
Automatic System-Level Synthesis: From Formal
Application Models to Generic Bus-Based

MPSoCs

Jens Gladigau1, Andreas Gerstlauer2, Christian Haubelt1,
Martin Streubühr1, and Jürgen Teich1

1 Department of Computer Science,
University of Erlangen-Nuremberg,

Erlangen, Germany
2 Department of Electrical and Computer Engineering,

University of Texas at Austin,
Austin, USA

Abstract. System-level synthesis is the task of automatically imple-
menting application models as hardware/software systems. It encom-
passes four basic subtasks, namely decision making and refinement for
both computation and communication. In the past, several system-level
synthesis approaches have been proposed. However, it was shown that
each of these approaches has drawbacks in at least one of the four sub-
tasks. In this paper, we present our efforts towards a comprehensive
system-level synthesis by combining two academic system-level solutions
into a seamless approach that automatically explores and generates pin-
accurate implementation-level models starting from a formal application
model and a generic MPSoC platform. We analyze the system-level syn-
thesis flow and define intermediate representations in terms of transac-
tion level models that serve as link between existing tools; automated
transformations between these models are presented. Furthermore, we
drive design decisions for both flows through a single design space explo-
ration engine. We demonstrate the resultant flow and show the benefits
of fully automatic exploration and synthesis for rapid and early system-
level design.

1 Introduction

System-level design has long been touted as the holy grail for increasing designer
productivity, raising the level of abstraction while providing associated design
automation techniques. Several approaches provide at least partial solutions for
synthesis at the system-level. However, the landscape remains fragmented. There
are various attempts that focus on certain aspects of the problem, but a complete
system synthesis solution is lacking [10, 5, 15].

In this paper, we identify and define different abstraction levels in typical
system-level design flows. Additionally, we show how existing approaches can

2 Jens Gladigau et al.

Constraints Behavior

Making
Decision Refinement

Quality
Numbers

Structure

Synthesis

Specification

Implementation

Fig. 1. X-chart showing the synthesis process [10]

be combined to a seamless system-level synthesis. First, actual needs and ele-
ments of synthesis have to be clarified. At any abstraction level, synthesis can
be defined as the process of transforming a specification into an implementation
(Fig. 1). We concentrate on the system-level, where synthesis is performed across
hardware/software boundaries. This is represented by the X-chart as follows: A
system-level specification is composed of an application behavior and constraints.
Constraints at this level include non-functional constraints (such as area re-
strictions or performance requirements), and a platform that describes available
resources [23]. Resources include communication (busses, gateways, memories,
etc.) and computation resources (such as processors and hardware accelerators).
Supplemented by allowed connectivity and associated parameters, a platform
describes all possible platform instances. Note that only a subset of elements
in the platform may be chosen for a platform instance. System-level synthesis
generates an (optimal) implementation of the application model under the given
constraints. This is achieved through decision making and refinement. Decision
making is understood as the task of: (1) computing an allocation of resources for
computation and communication available in the platform, (2) a spatial binding
of the application (tasks and communication) onto allocated resources, and (3)
a temporal scheduling to resolve resource contention of objects bound to the
same resource. Decision making has additionally to respect the non-functional
constraints from the specification. Taking all these decisions, system-level refine-
ment automatically generates an implementation. The implementation consists
of a structural model and quality numbers. The structural model represents the
resulting platform instance, mapping, and scheduling decisions. For structural
representation, Transaction Level Modeling (TLM) is almost exclusively used
today [11]. Quality numbers are estimated values for different implementation
properties, e.g., timing, area, or power consumption. In the following, we will
refer to the structural representation as implementation.

In general, in EDA the goal at any abstraction level is to automate both tasks,
decision making and refinement. However, compared to lower levels, synthesis at
the system-level has to deal with vast design spaces and increased complexities.
These can only be managed by orthogonalization of concerns [17]. In addition to a

Automatic System-Level Synthesis 3

Table 1. Classification of different ESL synthesis approaches [10] with updates

Decision Making Refinement

Approach DSE Comp. Comm. Comp. Comm.

Daedalus [28] • • ◦ • ◦
Koski [27] • • ◦ • ◦

Metropolis [1] – ◦ – ◦ –
PeaCE [14, 18] • ◦ ◦ • ◦

SCE [6] – – – • •
SystemCoDesigner [16] • • • • –

– no support ◦ partial support • full support

separation of decision making and refinement, both steps are typically performed
separately for computation and communication.

A previous analysis of the system-level synthesis landscape [10] has shown
that various approaches exist that perform decision making and/or refinement
for either computation or communication (cf. Table 1). However, none of the
investigated approaches can handle comprehensive system-level synthesis that
includes automated decision making and refinement for both computation and
communication. By combining existing tools, a comprehensive system-level syn-
thesis method is achieved. This is the motivation for the work at hand.

System-level synthesis approaches can be divided into two classes: (1) ap-
proaches starting with formal, domain specific application models (e.g., based on
data flow models) like Daedalus, Koski, PeaCE, SystemCoDesigner, and (2) ap-
proaches starting with implementation oriented application models like Metropo-
lis and SCE; the latter are typically based on programing language extensions.
Approaches from (1) usually consider and support very limited, restricted tar-
get architectures that often directly match the semantic of the domain specific
model; approaches from (2) are closer to traditional implementation flows and
support more general target architectures.

For the application behavior, a well defined Model of Computation (MoC), as
deployed by approaches from (1), that allows for analysis and utilization of formal
methods is preferred. MoCs used for application modeling include process, data
flow, or state-machine models [19]. Executable application models additionally
help to avoid ambiguous behavior. Therefore, in our approach, we advocate an
executable application model based on a well defined MoC.

