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Abstract
Analyzing power consumption has been proposed as an effective
way to detect anomalous system behavior. The power side channel
provides a non-intrusive and not easily compromisable out-of-band
malware detection mechanism, which is especially beneficial for
long-lived and constrained embedded platforms. A variety of detec-
tion approaches using ML or other methods have been proposed for
a range of target systems and deployment contexts. In this paper, we
perform a systemization of prior works to compare and categorize
approaches, and provide guidance on limitations and applicability.
In the process, we identify 3 research gaps. First, while modern
embedded systems often deploy multi-core processors running par-
allel task sets, existing works only target single-core platforms
executing one task at a time. Second, said works don’t always ap-
ply the correct machine learning formulations, reframing security
problems into classic machine learning problems at the expense of
information loss and or reliance on stronger assumptions. Third,
few if any prior works release their datasets, making it difficult to
evaluate and compare approaches and results.

To further investigate these research gaps, we evaluate power-
based side-channel detectors on a high-performance embedded
multi-core platform running parallel autonomous drone tasks. In
addition to the detectors and attacks of prior works, we evaluate
an alternative approach that outperforms prior works across all
attacks. Finally, we discuss key challenges and considerations for
developing a power side-channel detector for a modern, complex
embedded system. To support further research in this space, we
introduce and release all data collected using our multi-core setup
as a new public dataset.
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1 Introduction
Information leakage through side-channels, such as power draw or
electromagnetic (EM) emissions, has been exploited by attackers
to exfiltrate data and compromise computer systems [14, 15, 26].
However, these same side-channels can be leveraged for system
defense. By comparing against benign system behavior, machine-
learning (ML) based malware detectors can be deployed to flag
anomalous behavior. When deployed out-of-band, these detectors
offer major advantages over traditional in-band, software-based
detection systems. Being external to the system, the detector cannot
be affected by a compromised application or operating system
(OS). Furthermore, these detectors are non-intrusive, requiring no
modifications to existing hardware or software, which is beneficial
as new attacks emerge. These advantages are crucial for many
embedded systems, which are often resource-constrained, have long
lifespans, and do not support field updates. Pairing a current probe
with a lightweight ML model presents a cost-effective and easy-to-
deploy method for securing high-assurance embedded systems.

Power side-channel detectors have garneredwidespread research
interest. In this paper, we survey the literature on power side-
channel detectors by examining deployment targets, ML detector
approaches, and relevant threat models. A review of the deployment
targets in prior works reveals that they do not evaluate approaches
on systems where benign tasks operate in parallel. However, many
modern embedded systems, such as drones, utilize complex multi-
core platforms where multiple applications are co-located and ex-
ecuted in parallel on independent schedules [7]. We identify the
lack of evaluation on parallel task sets as the first research gap in
this domain.

While reviewing ML approaches, we observe that many studies
rely on overly optimistic assumptions regarding real-world anom-
aly detection performance or misuse ML solutions for problems
they were not designed to address. A lot of interest in time-series
anomaly detection is largely driven by the desire to transfer the
successes of deep learning to other areas [41]. However, a common
issue with many anomaly detection systems is the inappropriate
utilization of ML tools [34]. We show that this issue is also preva-
lent in the narrower power side-channel domain. We identify this
inappropriate utilization of ML tools as the second research gap.

Finally, when comparing the results of various detectors, we
observe that few, if any, papers provide access to their datasets,
making comparisons and evaluations difficult if not impossible.
Moreover, recent findings highlight flaws and trivialities in many
popular public datasets for timeseries anomaly detection [41]. If
such issues exist with public datasets in the broader ML community,
it raises concerns about the appropriateness of private datasets.
Thus, we identify the lack of rigorous public datasets as the third
research gap.

https://doi.org/10.1145/3696843.3696849
https://doi.org/10.1145/3696843.3696849


HASP ’24, November 02, 2024, Austin, TX, USA Cathis et al.

