntheticGraph one 3,200,000 42,011,049 4.2GB 1.95

SyntheticGraph two 3,200,000 15,962,962 1.5GB 2.1

SyntheticGraph three 3,200,000 7,061,587 760MB 2.4

828282

�
�
�
.
/

��
��

��
01"

��

��
0�1

"
�
�

��
0�1

"
�
�

��
0/1

"
�
�

��
01"

��

��
0�1

"
�
�

��
0�1

"
�
�

��
0/1

"
�
�

��
01"

��

��
0�1

"
�
�

��
0�1

"
�
�

��
0/1

"
�
�

��
01"

��

��
0�1

"
�
�

��
0�1

"
�
�

��
0/1

"
�
�

�
��
� #�"����� �# ##

��

��
�

2
"�3�
��� ���������3�
���

(a) Machines with different amount of computing threads from
Amazon EC2 computing optimized category.

�

�0�

�

�0�

�

!�
0�1

"
�
�

��
0�1

"
�
�

�0
�1

"
�
�

!�
0�1

"
�
�

��
0�1

"
�
�

�0
�1

"
�
�

!�
0�1

"
�
�

��
0�1

"
�
�

�0
�1

"
�
�

!�
0�1

"
�
�

��
0�1

"
�
�

�0
�1

"
�
�

�
��
� #�"����� �# ##

��

��
�

2
"�3�
��� ���������3�
���

(b) Machines with same amount of computing threads from three
different Amazon EC2 categories.

Fig. 8: Comparison of CCR acquired from real world graphs and synthetic graphs.

Pagerank: The Pagerank algorithm [21] is a method to

measure the importance of web pages based on their link

connected. Its main use is to compute a ranking for every

website in the world. This algorithm is defined as:

PR(u) =
1−d

N
+d ∑

v∈Bu

PR(v)
L(v)

. (8)

Here, d is the dumping factor and N is the total number of

pages. Bu is the set of pages. L(v) represents the number of

outbound links on page v.

Coloring: The Coloring application is a special case of

graph labeling. It attempts to color the vertices with different

colors such that no two connected vertices share the same

color. In PowerGraph, this application is implemented to color

directed graphs, and count the total number of colors in use.

Connected Component (CC): The Connected Component

algorithm is designed to count fully connected subgraphs in

which any two vertices are connected by a path. The algorithm

counts connected components in a given graph, as well as the

number of vertices and edges in each connected component.

Triangle Count (TC): Each graph triangle is a complete

subgraph formed by three vertices. The Triangle Count ap-

plication counts the total number of triangles in a given

graph, as well as the number of triangles for each vertex.

The number of triangles of a vertex indicates the graph

connectivity around that vertex. The application implemented

in PowerGraph maintains a list of neighbors for each vertex

in a hash set. It counts the number of intersections of vertex

u’s and vertex v’s neighbor sets for every edge (u,v).

V. EVALUATION

In the following section, we illustrate the accuracy of

using synthetic power-law graphs to measure machine’s com-

putational capabilities in a heterogeneous cluster. We fur-

ther demonstrate the benefits brought by our profiling-aided

methodology for heterogeneous clusters in terms of perfor-

mance and energy. We show the comparison on Amazon

EC2 virtual nodes and local servers, the latter including

energy data. Furthermore, we deploy local servers to form

a more complicated projected case by manipulating processor

frequency ranges. The baseline we chose to compare against

is the performance and energy brought by state-of-the-art

methodology proposed in [5], which uses the number of

cores in a machine to estimate the performance differences

in a heterogeneous cluster. Lastly, we discuss another benefit

of profiling the synthetic power-law proxy graphs on the

commercial cloud computing platform, which is indeed useful

to cloud service users for graph related work.

A. Profiling Accuracy
In order to partition a graph strictly following the machine’s

processing capability, CCRs captured by our profiling method-

ology using synthetic graphs need to be very precise. They

should not only reflect the performance differences among

all types of machines in the cluster, but also distinguish the

performance variances brought by diverse graph applications.