The key contribution of this paper is the definition of an automatic system-
level synthesis flow that allows us to bridge the synthesis gap between the two
classes—formal model based and implementation centric synthesis approaches.
As a proof of concept, we couple representatives from both classes: the System-
CoDesigner (SCD) [16] and the System-On-Chip Environment (SCE) [6] solu-
tions. From the analysis of Table 1, combining these flows is most promising.
Both tools are in use with industrial partners, e.g., SCE has been commissioned
by JAXA for use by its suppliers, and SCD is used in collaborations with Daimler,

4 Jens Gladigau et al.

Siemens, Audi, and IBM. The combined flow is novel, i.e., as of now academic
and has not yet been evaluated in an industrial context. What seems like an
engineering task includes two major conceptual challenges: (1) As typically all
design decisions at a given abstraction level interfere with each other, we need
to use a single design space exploration (DSE) engine in order to perform multi-
objective optimization. SCD’s DSE needs to be substantially extended, as now
decisions for a more general target platform have to be made. This includes new
non-functional constraints and new resource capabilities, which have not been
considered in the previous, domain specific platform. (2) The result of SCD’s
synthesis is not the final implementation anymore, but an intermediate model
that must be further processed by SCE. Thereby, the link to the formal model
must not be lost, as SCE also needs to interpret and implement design decisions,
made by the DSE engine from SCD. For this purpose, we introduce well defined
intermediate transaction level models. The combined design flow allows for fully
automatic design space exploration including automatic decision making and
refinement for both, computation and communication. Thereby, the resultant
design flow starts from a formal application model going down to pin-accurate
models of arbitrary, bus-based MPSoCs.

Organization The remainder of the paper is organized as follows: Section 2 de-
scribes related work, followed by an overview of our methodology in Section 3.
The refinement procedure from a formal application model down to pin-accurate
models is explained, and intermediate transaction level models are defined in
Section 4. The design space and its exploration is detailed in Section 5. The cou-
pling of design flows is presented in Section 6. Results of applying the proposed
methodology to a typical streaming application case study, a JPEG decoder de-
sign, are presented in Section 7. Finally, the paper concludes with a summary in
Section 8.

2 Related Work

Many approaches exist today that tackle a subset of what we expect from com-
prehensive system-level synthesis. We target a synthesis approach that covers the
complete flow shown in Fig. 2: a formal application Model that enables analysis,
and automation in refinement and design space exploration. In [5], Densmore et
al. define a classification framework for design tasks by reviewing more than 90
different tools. Many of these tools are devoted to modeling purposes (functional
or platform) only. Other tools provide back-end synthesis functionality through
either software code generation or C-to-RTL high-level synthesis. A more recent
survey [15] focuses on methods and tools for embedded reconfigurable systems.
Their analysis also shows that for all tasks in system-level synthesis tools and
solutions exist, but are not seamless connected.

Not rephrasing the comprehensive discussion in the cited surveys, we relate
other approaches to our proposed design flow. Targeting streaming applications
mapped to network on chip architectures, in [21] stochastic automata networks

Automatic System-Level Synthesis 5

are used for performance analysis. According to analysis results, the application
is then mapped to a target architecture. Similarly, the DeepCompass frame-
work [3] is able to perform analysis and design space exploration for software
systems deployed on multiprocessor platforms, based on manual developed re-
source models of system components. For both, the selected model then provides
design decisions for engineers to develop the final implementation. An approach
close to our proposal is presented in [18]. There, the application model is limited
to synchronous communication, and shows lesser flexibility in communication
topology exploration. Due to this specialization, compared to our proposal, bet-
ter implementations can be expected in context of synchronous applications.
The OSSS approach [13] developed in the ICODES project is a SystemC-based
solution for modeling and refinement. While refinement is automated, decision
making is not. However, an ideal system-level synthesis flow has the ability to
generate systems across hardware and software boundaries from an application
model automatically. Several academic approaches to system-level synthesis ex-
ist today, yet none of them fully automates decision making and refinement
(see Table 1). Metropolis [1] is a modeling and simulation environment based
on the platform-based design paradigm. It supports many application domains
and target architectures. However, it does not provide a high degree of automa-
tion, neither in decision making nor in model refinement. PeaCE [14, 18] sup-
ports automatic computation refinement and decision making. The flow is par-
ticular suited for DSP applications, and supports limited target architectures.
Daedalus [28], Koski [27], and SystemCoDesigner (SCD) [16] are system-level
synthesis tools that automatically map applications to MPSoC targets. These
tools support decision making and refinement for application computation, but
decision making and refinement for communication is only supported for limited
types of communication architectures. Since communication is mandatory for
MPSoCs implementations, and significantly influences performance, system-level
synthesis should support both computation and communication. Concentrating
on communication, in [4] a formal application model (KPN) is used. While they
implement refinement, major difference to our approach are manual decision
making, and a different target architecture. An approach that automates design
space exploration at system-level for MPSoCs based on shared memory com-
munication architectures has been proposed in [20]. It uses a special decoding
based on SAT solving during design space exploration (DSE). Thereby, it de-
termines and optimizes resource allocation, process binding, channel mapping,
and transaction routing. However, refinement was not considered in this paper.
A comparable approach using ant colony optimization was presented in [9]. Au-
tomatic refinement for both computation and communication is implemented
in the System-On-Chip Environment (SCE) [6]. There, however, no support for
automatic decision making is integrated, and the refinement process starts from
a C-based system model.

In summary, today system-level synthesis tools, which support automatic
design space exploration, are model-based and make use of restricted target ar-
chitectures; synthesis-tools, which support automatic refinement to generic MP-

6 Jens Gladigau et al.

SoCs, are implementation centric and, hence, cannot exploit high-level model
information. As a consequence, in the present paper, we will close the gap be-
tween higher-level formal models feeding into such implementation-driven syn-
thesis flows by combining an automatic decision making with refinement steps
from SCD and SCE.

3 Methodology Overview

An overview of the proposed design flow is shown in Fig. 2. As described using the
X-chart, system-level synthesis starts from an application model and a platform.
System behavior is given as a formal application model based on the data flow
oriented FunState MoC [25], where actors communicate via channels. Because
using only queues with FIFO semantics, this MoC is best suited for streaming
applications, as found in the multimedia or networking domains. In FunState,
each actor is modeled by a finite state machine, which controls the consumption
and production of data on the channels. Moreover, the FSM triggers so called
actions to transform data values. While we can later map several actors to a
single resource, we, for now, do not further parallelize a single actor. Hence, the
initial decomposition of the system in the formal model also defines the maxi-
mum parallelism of processes in the final implementation. Note that support for
other MoCs, e.g., synchronous data flow (SDF), Kahn process networks (KPN),
or communicating sequential processes (CSP), could be integrated, but is not
further discussed.3 Constraints, on the other hand, are the platform as well as
additional non-functional constraints (restrictions on area, performance require-
ments, etc.). A platform defines a set of available resources at the granularity of
processors, memories, busses, bridges, as well as their possible interconnection
and feasible parameter settings.

Given a complete system specification, system synthesis could be performed.
During system-level synthesis, three abstraction levels are defined through the
following intermediate models: (1) Application Models, (2) Scheduled Models,
and (3) Architecture Models. In these models, communication is abstracted to
transactions. Hence, we define them in terms of TLM concepts. Detailed defini-
tions follow in Section 4.