Several Systematization of Knowledge (SoK) papers have pre-
viously studied various variables such as deployment strategies
and ML approaches for network intrusion detection and general
malware detection [10, 34]. Some recent surveys have focused
specifically on power side-channel detectors [32]. Our SoK goes
further by systematizing the research space, emphasizing unique
challenges and considerations in deploying side-channel detec-
tors. Additionally, we contribute empirical studies that explore and
address gaps in current power side-channel detection methodolo-
gies. Through our systematic review, practitioners can navigate the
power side-channel detector landscape and make well-informed
decisions on suitable defense techniques tailored to their device
and threat model.

We further perform a case study to explore gaps and evaluate
prior works on a modern high-performance embedded multi-core
platform. We find that despite good performance in the single-core
context, existing methods can be easily evaded in a multi-core setup.
We implement an alternative ML pipeline that combines an ensem-
ble of problem-specific anomaly detectors, showing that it can
outperform other solutions. We also discuss design considerations
for detection in parallel contexts.

This SoK makes the following contributions:

‚ We survey and analyze previous power side-channel detec-
tion works and identify three key research gaps; evaluation
on parallel task sets, inappropriate utilization of ML tools and
lack of rigorous public datasets.

‚ We evaluate previous approaches on a multicore system run-
ning drone-based tasks, and find that previous approaches
are not suitable for parallel tasks.

‚ We propose a novel approach utilizing an ensemble of mode-
specific one-class classifiers that achieves high detection
performance while scaling to a large number of benign ap-
plication modes on multicore systems. Results show that our
approach achieves a worst-case ROC-AUC of 0.90 against
microarchitectural attacks that previous approaches fail to
detect.

‚ We publicly release our dataset of parallel benchmarks and
associated power traces at [1].

The rest of this paper is organized as follows: In Sections 2-4 we
survey and contextualize existing malware detection approaches in
terms of deployment context, ML pipeline and attacks considered. In
Section 5, we further explore the real-world impact of research gaps.
Finally, Section 6 discusses key takeaways and recommendations,
and Section 7 summarizes and concludes this paper.

2 Power-Based Malware Detection
We begin by summarizing key power-based detectors in Table 1.
Papers are categorized by the complexity of their target devices
under the taxonomy’s first level. Together with the application
complexity, this defines the critical factor of deployment context of
a detector.

2.1 Target Device
In Table 1 we categorize papers at the highest level based on the
complexity of the target device’s hardware and system software.

Dynamic hardware features such as multilevel caches, hyperthread-
ing, and out-of-order processing expand the spectrum of behaviors
that must be classified as benign, while also introducing new attack
vectors [19, 25, 28]. Similarly, the presence of an operating system
(OS) amplifies the diversity of benign behaviors while introducing
new vulnerabilities.

We categorize devices into three classes based on their hard-
ware and OS: microcontroller units (MCUs), mobile phones, and
desktop computers. In the MCU class, devices typically feature
single-core processors without an OS, allowing only one task to
execute at a time. This category includes programmable logic con-
trollers (PLCs), and medical devices. For instance, Sehatbakhsh et
al. [33] deploy their detector on a Linux IoT mini-computer used
solely for the “Syringe Pump" function, aligning it with MCU char-
acteristics. Similarly, the medical device studied by Clark et al. [11],
running Windows XP Embedded, fits within this class due to its
limited function.

Power-based detectors operating on MCU-grade devices primar-
ily focus on detecting code modifications. These detectors often
sample power consumption at frequencies ranging from GHz to
KHz. Research findings indicate that detectors can effectively char-
acterize the power side-channel during benign operation. This
capability is facilitated by the constrained nature of MCU-grade
devices, which typically exhibit limited variability in behaviors
such as PLC codes, single-function operations, and power grid man-
agement. Such detectors demonstrate the ability to detect subtle
changes in power consumption caused by even a single instruction
modification [2, 22, 42].

In the mobile phone class, we encompass mobile phones, Rasp-
berry Pis, embedded System-on-Chips (SoCs) and other devices
with comparable computing capabilities. Devices in this class typi-
cally feature multi-core processors and are equipped with mobile
OSs. Most studies surveyed in this category utilized mobile phones
running Android or Windows Mobile OS, with the exception of
Wei et al. [39], who employed an Odroid XU3 board.