To verify the accuracy, we examine our proposed methodology

with synthetic graphs in different situations. First, as shown

in Figure 8a, we compare performance of four MLDM graph

applications on four c4 machines from the computation-

optimized domain on Amazon EC2. As can be seen, Coloring

and Connected Component have nearly linear performance

improvements from the “smallest” xlarge machine to the

“biggest” 8xlarge machine. Differently, Pagerank has a unique

saturation point between machine 4xlarge and 8xlarge, which

is accurately captured by our synthetic graphs. Uniquely,

Triangle Count has a very sharp speedup increase when going

from 4xlarge to 8xlarge. As we mentioned before, graph

applications are very diverse. Using hardware configuration

data alone, it is almost impossible to capture all the differences

among machines and applications. For Pagerank and Coloring

application, the speedup estimated using synthetic graphs

closely matches the speedup obtained when running with real

graphs. The only mismatching is the 8xlarge case of the

Triangle Count application, where real graphs show a 7.6x

performance improvement over baseline whereas synthetic

graphs only estimates a speedup of 5.3x. Overall, our synthetic

graphs and profiling methodology achieve 92% accuracy for

different types of machine from the same domain. By contrast,

estimating performance using the number of cores leads to

108% error on average.
As cloud applications are very diverse in terms of per-

formance and energy consumption, cloud service providers

usually offer a number of machines from different categories

that are aimed at satisfying users’ needs while maintaining

low energy bill. The Amazon EC2 platform offers general

purpose computing units, as well as machines optimized for

838383

�

�4�

�4�

�4�

�4�

�4�

�
�
��
��
��
��
��
��
��
��

���
��
��

��
��	
��

�

5��
�

�
��
��

5��
5�
�

���
��
��

��
��	
��

�

5��
�

�
��
��

5��
5�
�

���
��
��

��
��	
��

�

5��
�

�
��
��

5��
5�
�

���
��
��

��
��	
��

�

5��
�

�
��
��

5��
5�
�

������ 6������� ��6���7���8��� 8���

��
��
�

�

2

��
��
���
�9

����������	�
���
�	���	�
���
����	�

(a) Performance comparison of Pagerank benchmark.

�

�4�

�4�

�4�

�4�

�4�

�

�

�

�

:

��

��

���
��
��

��
��	
��

�

5��
�

�
��
��

5��
5�
�

���
��
��

��
��	
��

�

5��
�

�
��
��

5��
5�
�

���
��
��

��
��	
��

�

5��
�

�
��
��

5��
5�
�

���
��
��

��
��	
��

�

5��
�

�
��
��

5��
5�
�

������ 6������� ��6���7���8��� 8���

��
��
�

�

2

��
��
���
�9

(b) Performance comparison of Coloring benchmark.

�

�4�

�4�

�4�

�4�

�4�

�

�

�

�

:

��

��

��

���
��
��

��
��	
��

�

5��
�

�
��
��

5��
5�
�

���
��
��

��
��	
��

�

5��
�

�
��
��

5��
5�
�

���
��
��

��
��	
��

�

5��
�

�
��
��

5��
5�
�

���
��
��

��
��	
��

�

5��
�

�
��
��

5��
5�
�

������ 6������� ��6���7���8��� 8���

��
��
�

�

2

��
��
���
�9

(c) Performance comparison of Connected Component benchmark.

�

�4�

�4�

�4�

�4�

�4�

�
�
��
��
��
��
��
��
��

���
��
��

��
��	
��

�

5��
�

�
��
��

5��
5�
�

���
��
��

��
��	
��

�

5��
�

�
��
��

5��
5�
�

���
��
��

��
��	
��

�

5��
�

�
��
��

5��
5�
�

���
��
��

��
��	
��

�

5��
�

�
��
��

5��
5�
�

������ 6������� ��6���7���8��� 8���

��
��
�

�

2

��
��
���
�9

(d) Performance comparison of Triangle Count benchmark.

Fig. 9: Performance comparison between prior work and CCR-guided partitioning on Amazon virtual platform.

computation or memory. We evaluate our work across three

domains to explore this heterogeneity trend. The machines

m4.2xlarge, c4.2xlarge and r3.2xlarge have the same hardware

configuration in terms of computing threads and network speed

(if the graph does not exceed the memory capacity, different

memory sizes will not affect the graph execution). However, as

Figure 8b shows, these three machines actually have diverging

behaviors. Even though the differences among these three

machines are relatively small, our synthetic graphs can still

precisely capture them. Compared to a baseline machine

m4.2xlarge, c4.2xlarge speedups are about 1.2x on average

whereas r3.2xlarge achieve an average of 1.1x speedup. As

shown in Figure 8b, the CCRs obtained using synthetic

graphs almost perfectly match real world graphs across all

applications, with an average of 96% accuracy.