Beside a single system synthesis step, a design space exploration (DSE) en-
gine performs multi-objective optimization to obtain high-quality design points.
Design points represent different implementations according to varying design
decisions such as computation and communication resource allocation, resource
parameter settings including protocol and operating system selection, actor bind-
ing, channel mapping, memory and synchronization transaction routing, and
scheduling/arbitration. Decisions of a chosen design point are then fed into a

3 In this paper, we use restricted FunState. In this MoC, application behavior is de-
scribed as a set of actors that communicate via queues with FIFO semantics. Each
actor’s behavior is given as finite state machine. Basically, this MoC extends KPN
by non-deterministic behavior and allows for non-blocking reads. For simplicity, we
further refer to this MoC as FunState.

Automatic System-Level Synthesis 7

Computation
RefinementComputation

Decisions

Application
TLM

Scheduled
TLM

Communication
Refinement

Architecture
TLM

Protocol
Refinement

High-level
Synthesis

Software
Synthesis

Model
Refinement

KPNFunState

Communication
Decisions

System-Level
Synthesis

Space
Exploration

Design

(DSE)

Pin-Accurate
Model

Quality
Numbers

Platform

Fig. 2. System-level synthesis overview

refinement flow that refines the application model down to a Scheduled TLM,
an Architecture TLM, and finally a PAM, by implementing the actor binding,
channel mapping, computation and communication resource instantiation, and
scheduling/arbitration. It is important to point out that a single design space
exploration engine determines all system-level design decisions for the interme-
diate levels in refinement, performed by different tools. Refinement is performed
in four phases:

1) Model refinement: The formal application model is refined into a transac-
tion level model. Queues using FIFO semantics are implemented in shared
memory. Hence, in the Application TLM, queues are refined into memory
access and synchronization transactions. Each actor is implemented as a
process (cf. Section 4.1).

2) Computation refinement: Computation refinement uses computation de-
cisions from DSE to generate an intermediate Scheduled TLM. In the Sched-
uled TLM, processes are bound and scheduled on allocated and config-
ured computational resources (processors or hardware accelerators). Inter-
processor communication is equal to the Application TLM (cf. Section 4.2).

3) Communication refinement: Design decisions about the topology of the
communication architecture (allocation and configuration of communication
resources), channel mapping, routing of memory and synchronization trans-
actions, and bus address and interrupt mapping are realized. During refine-

8 Jens Gladigau et al.

ment, memory and synchronization transactions are implemented down to
the level of arbitrary bus protocol transactions. The Architecture TLM is the
result. In this refinement, bus drivers and bus interfaces in the processors are
generated to implement all memory and event communication as bus read,
write, and interrupt transactions (cf. Section 4.3).

4) Protocol refinement: Complementing communication refinement, commu-
nication is refined all the way down to cycle-accurate signals and events over
a set of wires. In the resulting PAM, bus-functional models of processors,
memories, hardware accelerators, busses, and gateways communicate at a
level down to the sampling and driving of individual wires (cf. Section 4.4).

System-level synthesis results in a pin-accurate model (PAM) and corre-
sponding quality numbers. PAMs describe the system as a netlist of task-accurate,
bus-functional component models that are ready for further software and high-
level synthesis.

Focusing on system-level synthesis aspects, the required model refinement
steps from an application model to a PAM will be discussed in detail in Section 4.
Design space exploration is presented in more detail in Section 5.

4 System-Level Refinements

We now explain the refinement steps of our proposed system-level synthesis ap-
proach shown in Fig. 2 in more detail. We thereby define intermediate canonical
abstraction levels (Application TLM, Scheduled TLM, and Architecture TLM)
necessary for a seamless synthesis flow. The basic idea is to synthesize MPSoC
implementations from application models by defining intermediate models in
terms of transaction level concepts. These models are the basis for performing
computation, communication, and protocol refinement across tool borders. In
the following, we present the necessary model transformations in more detail,
starting with the refinement process from FunState application models. In the
figures and the text, we use the widespread ISO/OSI layers for illustration to de-
note the abstraction level. These layers are not part of the final implementation
and optimized.

4.1 Model Refinement

To support further synthesis down to general bus-based MPSoC target archi-
tectures, an Application TLM is represented in a C-based system-level design
language, such as SystemC/TLM [22]. Therefore, abstract communication in the
formal model must be implemented as transactions in the Application TLM. In
the following, we will show the translation of FunState models using a fixed
decision for implementing communication as shared memory.4 With such a re-
finement, the same formal model used in an approach supporting limited target
4 Of course, alternative implementations for this intermediate model in the design flow

like distributed communication buffers and polling schemes are possible. However,
for simplicity, we will only consider models as described.

Automatic System-Level Synthesis 9

A3

A2

A1

C2

C1

A1

A2

A3
C2

C1

(b)(a)

Fig. 3. (a) FunState model and (b) Application TLM

architectures can be automatically transformed into a model suitable for im-
plementation oriented approaches—the key for synthesizing general bus-based
MPSoC target architectures.

In FunState models, actors communicate via point-to-point queues with FIFO
semantics. These queues support blocking and non-blocking read operations as
well as write operations. In the transaction level model, these operations are
implemented using shared memory to store data and control information (e.g.,
read/write pointers) combined with transactions for data access and synchro-
nization. The corresponding model transformation is shown in Fig. 3. Fig. 3(a)
represents a FunState model consisting of three actors A1, A2, and A3, and two
queues C1 and C2. In order to generate an equivalent transaction level model us-
ing shared memory communication, each queue is replaced by a shared memory
module and sockets for synchronization, as shown in Fig. 3(b). The behavior of
an actor is encapsulated as process in a SystemC module. TLM adapters [12] are
inserted for interconnection (indicated as dark gray layer in the figure). Adapters
consist of two initiator sockets and one target socket. One initiator socket is used
for memory access, whereas the second initiator socket is used for synchroniza-
tion (to notify the peer actor module about queue updates). These adapters
provide an abstract interface to the process for communication. Adapters there-
with implement the FIFO semantics of queues from the formal model.

4.2 Computation Refinement

The main purpose of system-level computation refinement is to partition pro-
cesses in the application model towards their implementation as hardware accel-
erator or on a software programmable processor. As such, groups of processes are
partitioned according to the process binding according to the design decisions.
End-to-end communication over sockets is implemented the same way as in the
Application TLM. The resulting model is called Scheduled TLM, as scheduling
decisions are implemented during computation refinement.