The increased system complexity of mobile devices precludes the
instruction-level detection observed in MCU-grade devices. Instead,
detectors characterize higher-level activities such as application
events or user behaviors like placing phone calls using coarser-
grained sampling rates. When a series of measurements deviates
significantly from established patterns of benign behavior, an alert
is triggered. As detectors shift from instruction-level to event-level
characterization, some train on known malware samples. While
this approach aids in detecting previously identified malware, it
does not ensure detection of zero-day malware.

The desktop computer class includes the most complex devices,
characterized by power-intensivemulti-core processors and desktop-
grade OSs. While desktop-grade devices exhibit greater power and
complexity compared to mobile devices, the primary distinction
lies in the deployment of detectors at the board versus the SoC or
even on-chip level. We found no significant platform-dependent
differences between detectors deployed on mobile devices versus on
desktop computers. Furthermore, there were no major differences
or complexity increases observed in the benignware and malware
evaluated for desktop-grade systems.



SoK Paper: Power Side-Channel Malware Detection HASP ’24, November 02, 2024, Austin, TX, USA

Table 1: Power-Based Malware Detection

Device
Class

Target
Device Paper Sample

Rate Parallel a Benign
Tasks Malware

Malware
Trainb

Detection
Approach

MCU MCU [30] 1.25 GHz M

Square Root,
Matrix Multiply,
Bubble Sort

CPROP M HMM

Arduino,
Raspberry Pi,
Siemans PLC

[38] 125 MHz M

Normal
Machine
States

Botnet N

LSTM, MLP
Classifiers,
Autoencoder

PICDEM Z
Demonstration
Kit

[2] 500 MHz M
Normal Mode,
Turbo Mode

Code
Modification M

Neyman-
Pearson

Allen Bradley
SLC 5/03 7
PLC

[16] 1 Hz M
Turning On/Off
PLC Lights

Code
Modification,
DOS, Replay Attack

N.A. c N.A.

Distribution
Terminal Unit
(ARM and DSP)

[42] 1 KHz N
Power Grid
Operation

Code
Modification K

One-class-,
Binary-,
Multiclass-
SVM

Medical
Devices [11] 250 KHz K

Windows XP
Embedded Running
Device Software

Keylogger,
Popup Launcher,
Screen Grabber

N
Multiclass
MLP

Mobile
Device

HP iPAQ
rx4200 [24] 10 Hz N

Windows Media
Player,
Bluetooth and
Wifi Transfers,
User Behaviors

Mobile Worms,
Battery Depletion N

Chi-Squared
Distance

Galaxy S3 [9] Missingd K Idle Covert-Channels K
Tree, MLP,
Regression

Nokia
5500 Sport [29] Missing K User Behaviors Mobile Worms,

Spyware K
LR,
MLP, DT

HTC Nexus
One,
Galaxy Nexus

[18] N.A. K

PowerTutor,
MyPhoneExplorer,
K-9 Mail

Data Heist
Gone-in-60-
Seconds

M N.A.

Galaxy S3,
Galaxy Nexus,
SCH-1535

[13] Event
Based K User Behaviors SMS Spam,

Rootkit M Threshold

Odroid XU3 [39] 200 Hz K
Facedetect, SHA-3,
Room Navigation

Evasive
uArch Attacks M

ocSVM,
LSTM

Desktop Dell Optiplex [8] 58 Hz K
Internet Explorer,
Windows Registry Rootkits M

Stats
Ensemble

Dell 9020 [3] 1 Hz K
17 Unique
User Applications Custom Virus M

F-Test,
ARIMA

Dell Optiplex [31] Random K
Stress Tests,
User Applications

Rootkits, (KBeast,
FUTo, Azazel) N

DT, SVM,
rgr, MLP

Dell Optiplex [12] 1 Hz K Benchmark Script Rootkits, (KBeast,
FUTo, Azazel) N

Beholder
Project

Dell Optiplex [22] 100 Hz K
23 Applications
and Benchmarks

Ransomware, Worm,
Trojan, Backdoor,
Rootkits, Virus

N
Supervised
Classifiers

aM refers to single-core systems, K refers to multi-core systems executing one task at a time, N refers to multicore systems with concurrent execution of multiple benign tasks.
bM refers to no training on malware, K indicates studies evaluating multiple detectors, some of which train on malware, N refers to detectors that do train on malware.