B. Heterogeneous Cluster

This section demonstrates the performance and energy im-

provements brought by our CCR-guided graph partitioning.

We examine the benefits under three different cases. First, we

show execution time improvement in a heterogeneous cluster

formed by machines with the same number of computing

threads, which would be considered as homogeneous by prior

work [5]. Secondly, to replicate the experiments in prior work

[5] while measuring both runtime and energy consumption,

we perform the comparison on a local cluster composed of

machines with different numbers of threads running in the

same range of frequency. Lastly, to project the future situation

in heterogeneous data centers, we configured our cluster to be

made up of machines with different number of cores operating

at different frequency ranges.

1) Case 1: We first perform a comparison on a small, fixed

heterogeneous cluster formed by m4.2xlarge and c4.2xlarge.

We use four representative natural graphs accompanied by

four MLDM applications. The bars and left axis of Figure 9

demonstrates the application runtimes of different applications

for different graphs and partitioning algorithms. The Pagerank

algorithm illustrated in Figure 9a shows an average of 1.17x

speedup across all graphs and partitioning algorithms. Obliv-

ious has the minimal runtime improvement for most graphs

in Pagerank, as it is a greedy algorithm that is designed

to achieve an even load balance. Coloring has the least

performance improvement among all four applications. It is

only 1.12x faster than the baseline. This minimal speedup

is limited by two factors: the 8% estimation error on the

c4.2xlarge and the asynchronous execution manner of the

Coloring application. The Connected Component algorithm

has the maximum speedup of 1.45x using the hybrid algorithm

on the amazon graph, while its average runtime reduction is

around 14%. A large application diversity can be seen in

Connected Component, as the citation graph behaves very

differently compared to its performance in other applications.

Triangle Count shows the most runtime benefits from CCR-

guided graph partitioning. It outperforms the baseline by 1.19x

on average. Overall, among all applications and graphs, hybrid

and ginger partitioning algorithms achieve better performance

than the other three algorithms.

2) Case 2: Similar to experiments performed in prior work

[5], we form a heterogeneous cluster by deploying machines

with different numbers of cores. A small cluster contains two

machines, one having 4 computing threads and the other 12.

The application CCRs for this cluster are generally around

1 : 3.5, which means that the fast machine will be overloaded

if we partition graphs based on the number of cores. Compared

to the default PowerGraph setup, Figure 10a shows that the

prior work achieves a 1.27x speedup across all applications,

which is quite similar to the results provided in [5]. However,

848484

�

�0�

�0�

�0.

�0/
��

��

�

�

��

��

�

��

��
��

���

�

���
���

;<

������ ��
!��� ��

������ ��
!��� ��

(a) Local cluster with same frequency range.

�

�0�

�0�

�0.

�0/

�

��

��
�

�

��

��

�

��

��
��

���

�

���
���

;<

������ ��
!��� ��

������ ��
!��� ��

(b) Local cluster with different frequency ranges.

Fig. 10: Performance and energy improvements on local clusters.

the energy savings are insignificant, as the powerful machine

is overloaded to run longer that it has to. Therefore, energy

savings are limited. Our proposed methodology speeds up the

default system by as much as 1.67x and 1.45x on average,

which is 17.7% better than prior work. Moreover, since we

load the right amount of data on the fast machine, we achieve

an average of 23.6% energy savings (compared to 8.4% using

the approach from prior work).