For partition blocks that result in a hardware implementation, system-level
computation refinement adds another hierarchy level. Thus, hardware blocks are
encapsulated and the inherent parallelism in the model is retained. The result
is a single SystemC module for each hardware accelerator. After refining the
communication (see Section 4.3), high-level synthesis tools, such as Forte’s Cyn-

10 Jens Gladigau et al.

A1

A2

A3A1,2

C1

C2

A3

C2

C1

MEM2

Bus

A3

C2

C1

MEM2

BusCPU1 CPU2

A1,2

A3
C2

C1 CPU2CPU1

(a) (b)

CPU1 CPU2

A1,2

(c) (d)

CPU1 CPU2MEM2

Fig. 4. (a) FunState model with resource mapping; (b) Scheduled TLM; (c) Architec-
ture TLM; (d) pin-accurate model

thesizer, Cadence’s C-to-Silicon, Mentor’s Catapult, or NEC’s CyberWorkBench,
can generate RTL implementations for each module. To allow for high-level syn-
thesis, actions in the FunState model have to obey the restrictions from the used
synthesis tool.

For software partitions, computation refinement mainly deals with schedul-
ing, taking processor allocation and process binding into account. See Fig. 4(a)
for such a mapping. Scheduling serializes execution of processes mapped to a
single processor. Several scheduling approaches can be considered: (1) static
scheduling, (2) quasi-static scheduling, or (3) dynamic scheduling (e.g., round-
robin or priority based). The first two scheduling techniques are optimizations
that may be applied to subsystems with static communication rates [2, 8]. Apply-
ing static scheduling results in a single process representing the software partition
block. Dynamic scheduling is the most general solution and always applicable.
It may result in a single process implementing a custom schedule, or in multiple
threads later executed on an operating system. In our experiements, we only
used the latter option. Further software synthesis in the back-end then gener-
ates C/C++ code for each process. The resulting code is compiled and possibly
linked with an operating system to run on the corresponding target processor.

4.3 Communication Refinement

Communication refinement from Scheduled TLM (Fig. 4(b)) to Architecture
TLM (Fig. 4(c)) is performed in two steps. First, adapters are aggregated for
each hardware or software partition [12]. Aggregation includes insertion of code
performing the tasks of transport and network layers, i.e., code that encapsu-
lates all queue adapters of a partition block and performs end-to-end packeting,
addressing, and routing, according to design decisions. The results are SystemC
modules for processors and hardware accelerators. Each module is equipped with
a pair of sockets for communication.

Automatic System-Level Synthesis 11

In a second step, sockets are further aggregated and refined down to read
or write transactions over shared busses or other communication media. Link
and media access layers are inserted to implement addressing, data transfers
(using various protocol modes, such as burst or DMA), and synchronization
(such as polling or interrupts). The result is an Architecture TLM realizing
communication at the media access level, which is indicated by the dark gray
bars in Fig. 4(c).

4.4 Protocol Refinement

Protocol refinement further implements fixed decisions for communication,
namely address mapping and interrupt assignment. It synthesizes the Archi-
tecture TLM down to a PAM (illustrated in Fig. 4(d)) as follows: Modules are
refined into bus-functional models by inserting protocol and physical layers that
implement bus protocol state machines for each bus transaction, driving and
sampling ports and wires in accordance with the selected protocol timing. Con-
sequently, communication in the PAM is pin- and cycle-accurate. The PAM is
described as a signal-level netlist of processors, memories, bus wires, and inter-
connect components, such as multiplexers, arbiters, bridges, and gateways. The
PAM represents the final system netlist, which is the basis for further software
and high-level, logic and physical hardware synthesis, e.g., for ASIC manufac-
turing or FPGA-based prototyping.

5 Design Space Exploration

During design space exploration different implementations are generated and
iteratively improved, in order to find high quality solutions. For this purpose,
system-level design decisions are varied, and their impact on the quality of the
implementation is estimated. In the following, an automatic design space explo-
ration is proposed. It is based on a single optimization engine to generate deci-
sion for intermediate levels occurring in system-level synthesis, namely Scheduled
TLMs, Architecture TLMs, and pin-accurate models.

The Design Space All possible decisions spawn the design space. In the pro-
posed design flow, there are four refinement steps, explained in Section 4. In
our experiments, model refinement and protocol refinement implement fixed de-
sign decisions: channel-based communication is implemented as shared memory,
and address mapping and interrupt assignment is performed. Computation re-
finement and communication refinement implement decisions from design space
exploration. These computation and communication refinement lead to inter-
mediate levels, namely the Scheduled TLM and Architecture TLM. In order
to define the design space for an automatic exploration, Table 2 summarizes
important decisions and examples of such decisions at each intermediate level.
This list is by no means complete. Instead, it shows the overall complexity of the
system-level synthesis task. This becomes particularly obvious, when seeing that

12 Jens Gladigau et al.

Table 2. Design decisions at intermediate levels

Intermediate
Level

Decisions Examples

Computation Allocation of computa-
tional resources

CPUs, DSPs, ASIPs, HW accelerators

Allocation parameters ARM1 runs at 300MHz
Binding of processes DCT process runs on a HW accelerator
Scheduling ARM1 schedules preemptive
Scheduling parameters Parser process at ARM1 has priority 10

Communication Allocation of communi-
cation resources

Memories, busses, bridges, P2P con-
nections; interconnection with computa-
tional and communication resources

Allocation parameters Shared memory SM1 has size 16kB
Channel mapping The communication buffer between

Parser and Huffman decoder is placed
in memory SM1

Routing memory transactions between Parser
and Huffman decoder are routed via
BRIDGE1

Arbitration Bus BUS1 is running TDMA arbitration
Arbitration parameters Time slices on BUS1 are 800ms
Communication con-
troller parameters

Buffer sizes, reliable/unreliable connec-
tions, maximal transfer unit (MTU)

most of these decisions are interdependent. Design space exploration determines
all these parameters at one.

Most important decisions implemented in computation refinement include
allocation of computational resources, the binding of processes, and the selection
of the scheduling policy. Additionally, implementation parameters are selected.
This includes general parameters like frequencies and scheduling priorities as well
as more specific parameters like the initializing processor for the entire system.

