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ABSTRACT
Recent work in neuromorphic computing has proposed a range of
new architectures for Spiking Neural Network (SNN)-based sys-
tems. However, neuromorphic design lacks a framework to facilitate
exploration of different SNN-based architectures and aid with early
design decisions. While there are various SNN simulators, none can
be used to rapidly estimate latency and energy of different spiking
architectures. We show that while current spiking designs differ
in implementation, they have common features which can be rep-
resented as a generic architecture template. We describe an initial
version of a framework that simulates a range of neuromorphic
architectures at an abstract time-step granularity. We demonstrate
our simulator by modeling Intel’s Loihi platform, estimating time-
varying energy and latency with less than 10% mean error for
various sizes of a two-layer SNN.

KEYWORDS
Neuromorphic computing, performance modeling

ACM Reference Format:
James A. Boyle1, Mark Plagge2, Suma G. Cardwell2, Frances S. Chance2, An-
dreas Gerstlauer1. 2023. Performance and Energy Simulation of Spiking Neu-
romorphic Architectures for Fast Exploration. In International Conference
on Neuromorphic Systems (ICONS ’23), August 1–3, 2023, Santa Fe, NM, USA.
ACM, New York, NY, USA, 4 pages. https://doi.org/10.1145/3589737.3605970

1 INTRODUCTION
Neuromorphic computing takes elements inspired by the brain to
accelerate and execute a range of applications, such as low-power
real-time inference, solving optimization problems, and acceler-
ating random-walk searches [1]. Spiking Neural Network (SNN)
based designs are one major subclass of neuromorphic hardware.
Spike-based computation is inherently event-driven, and has at-
tractive properties such as being noise-tolerant and sparse in time
and space. Spiking platforms accelerate the execution of SNNs,
efficiently simulating the dynamics of spiking neurons and ex-
changing spike messages between weighted connections. Recently
a range of different spiking platforms have been proposed and im-
plemented. At the same time, the neuromorphic computing field
is still evolving and an active research area, with new architec-
tures (e.g., analog computing) being investigated. Despite this drive
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for developing new architectures, there is a lack of openly avail-
able tools for early design space exploration. During early design
decisions, the designer must trade-off features based on required
functionality while considering latency, energy and area costs for
executing certain applications. Ideally, a designer should only have
to consider architectural-level decisions without also having to
consider low-level implementation details at this stage.

In this paper we show preliminary results for a high-level simula-
tion framework that can rapidly estimate performance of different
SNN-based platforms. Our framework is configurable to model a
wide range of neuromorphic architectures, and we define a canoni-
cal file format for describing different designs. Our simulator im-
plements a functional hardware model which uses a fast time-step
based approach to simulate spiking designs. We combine simulated
activity with per-update metrics to estimate the energy and latency
for a user-specified SNN at each time-step. We demonstrate our
simulator by modeling Intel’s Loihi platform executing a real-world
neuromorphic application. Results show that our simulator can
accurately track trends and model Loihi’s energy and latency with
mean errors of 9.7% and 13.4% respectively.

2 RELATEDWORK
When simulating SNNs, there are various levels of simulation fi-
delity that are applicable to different domains. Biologically-focused
simulators, such as the NEural Simulation Tool (NEST) [7] and
Brian2 [16] simulate the dynamics of abstract SNNs but do not
model hardware implementations. When working at the hardware
level, models of spiking platforms tend to abstract SNNs further.
For example, simulators such as those in the Nengo [2] and Lava
frameworks emulate spiking hardware at a functional level. They
reproduce the functionality of one specific design while accounting
for implementation effects such as variable bit-widths and quanti-
zation. However, these tools lack features to estimate latency and
energy for different designs. Therefore, they are not helpful when
exploring design trade-offs.

Hardware-focused simulation tools exist for spiking hardware,
but these either focus on one aspect of the design or are otherwise
limited. The simulator in [8] models networking on a spiking chip,
but does not simulate performance of other hardware components.
ATHENA [14] is an analytical tool that estimates energy for neu-
romorphic crossbar-based data-flow accelerators, but is not easily
extendable to other spiking architectures. NeMo [13] and SST [15]
use a discrete-event simulation model. SST models heterogeneous
clusters of accelerators rather than a single architecture. NeMo was
designed to simulate spiking architectures, but it does not estimate
performance and focuses on a single platform. In contrast to such
discrete-event models, our framework simulates designs at an ab-
stract time-step granularity, without the need to model the precise
timing of events for improved flexibility and simulator speed.
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Figure 1: Large-scale spiking architecture template.

3 SPIKING HARDWARE ARCHITECTURES
Various spiking neuromorphic platforms, using either analog or
digital designs, have been proposed (Table 1). Existing architectures
generally follow a tile-based style with Network-on-Chip (NoC)
or bus-based interconnect at varying scales in the number of tiles
and cores per tile. Individual cores differ in their supported neuron
models using either custom hardware or software implementations.
Within each core, purely analog designs execute simulations in
real-time using dedicated circuits to reproduce neuronal dynamics.
By contrast, digital platforms operate in logical time and neurons
access hardware in a time-multiplexed manner, sharing core re-
sources. This work focuses on digital spiking platforms, and we do
not consider purely analog designs.