3) Case 3: Since more “tiny” ARM-like servers are being

deployed in modern data centers, we construct a cluster with

machines operating at two frequency domains to emulate such

future heterogeneous environments. The fast machine has 12

cores and runs at a maximum of 2.5Ghz, while the little

machine only has 4 cores with a maximum frequency of

1.8Ghz. Not surprisingly, the applications’ CCRs change sub-

stantially. The Pagerank, Connect Component, and Coloring

CCRs all become more than 1 : 6. Different from the significant

changes in other three applications, Triangle Count’s CCR

increases from 1 : 3.1 to 1 : 4.5, and it becomes quite similar

to the partition ratio suggested by the number of hardware

threads. Therefore, we can observe in Figure 10b that both the

runtime improvement and energy reduction of this application

is similar to what prior work achieves. As the heterogeneity of

the cluster increases, our scheme achieves better speedup and

energy savings as compared to Case 2. On average, the graph

executions achieve 1.58x speedup and 26.4% energy savings

over the default system. This presents an average of 20.2%

speedup and 14.1% energy reduction over the prior work.

C. Cost Efficiency Projection

For users of cloud computing services, cost is a primary

consideration. Other than the performance and energy im-

provements achieved in a heterogeneous cluster, profiling the

synthetic graphs can also offer an accurate overview of the

cost efficiency of different machines. Figure 11 plots the

Pareto space of each individual machine’s performance and

cost on four applications. All cost and speedup information is

generated by profiling synthetic graphs, and the accuracy of

using synthetic graphs has been discussed in Section V-A.

There are many metrics that can be used to evaluate cost

efficiency, such as total cost of ownership (TCO) and cost per

throughput/performance. Similarly, we deploy the cost per task

to define a machine’s efficiency. The cost per task is defined

as the product of task runtimes and a machine’s hourly rate (as

shown in Table I). As we can see, machines of similar type are

�

�0�

�0�

�0.

�0/

�

�0�

�����.

&�
�!

"
�"

��
#�

��
�����

�
��
� ���01"
�� �
��
� ���0�1"
��
�
��
� ���0�1"
�� �
��
� ���0/1"
��
�
��
� �!�0�1"
�� �
��
� ��0�1"
��
#�"��������01"
�� #�"��������0�1"
��
#�"��������0�1"
�� #�"��������0/1"
��
#�"������!�0�1"
�� #�"�������0�1"
��
�#���01"
�� �#���0�1"
��
�#���0�1"
�� �#���0/1"
��
�#�!�0�1"
�� �#��0�1"
��
##���01"
�� ##���0�1"
��
##���0�1"
�� ##���0/1"
��
##�!�0�1"
�� ##��0�1"
��

Fig. 11: Cost and performance pareto graph of different

computing nodes and different graph applications.

clustered in the Figure 11. All 2xlarge machines (from three

different domains) are grouped together with around 2x around

speedup and 0.2x cost, which means none of them demonstrate

their “advertised” specialty for graph applications. Within the

computation-optimized domain, we can see 8xlarge being the

most expensive machine for graph workloads, which is a result

of the high charge rate and relatively low performance. The

4xlarge and 2xlarge saves 60% and 80% cost and provides 4x

and 2x speedup, which should be considered as reasonable

candidates for graph applications to satisfy both aspects.

Without profiling using synthetic graphs, users would have

no insights about the machines provided by cloud services or

the machines they may have already deployed.

VI. RELATED WORK

Other than the PowerGraph [8] framework we used, dis-

tributed graphlab [22], PGX.D [23], Pregel [24] and Giraph

[25] also target graph applications in distributed systems.

Different from these, Graphchi [26], Graphlab [27], GPSA

[28] target improvements in graph processing performance on

a single node. Guo et al. [29] and Han et al. [30] performed

comprehensive studies on the strength and weakness of these

graph processing frameworks.

Besides the studies on graph platforms, a few papers attempt

to address the data center heterogeneity for graph workloads.

Semih [31] used dynamic load balancing technology in their

Graph Processing System (GPS) to alleviate the negative

effect of node-level heterogeneity. Similarly, Mizan (Pregel-

like system) [13] was designed to reduce the performance

degradation in a heterogeneous environment by runtime mon-

itoring and vertex migrating. LeBeane et al. [5] optimized

the existing graph framework by ingressing the data in a

858585

heterogeneous way. However, their inaccurate estimation of a

machine’s graph processing capability leads to an imbalanced

situation and results in suboptimal performance improvements.