Major decisions respected in communication refinement are allocation of com-
munication resources, channel mapping, and memory and synchronization trans-
actions. They are complemented by implementation related parameter selections.
The latter include selection of arbitration policies for shared media as well as
associated parameter settings. It should be noted that the allocation of com-
munication resources also includes the interconnection of all resources. Hence,
communication refinement generates the overall topology of the implementation.
The channel mapping often includes a local address selection, i.e., placing chan-
nel buffers into memories, as well as a global address mapping, which results
in transaction routing information needed for inter-resource communication via
shared memory.

Constraints Implementations must obey a number of constraints that narrow
the number of feasible and valid implementations. Constraints can be either

Automatic System-Level Synthesis 13

Table 3. Design parameters and constraints

Parameter Constraints

Computation Process binding Each process is bound exactly once
Clock frequency per processor: exacly one out of

{100, 150, . . . } is selected
Synchronization method per channel: exactly one out of

{polling, interrupt} is selected
Scheduling policy per SW partition: exactly one out

of {priority based, round-robin} is
selected

Task priority unique per task inside SW parti-
tion: {2, . . . , 61}

Communication Resources # master per AHB ≤ 4
ARM per AHB ≤ 1

Channel binding Each channel is mapped exactly
once; one ARM initializes all chan-
nels mapped to shared memories

Bus type per bus: exactly one out of {AHB,
. . . } is selected

Arbitration policy per AHB: exactly one out of
{priority based, round-robin} is se-
lected

Transaction routing # of bus transducer ≤ 1 per route

functional or non-functional. Functional constraints, for example, require that
the behavior is entirely mapped onto the platform, and communication between
processes due to data dependencies is established via connected resources. Non-
functional constraints are often area, power, or throughput constraints. Some
important functional and non-functional constraints for each intermediate level
are shown in Table 3.

All possible decisions including computation and communication resource al-
location, process binding, channel mapping, transaction routing, and parameter
assignments define the design space. Each point in the design space corresponds
to an implementation. If the implementation does not satisfy the functional
constraints, the implementation is said to be infeasible. In general, infeasible
implementation do not permit a meaningful quality estimation used for the op-
timization. The set of feasible implementations defines the feasible region (see
decision space in Fig. 5) of the design space. Feasible implementations that
do not fulfill the non-functional constraints are called invalid implementations.
Hence, the set of valid implementations defines the valid region of the design
space. As non-functional constraints are often related to quality numbers, these
numbers typically are determined or estimated to allow checking validity of an
implementation.

14 Jens Gladigau et al.

Valid Region

Feasible Region

Search Space Decision Space Objective Space

Decisions

Decoding

and Setting of

Unobservable

Functional Constraints Non-Functional Constraints

Estimation

Decisions

Encoding

of Observable

Estimation

Fig. 5. Search space, decision space, and objective space

Objectives From among the valid implementations, we are especially interested in
the best (high quality) solutions. Embedded systems are typically optimized with
respect to several, often conflicting objectives. So, in general, not one optimal
solution exists. Objectives to be optimized are often area, power consumption,
throughput, or reliability. The considered objectives are a subset of the quality
numbers associated with each implementation. Hence, estimation methods dur-
ing the design space exploration are required in order to determine the quality
numbers associated with each design point.

In general, the performance assessment can be done using the PAM, which
is also part of the output of the systems-level synthesis. However, this requires
that all refinement steps have been performed taking all system-level decisions
into account. Such an approach might be prohibitively slow, especially in early
design phases. Another option is to perform the estimation at any intermedi-
ate level defined in our proposed design flow. In our experiments, we used an
Architecture TLM to perform a simulation-based performance estimation (la-
tency and throughput) in order to achieve high exploration performance. The
abstraction results in a transition accurate modeling of actor execution delays,
and a modeling of simple transfer delays for transactions. Scheduling and arbi-
tration for CPUs and busses are abstracted to simple policies like priority-based
or round robin. Besides latency and throughput, we estimated the number of
required look-up tables (LUTs), the number of block RAM (BRMAs), and the
number of flip-flops (FFs) for an FPGA implementation. These numbers can be
used to quantify the area consumption of an implementation. The estimation is
done analytically by summing up the number of LUTs (the same for BRAMs
and FFs) from each allocated computation and communication resource.

This abstraction for estimating the quality numbers results in a bipartition
of all design decisions: observable and unobservable design decisions (see search
space Fig. 5). Only observable design decisions have an observable impact on
quality estimations and can be iteratively improved during design space explo-
ration. As a consequence, unobservable design decisions (e.g., address mapping)
are typically constructed without being subject to optimization.

Automatic Exploration An automatic exploration of the design space is per-
formed by defining an appropriate encoding of the decision space. Based on the
chosen encoding, a general optimization heuristic like particle swarm optimiza-

Automatic System-Level Synthesis 15

tion or evolutionary algorithms can be applied. However, this also requires the
implementation of a corresponding decoding strategy that transforms a solution
represented in the search space into a design point in the decision space (Fig. 5).
If the decoding strategy guarantees that the solutions in the decision space are
feasible, it is called feasibility preserving. Only for feasible solutions in the de-
cision space quality estimation can be performed. After estimation, it can be
checked if a feasible solution obeys to all non-functional constraints. If yes, it is
a valid solution. Among the valid solution DSE searches for the best solutions,
i.e., the non-dominated solutions, and tries to improve them.

In our experiments, we used a hybrid encoding by representing computation
and communication resource allocation, process binding, and channel mapping
decisions by binary variables. We construct a Boolean formula, such that a sat-
isfying variable assignment corresponds to a feasible solution, i.e., a solution
satisfying all functional constraints. Parameter selections are encoded as permu-
tation lists. The single optimization engine is a Multi-Objective Evolutionary
Algorithms (MOEA) that varies the variable assignments and the permutation
lists through mutation and crossover. A feasibility preserving decoding for the
allocation, binding, and mapping decisions is based on a Boolean Satisfiability
solver (SAT solver) [20]. However, as parameter settings might have interdepen-
dencies, this part of a solution could only be checked after the decoding. Here,
design points that do not obey all functional constraints have to be marked as
infeasible. Hence, the whole decoding is not feasibility preserving in our experi-
ments.

6 Design Flow Implementation

After analyzing refinements, intermediate models, and design space exploration
in system-level synthesis, we now present our experimental setup for transfor-
mation of formal models to generic bus-based MPSoC implementations in more
detail. We implemented the proposed system-level synthesis by combining the
SystemCoDesigner (SCD) and the System-on-Chip Environment (SCE) design
flows. To benefit the most from the strengths of both tools, we identified the
Scheduled TLM as link. As such, automatic decision making and computation
refinement is performed using SCD, while the more elaborated communication
refinement from SCE is used. Here, we concentrate on the hand-over, as the
other refinement steps are explained in the cited literature.

