
Low-Energy Signal Processing using Circuit-Level
Timing-Error Acceptance

Ku He, Andreas Gerstlauer and Michael Orshansky
Department of Electrical and Computer Engineering

University of Texas at Austin

Abstract— In digital signal processing (DSP) applications,
large energy gains can be obtained by accepting some degradation
in the output signal quality. In this paper, we present static and
dynamic techniques for circuit-level timing-error acceptance to
significantly improve energy efficiency by shaping the quality-
energy tradeoff achievable via aggressive VDD scaling. The
proposed techniques specifically target the earliest and worst
timing error offenders to allow for larger VDD reduction while
maintaining high signal quality. We demonstrate the effectiveness
of the proposed techniques on image processing applications,
including a DCT/IDCT-based image compression system and an
image-sharpening filter. The designs were synthesized using a
45nm standard cell library. Results show that 40-60% energy
savings can be achieved at less than 1dB loss in the peak signal-
to-noise ratio. The overhead for the needed control logic is less
than 6% of the area of the original design.

I. INTRODUCTION

The fast-growing market of portable systems with limited

battery life requires continued advances in ultra low-energy

design. In this paper, we present novel techniques that exploit

special properties of DSP systems to reduce their energy

consumption. In conventional DSP designs, as in other digital

design flows, timing correctness of all operations is guaranteed

by construction. Since in many DSP applications the best

signal quality is not necessarily required, it is possible to

tolerate some timing errors induced by lower VDD. If ag-

gressive voltage scaling can be made possible with only a

small, bounded quality loss, it can lead to significantly reduced

energy consumption.

Several efforts in the past have explored the possibility of

trading quality in DSP systems for lower energy. In [1], [2],

energy is reduced by discarding algorithm steps or iterations

that contribute less to the final quality. In [3], adaptive preci-

sion of the arithmetic unit output is used to save energy. In

[4], [5], energy reduction is enabled by using lower voltage on

a main computing block, and by employing a simpler error-

correcting block that runs at a higher voltage and is thus,

error-free, to improve the results impacted by timing errors of

the main block. An important distinction between prior work

and our strategy is that in other work, the results produced

by blocks subject to timing errors are not directly accepted.

By contrast, our strategy allows using the erroneous results

directly, provided, of course, that the magnitude of error is

carefully controlled.

Acknowledgement: This work is supported by NSF grant CCF-1018075.

In the following, we present timing error acceptance tech-

niques at two levels of granularity, at the operation and the

architecture level, to allow significantly improved quality-

energy (Q-E) tradeoffs. Depending on knowledge about data

statistics, these techniques can be either applied at design time

or at run time. Techniques are introduced and demonstrated

on the design of a Discrete Cosine Transform (DCT) and an

Inverse Discrete Cosine Transform (IDCT) as widely used

image and video processing kernels, as well as on a Finite

Impulse Response (FIR) filter that performs image sharpening.

Specifically, the key contributions for Q-E profile shaping are:

1) Controlling large-magnitude timing errors in operations by

exploiting the knowledge of statistics of operands. In many

cases, we have knowledge of data distributions that can be

exploited at design time or at run time. Our technique is based

on the realization that functional units with reduced bitwidth

can be used to process small-magnitude operands.

2) Controlling the frequency of error-generating additions

by statically or dynamically re-arranging the sequence of op-

erations. Specifically, we target a reduction in the cumulative

quality loss resulting from multiple consecutive operations.

Such multi-operand computations occur, for example, in accu-

mulation, which is a key component of many DSP algorithms.

3) Preventing occurrence of errors which can spread and

get amplified throughout the algorithm. An important aspect

of a design methodology that allows some timing errors is

controlling the impact of these errors on output quality from

the perspective of the entire algorithm. Specifically, a result

impacted by timing errors early in the algorithm can have a

dramatic impact on the overall quality by affecting downstream

computations through repeated reuse of incorrect data.