No prior work has ever used synthetic graphs for profiling

in a heterogeneous environment to guide graph ingress. Other

than the graph processing frameworks, Hadoop [7] framework

has also discovered the influence of data center heterogeneity

and attempted to exploit it. Most works were implemented

on the MapReduce [32] programming model. LATE [11] is

one of the earliest works to alleviate the performance effects

of “slow” stragglers. Tarazu [9] is another work that improves

MapReduce performance for heterogeneous hardware by using

communication aware load balancing and task scheduling.

VII. CONCLUSION

Graph processing applications are emerging as an extremely

important class of workloads during the era of big data. As

the heterogeneity of modern data centers continue to increase

due to the requirements of low energy consumption, diverse

service types, and high service availability, understanding

the computing capability of heterogeneous nodes becomes

essential to maximize the performance and minimize the en-

ergy consumption. We illustrate that profiling synthetic proxy

graphs on a heterogeneous cluster can estimate its machines’

computing capabilities with an average of 92% accuracy. With

our proposed methodology, the proxy-guided heterogeneity-

aware graph processing system achieves a maximum speedup

of 1.84x and 1.45x over a default system and prior work [5],

respectively. Compared to prior work, we improve the default

system’s performance by an average of 17.9% with 14.6% less

energy consumption on average.

VIII. ACKNOWLEDGMENTS

This work was partially supported by Semiconductor Re-

search Corporation Task ID 2504, and National Science Foun-

dation grant CCF-1337393. The authors would also like to

thank Amazon for their donation of the EC2 computing re-

sources used in this work. Any opinions, findings, conclusions,

or recommendations are those of the authors and do not

necessarily reflect the views of these funding agencies.

REFERENCES

[1] C. Baru, M. Bhandarkar, R. Nambiar, et al., “Setting the direction
for big data benchmark standards,” in Selected Topics in Performance
Evaluation and Benchmarking, pp. 197–208, Springer, 2013.

[2] K. Ammar and M. T. Özsu, “Wgb: Towards a universal graph bench-
mark,” in Advancing Big Data Benchmarks, pp. 58–72, Springer, 2014.

[3] “Amazon EC2.” http://aws.amazon.com/ec2. Accessed: 04-16-2015.
[4] “Microsoft azure.” https://azure.microsoft.com. Accessed: 02-01-2010.
[5] M. LeBeane, S. Song, R. Panda, et al., “Data partitioning strategies for

graph workloads on heterogeneous clusters,” in International Conference
for High Performance Computing, Networking, Storage and Analysis
(SC), pp. 56:1–56:12, ACM, 2015.

[6] “Paypal deploys arm servers in data centers.” http://www.
datacenterknowledge.com/. Accessed: 04-29-2015.

[7] “Apache hadoop.” https://hadoop.apache.org/. Accessed: 08-11-2015.
[8] J. E. Gonzalez, Y. Low, H. Gu, et al., “Powergraph: Distributed graph-

parallel computation on natural graphs,” in Symposium on Operating
Systems Design and Implementation (OSDI), pp. 17–30, USENIX As-
sociation, 2012.

[9] F. Ahmad, S. T. Chakradhar, A. Raghunathan, et al., “Tarazu: Optimizing
mapreduce on heterogeneous clusters,” in International Conference
on Architectural Support for Programming Languages and Operating
Systems (ASPLOS), pp. 61–74, ACM, 2012.

[10] Z. Fadika, E. Dede, J. Hartog, et al., “Marla: Mapreduce for heteroge-
neous clusters,” in International Symposium on Cluster, Cloud and Grid
Computing (CCGRID), pp. 49–56, IEEE, 2012.

[11] M. Zaharia, A. Konwinski, A. D. Joseph, et al., “Improving mapreduce
performance in heterogeneous environments,” in Conference on Oper-
ating Systems Design and Implementation (OSDI), pp. 29–42, USENIX
Association, 2008.

[12] J. Xie, S. Yin, X. Ruan, et al., “Improving mapreduce performance
through data placement in heterogeneous hadoop clusters,” in Interna-
tional Symposium on Parallel Distributed Processing, Workshops and
Phd Forum (IPDPSW), pp. 1–9, IEEE, 2010.

[13] Z. Khayyat, K. Awara, A. Alonazi, et al., “Mizan: A system for dynamic
load balancing in large-scale graph processing,” in European Conference
on Computer Systems (EuroSys), pp. 169–182, ACM, 2013.