Existing digital architectures have common design patterns, but
differ in their implementation. Fig. 1 shows a generic architecture
template for large-scale digital spiking platforms consisting of a
grid of tiles each containing one or more cores connected via an
NoC. Each core has a custom hardware pipeline to process a group
of spiking neurons mapped to that core. Despite variations in im-
plementation across designs, cores process spikes using a common
sequence of neural-inspired operations. Spikemessages are received
over the network by a core at the input of an axon unit. The axon
unit performs a lookup and generates a set of weight addresses.
The synaptic unit then loads and processes each weight, filtering
them according to a synaptic model before forwarding a current
to the dendrite unit. The dendrite unit uses the connectivity and
synaptic currents to compute and forward a single current to the
soma unit. The soma unit in turn performs calculations to simulate
the membrane potential, applying leaking and integrating the input
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Figure 2: High-level overview of our framework.White boxes
indicate custom file formats and inputs.

current over time. If the membrane potential meets the threshold
condition, a spike is sent to the axon output unit and the potential
is reset. A spike at the output axon unit triggers a lookup of all
destination cores to send spike messages to. Finally, the core sends
one or more messages locally or globally, to be delivered to axons
of connected neurons.

The digital platforms considered in this work operate in logical
time, using a global time-step-based execution to ensure determin-
ism and to enable neurons to share hardware resources. During
each logical time-step, cores process state updates for their mapped
neurons and synchronize using a global barrier. Spike messages
that are generated during processing are broadcast and enter the
pipelines at the receiving cores. Results are written to buffers in
receiving cores, ready to be processed in the next time-step.

4 SIMULATOR DESIGN
An overview of our simulator is shown in Fig. 2. Our simulator
uses the architecture template previously described to model perfor-
mance and estimate latency and energy for a given SNN application
executing on a modeled architecture. The framework takes a de-
scription of the hardware platform, a mapped SNN and run-time
parameters passed on the command line. Using a custom simulator,
we model spiking processing activity at a time-step granularity and
use these activity counts to estimate energy and time-step latency.

4.1 Input Formats
We have created custom file formats for the architecture and SNN
application description. The architecture description is YAML-based,
defining a chip hierarchically from tiles, cores and functional units.

Table 1: Comparison of SNN-based hardware architectures.

Name Neural Core Type Cores Per Tile Tile Count Neuron Model Interconnect
Loihi [4] Custom Digital 4 32 Leaky-Integrate-and-Fire (LIF) NoC Mesh
Loihi 2 Custom Digital 4 32 Any software-based NoC Mesh

TrueNorth [5] Custom Digital 1 4096 Augmented Integrate-and-Fire NoC Mesh
SpiNNaker [6] CPU-based 18 1 Any software-based NoC
SpiNNaker2 [9] CPU-based 4 38 Any software-based NoC
Tianjic [12] Custom Digital 1 156 LIF / sigmoid, tanh NoC Mesh
Neurogrid [3] Custom Analog 1 16 Ion channel model Digital tree-based

BrainScaleS-2 [11] Custom Analog 1 1 Adaptive Exponential Digital bus
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We define a set of keywords and parameters to define each hardware
block, nesting cores inside tiles and defining the hardware units
within each core. The architecture file also specifies energy and la-
tency metrics for each operation and functional unit. The format is
extensible, using lists of attribute-value pairs. Our format also sup-
ports replication of tiles and cores, enabling concise representation
of designs while supporting heterogeneous configurations.

The mapped SNN is described using another custom file format,
where each line describes either a neuron group, neuron, or neuron
to core mappings. Groups represent populations of neurons that
share common model parameters. Each neuron group contains one
or more neurons, each defined by an identifier, its model parame-
ters, and a list of its outgoing weighted connections. Finally, each
mapping assigns a neuron to a hardware core in the design.

4.2 Time-step Based Simulation
We have implemented a custom simulator that loads a design and
SNN from files, simulates the design at a time-step granularity and
outputs statistics including latency and energy estimates. Neurons
are loaded from the SNN file and stored as a list of objects, each
object containing a neuron’s state variables, mapped core and out-
going connections to other neurons. The hardware description is
represented using classes for tiles and cores that store performance
counters, cost metrics and the types of hardware unit supported.
Different instances of each hardware unit are implemented as func-
tions. Currently, we have implemented a limited number of neural
hardware units, including a current-based synapse and a leaky-
integrate-and-fire (LIF) soma model. In the future, other instances
of each hardware unit will be added as a library of functions, chosen
by attributes in the architecture description.

During each time-step we update neurons according to their
soma and synaptic models. We first iterate over neurons, loading
their previous dendritic current from a time-step buffer and cal-
culating their state variable updates using an LIF model. If the
neuron fired, we iterate over its outgoing connections and add the
associated weight to the receiving neuron’s dendritic current. This
dendritic current is buffered, ready to be the input for the next
time-step. We update counters for the number of soma updates,
firing neurons and synaptic weights added. For firing neurons, we
also model how many cores to send messages to, and count the
total number of 𝑋 and 𝑌 hops from all messages. Once all neurons
are updated, counters are used to estimate energy and latency.