Neglecting intermediate steps, Fig. 6 sketches the resulting system-level syn-
thesis tool flow, related to the X-chart. Behavior is given as executable represen-
tation using the SysteMoC library [26]. Constraints are fed to the DSE engine
inside SCD using an XML file description of the platform, and non-functional
constraints. One feature of SysteMoC is the capability to automatically extract
model information. These include finite state machines, describing the behavior
of actors, and the overall structure of the model. Following the methodology de-
scribed in Section 4, this information together with computation decisions from
DSE is used to automatically generate the Scheduled TLM in SpecC format [24]

16 Jens Gladigau et al.

Pin-Accurate
Model

FunState

Numbers
Quality

Decisions Scheduled
TLM

Synthesis

Specification

Implementation

SystemCoDesigner (SCD)

System-On-Chip Environment (SCE)

Platform

SpecC

SysteMoC

XML SpecC

XML

Fig. 6. Tool flow

for a chosen design point. Decisions made by the exploration framework from
SCD are propagated using XML files, which in turn feed into scripts that drive
the SCE refinement engine. Taking the Scheduled TLM and communication de-
cisions, SCE refines abstract memory access and synchronization transactions
in the model down to bus transactions and interrupts. The resulting implemen-
tation as pin-accurate model is in SpecC format. The quality numbers of the
implementation are either taken from DSE estimation, or gained by running
timed SpecC simulation of Scheduled TLM or Architecture TLM models. Also,
estimation at PAM level using further synthesized software running in instruc-
tion set simulation is possible.

After briefly describing modeling concepts for SysteMoC in the following
subsection, we explain how the SpecC model is generated from the SysteMoC
model, implementing design decisions. This SpecC model acts as the link between
the two tool flows.

6.1 SysteMoC

SysteMoC is a C++-library for implementing formal, executable FunState based
representations of embedded systems [7]. For the running example introduced in
Fig. 3, an illustrating SysteMoC model is shown in Fig. 7(a) in more detail. Every
actor contains a finite state machine (FSM) with one or more states, depicted
above a dashed line. Below the dashed line, actor methods (actions) and internal
variables are shown. Actors access channels via named ports (black rectangles in
the figure). Every transition in the FSM is annotated with an activation pattern
and an action, separated by a slash. If all conditions in an activation pattern are
fulfilled, the transition can be taken and the corresponding action is atomically
executed. For example, the transition i1(1)&i2(1)/d() in actor A3 is activated if
there is at least one token available in channel C1 and at least one in channel
C2. If the transition is taken, action d() is executed. Afterwards, tokens are
consumed (taken from the channel) according to the activation pattern.

Automatic System-Level Synthesis 17

uint k;

struct mem_C1; struct mem_C2;

uint i;
void b();

void b();
uint i;

uint k;

0 1

o1
i1

i2

0

o2

C2

0

o2(1)/c()

out 1

in 2

in 1
CPU2

fsm A3
void d();

Top

CPU1

fsm A1A2
void a();
void c();

out 2

o1(1)/a()

o1(2)/b()

void a();

C1

A1

A2
void d();

i1(1)&i2(1)/d()

A3

void c();

(a) (b)

Fig. 7. (a) SysteMoC model; (b) SpecC model

6.2 SpecC Generation

In this section, we explain how to generate SpecC programs from SysteMoC
descriptions and computation decisions, using the running example. That is, the
transformation from the partitioned model shown in Fig. 4(a) to the Scheduled
TLM in Fig. 4(b). We first give a basic overview, before emphasizing details:

– For each partition block, a module (called behavior in SpecC) representing
one or more finite state machines is generated.

– Each SysteMoC port is implemented as an additional interface process and
behavior.

– For each SysteMoC channel, memory structures for data, read pointer, and
write pointer are instantiated.

– Actions are transformed so that port accesses in the SysteMoC model are
mapped to interface functions of the corresponding SpecC port behavior.

– Internal variables of actors are instantiated in the behavior corresponding to
the partition block.

– Signals are connected according to the structure of the model.

An important observation is that queues in the formal model imply synchro-
nization: Actors block, if no activation pattern is fulfilled in the current state;
changes on a connected channel cause reevaluation. As described in Section 4.1,
asynchronous communication using abstract queues is implemented in shared
memory. To avoid polling, we implement asynchronous communication of a sin-
gle queue using a pair of behaviors (e.g., behavior out 1 and in 1 for channel
C1). These behaviors are called adapters and serve three purposes: (1) they
provide interfaces, for actions to access data and for FSM code to access meta
information, such as fill size; (2) using handshake signals, they awake blocked
FSM behaviors on data change by the peer; (3) using handshake signals, they
inform the peer adapter about data change by the FSM behavior. To fulfill these
three tasks, signals are interconnected as depicted by arrows in Fig. 7(b). Note
that this pattern is one out of many possible solutions and meant for generic
hand over between tools. Later communication refinement may alter the imple-
mentation drastically.

18 Jens Gladigau et al.

HW

MEM

AHB

ARM

(a) (b) (c)

Bridge

HW

B
ri

d
ge

Bridge

B
rid

ge

M
E

M

Bridge

MEM

HW HW

HW HW

M
E

M

M
E

M

MEM

AHB AHB

AHB

ARM ARM

ARM

MEM

AHB AHB

AHBAHB

...

ARM ARM

ARM ARM

B
ri

d
ge

Fig. 8. (a) platform; selected (b) multi-processor, and (c) single platform instances

For hardware partition blocks, concurrent execution is retained by imple-
menting each FSM as behavior. For software partition blocks, result depends on
scheduling decisions. In case of dynamic scheduling of software partition blocks,
refinement retains concurrent execution, and a general-purpose operating system
is inserted as part of the SCE flow. Alternatively, a custom schedule can be used
and a single behavior is the result.

For the SysteMoC example in Fig. 7(a), actors A1 and A2 are partitioned
and mapped onto a CPU1 whereas actor A3 is mapped onto CPU2. As a result,
a Scheduled SpecC TLM as shown in Fig. 7(b) is generated.

7 Results

To evaluate our proposed methodology implemented as shown in Fig. 6, we
automatically synthesized a SysteMoC model of a JPEG decoder application
into various different bus-based MPSoC implementations. We chose the JPEG
decoder as this is a widely used and well known example. The application model
consists of 14 actors and 22 channels.