The rest of the paper is organized as follows, Section II

discusses the principle of timing error management, followed

by an introduction of the techniques to control such errors;

Section III shows the experiment results, and finally, Sec-

tion IV concludes the paper with a summary and outlook.

II. TIMING ERROR MANAGEMENT

A. Error control through knowledge of operand statistics

In digital signal processing applications, input signals usu-

ally follow certain distributions. Such properties can be ex-

ploited to control the magnitude of timing errors during com-

putations. In DCT/IDCT type applications, the input/output

magnitudes exhibit spatial patterns, which make it possible

to apply design-time techniques to reduce timing errors. By



contrast, in digital filters, the input magnitudes are random and

run-time techniques need to be used.

In [6], a design-time technique is introduced to reduce

early and large-magnitude timing errors in an IDCT, where

the specific focus is on errors in addition as a fundamental

building block of most DSP algorithms. The key observation

is that in a DCT/IDCT, computations involving high frequency

coefficients usually have operands with a small magnitude

and often with opposing sign. In regular addition, it is such

operands that trigger the longest carry chains and hence expe-

rience the largest timing errors first. The specific technique is

based on the realization that an adder with a smaller bitwidth

can be used to process these operands. Two objectives are

achieved: the magnitude of quality loss is reduced and its

onset is delayed. Large-valued operands, of course, require

a regular-width adder. Note that in an actual implementation

it is possible to utilize a single adder with variable bitwidth.

The design-time application of a reduced-width adder tech-

nique involves two questions: 1) how to perform the clas-

sification of high versus low frequencies; and 2) how to

identify the optimal bitwidth of the reduced-width adder. The

solution to these two questions can be represented in terms of

a simulation-based model that is used to explore the timing

error behavior under varying partition boundaries (x) and small

adder widths (W2) [6]. Based on such an exploration, a Pareto

curve of Q-E tradeoffs can be generated to determine the

optimal x and W2.

Note that in [6], the technique is demonstrated on a 2D-

IDCT design. However, it can be applied to a 2D-DCT

in a similar manner. The key difference is that instead of

partitioning computations according to their location in the

input matrix, in the 2D-DCT case, the partition is done on

the output matrix. Under such a mapping, the procedure of

determining the optimal x and W2 for the DCT is the same

as that in the IDCT.

In digital filtering applications, magnitude information for

input/ouput data is not available at design time. Hence, a

run-time technique has to be used to reduce timing errors.

The idea is to adjust adder bitwidth dynamically, with the

purpose of eliminating early and large timing errors. This

requires checking the magnitude of input data and processing

operands on an adder with the smallest bitwidth sufficient

for the particular inputs. To allow the results to be used in

downstream computations, we further perform sign extension

to the full bitwidth.

In the implementation, it is assumed that only one physical

adder is used. The inputs are first sent to the magnitude-

checking logic block, which can be implemented compactly.

The checking logic uses AND gates to determine whether a

specified number of higher-significance input bits are all zeros

or all ones. If this condition is true, a width-control logic

is activated to perform truncation and sign-extension on the

adder output. In essence, each time the magnitude-checking

logic initiates a reduced-width addition, a smaller effective

configuration of an otherwise full-width adder is used. The

technique abstraction is shown in Figure 1.

Fig. 1. Dynamic-width adder architecture.

Two questions arise for the implementation of a dynamic

technique: 1) how many reduced-width levels are needed,

and 2) what their optimal reduced widths are. According to

our experiments, two bitwidths are sufficient for an efficient

Q-E tradeoff. Increasing the number of bitwidths does not

substantially improve results. Compared to a minimum quality

loss between 3dB and 15dB in the two-adder case, losses for

three or four bitwidths are in the range of 1dB-7dB. Since we

use only two adders, the determination of the optimal reduced

width can be done by exhaustive bitwidth sweeping: we define

the reduced width as W2, and for a given timing budget, we

generate the quality loss for varying W2. The optimal W2

corresponds the the minimum quality loss for input data with

a certain variance.