[14] S. Sanyal, A. Jain, S. Das, and R. Biswas, “A hierarchical and distributed
approach for mapping large applications to heterogeneous grids using
genetic algorithms,” in Cluster Computing, 2003. Proceedings. 2003
IEEE International Conference on, pp. 496–499, Dec 2003.

[15] R. Chen, J. Shi, Y. Chen, and H. Chen, “Powerlyra: Differentiated graph
computation and partitioning on skewed graphs,” in EuroSys, Apr. 2015.

[16] C. Tsourakakis, C. Gkantsidis, B. Radunovic, et al., “Fennel: Streaming
graph partitioning for massive scale graphs,” in International conference
on Web search and data mining, pp. 333–342, ACM, 2014.

[17] U. Brandes and T. Erlebach, Network Analysis. Theoretical Computer
Science and General Issues, Springer-Verlag Berlin Heidelberg, 2005.

[18] D. Chakrabarti and C. Faloutsos, “Graph mining: Laws, generators, and
algorithms,” ACM Computing Surveys (CSUR), vol. 38, no. 1, p. 2, 2006.

[19] J. Yan, G. Tan, and N. Sun, “Study on partitioning real-world directed
graphs of skewed degree distribution,” in International Conference on
Parallel Processing (ICPP), pp. 699–708, IEEE, 2015.

[20] J. Leskovec and A. Krevl, “SNAP Datasets: Stanford large network
dataset collection.” http://snap.stanford.edu/data. Accessed: 04-16-2015.

[21] L. Page, S. Brin, R. Motwani, et al., “The pagerank citation ranking:
Bringing order to the web.,” Technical Report 1999-66, Stanford Info-
Lab, 1999.

[22] Y. Low, D. Bickson, J. Gonzalez, et al., “Distributed graphlab: A
framework for machine learning and data mining in the cloud,” Proc.
VLDB Endow., vol. 5, pp. 716–727, Apr. 2012.

[23] S. Hong, S. Depner, T. Manhardt, et al., “Pgx.d: A fast distributed graph
processing engine,” in International Conference for High Performance
Computing, Networking, Storage and Analysis (SC), pp. 58:1–58:12,
ACM, 2015.

[24] G. Malewicz, M. H. Austern, A. J. Bik, et al., “Pregel: A system for
large-scale graph processing,” in International Conference on Manage-
ment of Data (SIGMOD), pp. 135–146, ACM, 2010.

[25] C. Avery, “Giraph: Large-scale graph processing infrastructure on
hadoop,” Proceedings of the Hadoop Summit. Santa Clara, 2011.

[26] A. Kyrola, G. Blelloch, and C. Guestrin, “Graphchi: Large-scale graph
computation on just a pc,” in Conference on Operating Systems Design
and Implementation (OSDI), pp. 31–46, USENIX Association, 2012.

[27] Y. Low, J. E. Gonzalez, A. Kyrola, et al., “Graphlab: A new framework
for parallel machine learning,” UAI, pp. 340–349, 2010.

[28] J. Sun, D. Zhou, H. Chen, et al., “Gpsa: A graph processing system
with actors,” in International Conference on Parallel Processing (ICPP),
IEEE, 2015.

[29] Y. Guo, M. Biczak, A. L. Varbanescu, et al., “How well do graph-
processing platforms perform? an empirical performance evaluation
and analysis,” in International Parallel and Distributed Processing
Symposium (IPDPS), pp. 395–404, IEEE, 2014.

[30] M. Han, K. Daudjee, K. Ammar, et al., “An experimental comparison
of pregel-like graph processing systems,” Proc. VLDB Endow., vol. 7,
pp. 1047–1058, Aug. 2014.

[31] S. Salihoglu and J. Widom, “Gps: A graph processing system,” in Inter-
national Conference on Scientific and Statistical Database Management
(SSDBM), pp. 22:1–22:12, ACM, 2013.

[32] J. Dean and S. Ghemawat, “Mapreduce: Simplified data processing on
large clusters,” Communications of the ACM, vol. 51, no. 1, pp. 107–113,
2008.

868686