The platform used in design space exploration contained four processor sub-
systems, see Fig. 8(a). Each subsystem consists of hardware accelerators, an
ARM processor executing µOS, an AHB bus, and a local memory. The four
subsystems are interconnected using six dual-ported shared memories and six
bus bridges connected with the AHB busses. In the figure, the cross connect-
ing bridges and memories are omitted. All actors of the JPEG decoder can be
mapped to any of the ARM processors. Additionally, actors Inverse Quantiza-
tion, IDCT, and DC Decoding, can be mapped to the hardware accelerators.
The mapping possibilities for the queues are all six shared memories plus the
four local memories. Transaction routing is constrained to the AHB busses and
bus bridges. The total number of mappings in this case is approximately 1022.

A Linux workstation with an Intel Core 2 Quad processor was used for de-
sign space exploration. We considered a 5-dimensional objective space: latency,
throughput, #LUTs, #FFs, #BRAMs. The estimation of latency and through-

Automatic System-Level Synthesis 19

5,000 10,000 15,000 20,000 25,000 30,000 35,000

150

200

250

A
BCDE

F
G

h

i

area (LUT count)

p
ro

ce
ss

in
g

d
el

ay
(m

s)

Fig. 9. Area and processing delay trade-off for the 100 best found implementations

put has been performed by simulation using an annotated SysteMoC model
corresponding to the Architecture TLM. The resource utilizations is estimated
using an analytical method. The exploration engine evaluated 51,200 feasible
design points. It ran for approximately 38 hours. Most of the exploration time
was used for simulation-based performance evaluation. Exploration result was
an archive containing 100 valid design points.

The two-dimensional projection of area and processing delay is depicted in
Fig. 9. There, clusters of implementations with similar quality numbers can be
identified. Source of similarity is related to allocation of resources and mapping:
small differences are from variations in hardware accelerators; large differences
source at number of ARM cores and shared memories. A cluster containing sin-
gle ARM solutions includes points F and G; the cluster at point E represents
implementations with two ARM cores; the cluster with points A, B, C, and
D includes solutions using three ARM cores. The point h represents a single
ARM core solution without hardware accelerator and only local memory. The
area increase from this point to the single ARM cluster with hardware accelera-
tors results from constraints: to connect an accelerator, bus and shared memory
are mandatory. Area differences between clusters result from more allocated re-
sources. The cluster at point i includes implementations with four ARM cores
and three shared memories. Due to communication overhead, the processing de-
lay does not decrease any further, but the throughput is increased due to pixel
pipelining (not noticeable in the two-dimensional projection).

System-level synthesis was performed for seven different design points (A-G
in Table 4, also marked in Fig. 9). These design points represent fundamental
design decisions for cheap or fast implementations. The resulting platform in-
stances for a multi-processor solution represented by design point A is shown in
Fig. 8(b). Fig. 8(c) sketches the single processor implementation determined by
design point G. All designs were automatically synthesized down to Architecture
TLMs and PAMs. The total time needed for refinement and generation of all
models was in the order of minutes. Functional correctness of all synthesized
models was verified by simulation using a testbench that decodes several color
JPEG pictures in QCIF format.

20 Jens Gladigau et al.

Table 4. Synthesis and simulation results

Simulation time Code lines

Design Arch. TLM PAM Arch. TLM PAM

A 42:55 4:55:58 36,834 35,251
B 44:34 5:00:37 35,749 34,167
C 46:11 5:27:23 35,729 34,157
D 41:34 5:51:00 32,203 30,642
E 36:01 4:57:00 28,899 27,780
F 25:41 3:13:13 27,478 26,847
G 26:17 3:10:54 25,041 24,421

Table 4 shows synthesis and simulation results for the resulting Architecture
TLMs (Arch. TLM) and PAMs. We can observe a typical growth of simulation
time with increasing level of detail and accuracy. Runtimes are thereby propor-
tional to the amount of simulated inter-module communication, and number of
allocated ARM cores. Compared to the initial model, significant amounts of code
and implementation detail, such as middleware, bus drivers, and interrupt han-
dlers, are automatically synthesized during refinement. The Application TLM
consists of 10,945 lines of source code. The code size of the synthesized PAMs
has more than doubled compared to the Application TLM. Note that Architec-
ture TLMs are larger than PAMs since they include code for approximately-
timed simulation models of AMBA AHB busses. All in all, results demonstrate
the feasibility and benefits of fast and expressive formal application models for
high-level algorithmic design coupled with automatic synthesis for rapid explo-
ration and correct-by-construction generation of detailed and optimized MPSoC
implementations.

We omitted comparison of synthesis results with hand crafted models gained
in a more traditional design flow, but these models may perform better. Manual
fine-tuning of models comes at the expense of time-consuming expert work—
including the risk of adding errors in every manual refinement step. The proposed
combined design flow provides insight, confidence, and good understanding of a
design almost for free developing the application only.

8 Conclusions

In this paper, we presented an approach towards a comprehensive system-level
synthesis solution—to automatically and seamlessly integrate the four basic sub-
tasks of decision making and refinement for both computation and communica-
tion. We identified and classified different intermediate models in system-level
synthesis, and we showed how to transform a high-level, formal model into an
intermediate models for generic synthesis. Using these standardized model for
interfacing and design exchange, we combined two advanced design flows into a
seamless system-level synthesis solution from formal streaming application mod-

Automatic System-Level Synthesis 21

els all the way down to heterogeneous MPSoC implementations. An enhanced
design space exploration engine provides all necessary decisions for refinement in
the combined design flow. We are able to synthesize pin-accurate models for com-
plex applications in a matter of minutes. In contrast, applying similar manual
refinement steps would likely have required several man-months of effort.

Acknowledgments We thank Manan Kathuria for his precious work at the Uni-
versity of Texas at Austin. His efforts enabled the automatic link of our tools.