B. Error control by reordering of accumulations

In the previous section, we demonstrated techniques for con-

trolling timing errors in individual operations. In this section,

we present static and dynamic techniques for reduction of the

cumulative quality loss resulting from multiple additions, such

as in accumulations.

At design time, the philosophy is to manipulate the input

data distributions of intermediate MAC operations by reorder-

ing operations (e.g. filter taps), such that further reduced

widths can be applied. In a traditional single MAC unit design,

the width of the MAC unit is determined by the maximal

bitwidth over all operations, which is generally independent

of any intermediate reordering. However, under a timing error

acceptance philosophy, reordering will allow us to statically

apply adders of different width to different steps in order

to reduce timing errors. Furthermore, in combination with

dynamic bitwidth adjustment (Section II-A), reordering can,

on average, reduce the magnitude of data in intermediate op-

erations and hence increase the effectiveness of this technique.

For example, in a digital filter, the computation process can be

formulated as: y(n) =
∑N

i=0 bi ·x(n− i)+
∑N

i=1 ai ·y(n− i).
In computing the final output, a filter needs to generate a set of

intermediate results, which correspond to a set of intermediate

transfer functions H0-H2N . These transfer functions determine

the maximum possible gain over all frequencies at internal

nodes and, hence, the minimum required bitwidth for each

intermediate result in the datapath. Without affecting the

output of the filter, intermediate transfer functions vary when

the order of filter taps is changed. As such, we can reduce

gains and hence the bitwidth of intermediate operations by

optimally reordering the taps. Such a reordering can be done

at design time. It allows us to apply an adder of smaller width



Fig. 2. Filter reordering technique.

to each tap in order to reduce the timing errors under voltage

scaling. The technique diagram is shown in Figure 2.

A second approach is to perform reordering at run-time. The

key observation is that if positive and negative operands are

accumulated separately, the number of error-producing opera-

tions is reduced to one last addition that involves operands with

opposite sign. At the same time, the operands involved in this

last addition are guaranteed to be larger in absolute value than

any individual opposite-sign operands involved in the original

sequence. This guarantees that the reordered accumulation will

result in a smaller quality loss under scaled timing.

The difference between optimized and un-optimized se-

quences is significant. As an example, consider four numbers

(-1, 1, -1, 1) being accumulated. There are three possible

sequences of accumulation:

Case 1: 11111111+00000001+11111111+00000001

Case 2: 11111111+11111111+00000001+00000001

Case 3: (11111111+11111111)+(00000001+00000001)

For Case 1, the 1st and the 3rd additions have large delay,

each with a carry chain length of 8. For Case 2, the 3rd

addition has large delay with a carry chain of 8. For Case 3,

only the addition outside the brackets has large delay with a

carry length of 7. The total timing budget in Case 3 is roughly

half of that of Case 1. Thus, we observe that the order of

accumulation can significantly affect the frequency of worst-

case delay as well as the length of the longest carry chain.

The proposed implementation uses the sign bits in the

MSB to separate the positive and negative operands when

loading data. Details are presented in [6]. Compared to the

original implementation, the reordered accumulation carries

extra overhead for the reordering logic and duplicate accu-

mulation registers. Nevertheless, experiments show that the

technique can significantly improve the quality-energy profile

under scaled timing.

C. Preventing error spread and amplification

In previous sections, we presented techniques for targeting

individual error sources at the operation and architecture

levels. With knowledge of the application, we now focus on

control of sources of errors that have the potential to be

spread and amplified at the algorithm level. More specifically,

we propose a technique using algorithm-level retiming to

explicitly prevent errors in critical steps that may have a large

impact on downstream results and hence overall quality.