4.3 Energy and Latency Estimation
Performance counters in each core are combined with energy and
latency cost metrics from the architecture configuration to estimate
the total dynamic energy and time-step latency. These account for
the cost of individual events in the hardware, such as soma updates,
synaptic reads and sending a packet over the network. Total energy
is calculated for each time-step by multiplying activity counts by
update costs. We then sum energy over all activity types and cores.

Latency is calculated by considering the two processing stages
of each core: message receiving and neuron processing (Fig. 3).
Processing occurs in two stages that execute in parallel, separated
by the time-step buffer: processing neurons mapped to that core and
receiving spike messages from other cores. The buffer stores the
results of the previous time-step i.e., inputs to the neuron processing
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Figure 3: Spike processing pipeline model.

stage at the beginning of the time-step. The hardware units in each
stage are determined by the position of the time-step buffer. In this
initial implementation, we assume the time-step buffer to be before
the soma, in future work we, will allow the buffer to be set at any
position by the architecture description. Message receiving and
neuron processing stages are processed in parallel within cores on
the spiking chip. Our model calculates the latency for each stage
on all cores, and the core latency as the maximum of its two stages.
Network latency is accounted for in the neuron processing stage.
The time-step latency is the maximum latency of any core.

5 SIMULATOR RESULTS
For our experiments, we modeled Intel’s Loihi platform [4] in our
framework and adapted a two-layer SNN from a previously im-
plemented power benchmark application [10]. Energy and latency
metrics for Loihi were taken from published results in [4]. Fig. 4
shows activity counts for neuron updates and synapse reads per
time-step, and the corresponding energy and latency (Fig. 4b) sim-
ulated for the benchmark SNN (Fig. 4a) with 1682 neurons and ran-
domized spiking in the first layer. This demonstrates the capability
of our time-step-based simulation approach to model time-varying
activity and energy behavior, with counts and estimates calculated
after every iteration. We show the two most significant activity
counts for this application – neuron updates and synapse reads.

Fig. 5 shows energy and latency estimates over the aggregated
execution of the benchmark SNN from Fig. 4(a) scaled to different
numbers of neurons per layer and with all neurons in the first
layer firing in every time step. Simulated estimates are compared
against measurements from probes on an Intel Loihi-based Nahuku
platform, executing the application SNN over 105 time-steps. We
were able to estimate energy and time-step latency with a mean
error of 9.7% and 2.5% respectively, and our simulator processed up
to 11.7 × 106 spikes per second when run on an Intel i7-920 CPU.
Fig. 6 shows latency estimates for the same network, partitioned
across two cores to create more cross-core interactions. The events
processed by the chip are the same for both mappings. As such,
energy results matched Fig. 5 and are not shown here. For SNNs
with fewer than 1024 neurons, the networks are mapped to a single
Loihi core, processing all neurons serially. For networks larger than
1024 neurons, the second layer spills onto a second core, leading
to parallelization of spike processing. As a result, fewer spikes
are processed by the first core and the time-step latency is initially
decreased. We were unable to accurately track latency in this region
since our model does not yet account for cross-core interactions.
Our network model assumes that all operations are parallelized
whereas in reality, hardware contention prevents some spikes from
being sent and processed immediately.

6 CONCLUSION AND FUTUREWORK
In summary, neuromorphic design-space exploration has a need for
high-level, fast simulation of different spiking hardware platforms.
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Figure 4: Time-series showing total energy and latency estimates over each time-step for the benchmark SNN described in [10].
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Figure 5: Comparison of estimates for Loihi executing the
two-layer benchmark SNNs from Fig. 4(a).
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Figure 6: Latency estimates for Loihi executing benchmark
SNNs using themapping shown in a). Energy results matched
Fig. 5(a).

In this paper, we presented a framework to rapidly and accurately
simulate latency and energy of spiking neuromorphic platforms.
Our framework supports a range of architectures using a hierar-
chical file format following a generic architecture template. Our
simulator models on-chip activity at an abstract time-step granular-
ity. We use per time-step counts from simulation with cost metrics
to estimate total energy and time-step latency. Initial results show
that we can estimate time-varying energy and latency for Intel’s
Loihi with up to 90% accuracy for a realistic benchmark SNN.

Future work will develop a timing model to account for interac-
tions and contention between cores to improve the latency estima-
tion accuracy. We will also implement a library of hardware units
to support other existing and future architectures. This will require
adding new functions to support different neuron, synaptic and
networking models. We plan to support both digital and analog el-
ements, including components using beyond-CMOS devices. These
will be modeled by simulating their dynamics for each time-step

and finding an abstraction that captures their energy and latency
while remaining fast for simulation. Furthermore, we will charac-
terize our simulator’s performance when modeling these devices
and executing larger SNNs.
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