References

1. Balarin, F., Watanabe, Y., Hsieh, H., Lavagno, L., Passerone, C., Sangiovanni-
Vincentelli, A.: Metropolis: An integrated electronic system design environment.
IEEE Computer 36(4), 45–52 (April 2003)

2. Bhattacharyya, S.S., Murthy, P.K., Lee, E.A.: APGAN and RPMC: Complemen-
tary heuristics for translating DSP block diagrams into efficient software imple-
mentations. Design Automation for Embedded Systems 2(1), 33–60 (1997)

3. Bondarev, E., Chaudron, M.R.V., de Kock, E.A.: Exploring performance trade-
offs of a JPEG decoder using the DeepCompass framework. In: Proc. of the 6th
International Workshop on Software and Performance. pp. 153–163. ACM, New
York, NY, USA (2007)

4. Chagoya-Garzon, A., Guerin, X., Rousseau, F., Petrot, F., Rossetti, D., Lonardo,
A., Vicini, P., Paolucci, P.S.: Synthesis of communication mechanisms for multi-
tile systems based on heterogeneous multi-processor system-on-chips. In: Proc. of
the 2009 IEEE/IFIP International Symposium on Rapid System Prototyping. pp.
48–54. RSP ’09, IEEE Computer Society, Washington, DC, USA (2009)

5. Densmore, D., Passerone, R., Sangiovanni-Vincentelli, A.: A platform-based tax-
onomy for ESL design. IEEE Des. Test. Comput. 23(5), 359–374 (2006)

6. Dömer, R., Gerstlauer, A., Peng, J., Shin, D., Cai, L., Yu, H., Abdi, S., Gajski,
D.: System-on-Chip Environment: A SpecC-based Framework for Heterogeneous
MPSoC Design. EURASIP JES 2008(647953), 13 (2008)

7. Falk, J., Haubelt, C., Teich, J.: Efficient representation and simulation of model-
based designs in SystemC. In: Proc. of Forum on Specification and Design Lan-
guages. pp. 129–134. Darmstadt, Germany (Sep 2006)

8. Falk, J., Keinert, J., Haubelt, C., Teich, J., Bhattacharyya, S.S.: A generalized
static data flow clustering algorithm for MPSoC scheduling of multimedia appli-
cations. In: Proceedings of the 8th ACM international conference on Embedded
software. pp. 189–198. ACM, New York, NY, USA (2008)

9. Ferrandi, F., Lanzi, P., Pilato, C., Sciuto, D., Tumeo, A.: Ant colony heuristic
for mapping and scheduling tasks and communications on heterogeneous embed-
ded systems. Computer-Aided Design of Integrated Circuits and Systems, IEEE
Transactions on 29(6), 911–924 (2010)

10. Gerstlauer, A., Haubelt, C., Pimentel, A., Stefanov, T., Gajski, D., Teich, J.: Elec-
tronic system-level synthesis methodologies. IEEE Trans. Computer-Aided Design
Integr. Circuits Syst. 28(10), 1517–1530 (Oct 2009)

11. Ghenassia, F.: Transaction-Level Modeling with Systemc: TLM Concepts and Ap-
plications for Embedded Systems. Springer-Verlag New York, Inc., Secaucus, NJ,
USA (2006)

22 Jens Gladigau et al.

12. Gladigau, J., Haubelt, C., Niemann, B., Teich, J.: Mapping actor-oriented models
to TLM architectures. In: Proc. of Forum on Specification and Design Languages.
pp. 128–133 (Sep 2007)

13. Grüttner, K., Oppenheimer, F., Nebel, W., Colas-Bigey, F., Fouilliart, A.M.:
Systemc-based modelling, seamless refinement, and synthesis of a jpeg 2000 de-
coder. In: Proc. of the Conference on Design, Automation and Test in Europe. pp.
128–133. ACM, New York, NY, USA (2008)

14. Ha, S., Kim, S., Lee, C., Yi, Y., Kwon, S., Joo, Y.P.: PeaCE: A hardware-software
codesign environment of multimedia embedded systems. ACM TODAES 12(3),
1–25 (2007)

15. Jówiak, L., Nedjah, N., Figueroa, M.: Modern development methods and tools for
embedded reconfigurable systems: A survey. Integr. VLSI J. 43, 1–33 (January
2010)

16. Keinert, J., Streubühr, M., Schlichter, T., Falk, J., Gladigau, J., Haubelt, C., Teich,
J., Meredith, M.: SystemCoDesigner - An Automatic ESL Synthesis Approach by
Design Space Exploration and Behavioral Synthesis for Streaming Applications.
ACM TODAES 14(1), 1–23 (2009)

17. Keutzer, K., Newton, A.R., Rabaey, J.M., Sangiovanni-Vincentelli, A.: System-
level design: Orthogonalization of concerns and platform-based design. IEEE Trans.
Computer-Aided Design Integr. Circuits Syst. 19(12), 1523–1543 (2000)

18. Lee, C., Kim, S., Ha, S.: A systematic design space exploration of mpsoc based
on synchronous data flow specification. Journal of Signal Processing Systems 58,
193–213 (2010)

19. Lee, E.A., Sangiovanni-Vincentelli, A.: A framework for comparing models of com-
putation. IEEE Trans. Computer-Aided Design Integr. Circuits Syst. 17(12), 1217–
1229 (Dec 1998)

20. Lukasiewycz, M., Streubühr, M., Glaß, M., Haubelt, C., Teich, J.: Combined system
synthesis and communication architecture exploration for MPSoCs. In: Proc. of the
Conference on Design, Automation and Test in Europe. pp. 472–477. Nice, France
(Apr 2009)

21. Marculescu, R., Ogras, U.Y., Zamora, N.H.: Computation and communication re-
finement for multiprocessor SoC design: A system-level perspective. ACM Trans.
Des. Autom. Electron. Syst. 11(3), 564–592 (2006)

22. Open SystemC Initiative (OSCI): Transaction Level Modeling (TLM) Library, Re-
lease 2.0, http://www.systemc.org

23. Sangiovanni-Vincentelli, A.: Quo Vadis, SLD? Reasoning About the Trends and
Challenges of System Level Design. Proc. IEEE 95(3), 467–506 (2007)

24. http://www.cecs.uci.edu/˜specc/
25. Strehl, K., Thiele, L., Gries, M., Ziegenbein, D., Ernst, R., Teich, J.: Funstate—an

internal design representation for codesign. IEEE Trans. Very Large Scale Integr.
(VLSI) Syst. 9(4), 524–544 (2001)

26. http://www12.cs.fau.de/research/scd/systemoc.php
27. T. Kangas et al.: UML-based multi-processor SoC design framework. ACM TECS

5(2), 281–320 (May 2006)
28. Thompson, M., Stefanov, T., Nikolov, H., Pimentel, A.D., Erbas, C., Polstra, S.,

Deprettere, E.F.: A framework for rapid system-level exploration, synthesis, and
programming of multimedia MP-SoCs. In: Proc. of the International Conference
on Hardware-Software Codesign and System Synthesis. pp. 9–14 (2007)