For the 2D-DCT/IDCT algorithm, analysis of control and

data flow is relatively simple because it consists of two nearly-

identical steps: (1) T = CT ·A and (2) I = T ·C. In [6], we

address the problem of a timing error in Step 1. Such an error

can generate multiple output errors in I because each element

of T is used in multiple computations of Step 2. As a result,

the noise in the decoded image of an unmodified DCT/IDCT

has a stripe pattern (see Figure 4 in Section III).

Thus, to avoid such wide-spread quality loss, we need

to ensure that no errors occur in Step 1. We assume an

architecture in which supply voltage can only be scaled

uniformly. If timing budgets are allocated to steps based on

worst-case analysis, any reduction in VDD would lead to

a reduced timing slack in Step 1 and hence un-allowable

levels of errors being generated there. We therefore propose a

strategy to allocate extra timing margins to critical steps, such

as Step 1. Importantly, given overall latency constraints for

the design, as is the case for many real-time image or video

coding applications, end-to-end algorithm timing must remain

constant and performance must not be degraded. Thus, an

important element of protecting the early algorithm steps is a

re-allocation strategy that shifts timing budgets between steps.

Maintaining a constant total time, the approach is to borrow

computing time from non-critical algorithm steps in order to

increase timing budgets in critical ones, and reduce overall

quality loss. This is achieved by multi-cycling operations in

Step 1 while increasing the overall clock frequency such that

total latency remains constant [6].

III. EXPERIMENTAL RESULTS

We demonstrate the effectiveness of our techniques on the

design of a 2D-DCT/IDCT and an image sharpening FIR filter.

In the DCT/IDCT case, we apply static bitwidth reduction,

dynamic accumulation reordering and algorithm-level retiming

optimizations. For the image sharpening filter, we utilize

dynamic bitwidth adjustment and static filter tap reordering.

All designs are implemented in Verilog-HDL and synthe-

sized using Design Complier with the OSU 45nm PDK. We

use Synopsys Hercules to translate the RTL code into a SPICE

netlist. Then, we build a NanoSim + VCS testbench to enable

both RTL-level and SPICE-level simulations to obtain final

output images and energy-delay results, respectively.

The architecture of our final 2D-DCT/IDCT implementation

is a folded one [7], where each 1D-DCT/IDCT shares the same

pipelined arithmetic unit containing an adder and a multiplier.

The DCT data and coefficient matrices have 8-bit and 8-bit

resolution, and the final output has 16-bit resolution. The IDCT

data and coefficient matrices have 16-bit and 8-bit resolution,

respectively. The multiplier is pipelined and has a width of

8 × 16 bits. The adder is a ripple-carry adder with a width

of 24 bits. Such a design restricts timing errors entirely to

the adder for acceptable quality loss. Individual timing error

control techniques can be combined to achieve maximum

energy savings [6]. Different from [6], in this paper, we use

quantized data for our experiments. Only the Y signal of a

Y:Cb:Cr format image is used.



TABLE I
ENERGY SAVINGS AND AREA OVERHEADS IN 2D-DCT/IDCT.

VDD Energy Saving Area Ov.

Original 1.1V 0% 0%

Reduced-width 1.00V / 0.95V 45.0% / 49.1% 0.2% / 0.4%
Reordering 0.95V / 0.95V 62.4% / 32.1% 3.8% / 3.1%

Rescheduling 1.00V / 0.95V 2.0% / 42.1% 0.1% / 0.1%

Combined 0.90V / 0.90V 73.1% / 63.1% 3.9% / 3.5%

(a) Original: Energy=570μJ
PSNR=31.6dB

(b) Original: Energy=137μJ
PSNR=16.5dB

(c) Proposed: Energy=143μJ
PSNR=31.2dB

(d) Proposed: Energy=99μJ
PSNR=28.3dB

Fig. 3. Images from IDCT under different energy budgets.

The energy saving and area for each technique and their

combination are shown in Table I. Note that for DCT

rescheduling is not as effective as for IDCT because of nearly-

equal importance of both matrix multiplication steps for final

error.A significantly improved trade-off curve is generated by a

non-trivial combination of individual techniques. Finally, a set

of sample images under scaled VDD is shown in Figure 3. Note

that achieving a similar energy reduction by conventional VDD

scaling would result in unacceptable degradation of image

quality (Figure 3(b)).

For the implementation of the sharping filter, we generated

a coefficient kernel using MATLAB’s fspecial function with

the filter option unsharp. The filter is realized as a 2-D

convolution of each pixel with this kernel. We implement

a 1-D version on our architecture using the algorithm as a

9th-order FIR filter. The core multiply-accumulate (MAC)

operations are realized using a multiplier and adder that are

chained to operate in one clock cycle. Hence, under voltage

scaling, timing errors will affect the addition at the end of the

chain first. The full and reduced width adders in this case have

24 and 20 bits, respectively.

TABLE II
ENERGY SAVINGS AND AREA OVERHEADS IN SHARPENING FILTER.

VDD SSNR/PSNR Eng. Saving Area Ov.

Reorder 0.80V 22.8dB 58.1% 1.0%
Dyn. width 0.75V 23.0dB 64.2% 2.0%
Combined 0.70V 23.3dB 69.7% 2.1%

(a) Sharpened:
Energy=2.19μJ
PSNR=23.9dB

(b) Unoptimized:
Energy=1.27μJ
PSNR=19.6dB

(c) Dynamic width adder:
Energy=1.27μJ
PSNR=23.0dB

(d) Combined:
Energy=1.27μJ
PSNR=23.2dB

Fig. 4. Modified image sharpening filter output.

Energy savings and area overhead are listed in Table II.

Sample images after applying the sharpening filter with and

without our error control are shown in Figure 4. From Fig-

ure 4(b) we can see that, compared to a sharpened image at

nominal voltage (Figure 4(a)), voltage scaling without error

control causes a lot of visually noticeable salt-and-pepper

artifacts. By contrast, using our techniques (Figure 4(d)), such

noise is significantly reduced and resulting images exhibit

good perceived quality at the same reduced energy.

IV. CONCLUSIONS

This paper presented techniques that enable shaping of

the quality-energy tradeoff under aggressively scaled VDD

through controlled timing error acceptance. We demonstrated

the implementation of these techniques on 2D-DCT/IDCT de-

signs, as well as an image sharpening filter. Results show that

significant energy savings can be achieved while maintaining

a constant performance and good image PSNR.

REFERENCES

[1] S. H. Nawab, A. V. Oppenheim, A. P. Chandrakasan, J. M. Winograd, and
J. T. Ludwig, “Approximate signal processing,” VLSI Signal Processing,
vol. 15, pp. 177–200, 1997.

[2] J. T. Ludwig, S. H. Nawab, and A. P. Chandrakasan, “Low-power digital
filtering using approximate processing,” JSSC, pp. 395–400, 1996.

[3] A. Sinha and A. P. Chandraksan, “Energy efficient filtering using adaptive
precision and variable voltage,” ASIC SOC Conference, pp. 327–331,
1999.

[4] R. Hedge and N. R. Shanbhag, “Soft digital signal processing,” TVLSIS,
pp. 379–391, 2000.

[5] L. Wang and N. R. Shanbhag, “Low-power filtering via adaptive error-
cancellation,” IEEE Transactions on Acoustics, Speech, and Signal Pro-
cessing, vol. 51, no. 2, pp. 575–583, 2003.

[6] K. He, A. Gerstlauer, and M. Orshanksy, “Controlled timing-error accep-
tance for low energy idct design,” DATE, pp. 492–499, 2011.

[7] S. Uramoto, Y. Inoue, A. Takabatake, J. Takeda, and Y. Yamashita, “A
100-mhz 2-d discrete cosine transform core processor,” JSSC, vol. 27, pp.
492–499, 1992.