cN.A. refers to entries that are not applicable to the featured work. Often applied to works showcasing approach feasibility or lack thereof.
dMissing indicates information not found in the featured work.
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2.2 Application Complexity
Orthogonal to the target device, we categorize application complex-
ity into two classes, single- and multi-task. Single-task applications
exhibit only one behavior at all times, even when running on multi-
core platforms. By contrast, multi-task applications increase the
number of distinct behaviors. We define operating modes as all
unique executable combinations of tasks. When multi-task applica-
tions run on single-core platforms, tasks will be time-multiplexed
such that the number of modes is equivalent to the number of
tasks. The detection challenge is exacerbated when multi-task ap-
plications run on multi-core systems. As multiple tasks execute in
parallel, the of number modes and range of benign behavior expo-
nentially increases. An additional challenge in multi-core systems
is that malware can run in parallel with benign tasks. We define
modes that include malware tasks executing alone or in parallel to
benign ones as infected modes, and modes without as benign modes.
In multi-core systems, where malware may execute in parallel to
benign tasks, there is a corresponding infected mode for each be-
nign mode. To effectively detect malware, a detector must be able
to distinguish between all possible benign and infected mode pairs.

All studies of theMCU class only consider the single-core context,
except for Zhang et al. [42] who evaluate a single operating mode
where a task executes on an ARM core and DSP simultaneously.
Within the mobile class, Kim et al. [24] focus on detecting mul-
tiple malware tasks running concurrently but do not experiment
with scenarios involving multiple benign tasks or simultaneous
execution of benign and malicious tasks. All other studies within
the mobile and desktop class evaluate malware running alongside
typical user operations like making phone calls or playing music,
yet they not test scenarios with multiple concurrent user behaviors.
Overall, we did not see from prior works a multi-core, multi-thread
evaluation of all pairwise comparisons between benign and infected
modes.

One could consider the individual cores of a multi-core proces-
sor as unique systems and apply single-core malware detection
techniques to each of them simultaneously. However, this requires
on-chip, i.e. in-band power monitors, incurs software overheads,
and ignores core interactions from resource or work sharing. We
have not seen this approach in practice.

2.3 Detector Context Takeaways
In summary, previous works have not fully evaluated detectors
on systems that execute tasks concurrently. To reliably detect mal-
ware in this context, a detector must distinguish all possible benign
operating modes from all infected operating modes, with a poten-
tially large number of modes and mode combinations. However,
existing studies primarily focus on detecting malware running in
isolation or distinguishing a single benign mode from its infected
counterpart, where malware runs alongside the benign mode of in-
terest. Some studies [9, 27] suggest that detecting malware becomes
more challenging when a system is idle, as malware can manipulate
performance to evade detection by users or detectors. However, ex-
perimental results supporting this claim are currently lacking. We
identify a research gap for detectors targeted at multi-core systems:
a lack of evaluation on parallel task sets.

3 Detector ML Pipelines
In the following, we further investigate the two main stages of the
detector pipeline, the ML algorithm and feature selection. Table 2
summarizes existing works along those axes.

3.1 ML Formulation
At the highest interpretation, malware detection is a binary classi-
fication problem where behavior stemming from benignware and
malware must be distinguished. However, threat model and feature
constraints can limit the effectiveness of a binary classifier. Thus,
other ML formulations have been used, where prior works utilize
various forms of classification, regression, signature matching, and
state-transition approaches.

3.1.1 Classification. Malware detection can be framed as a one-
class, binary, or multiclass classification problem. In one-class clas-
sification (OCC), a classifier trained on benign data aims to classify
new data points as either inliers (benign) or outliers (malware).
A key advantage of one-class classification is its ability to detect
zero-day attacks. Wei et al. [39] illustrate this approach using data
from single task executions, while Zhang et al. [42] aggregate data
from multiple benign tasks into a single benign class. However,
when labeling multiple benign classes as inliers, or even a single
class with high variance, the classification function may be ex-
panded enough to misclassify outliers. One-class Support Vector
Machines (ocSVM) are a popular model, although an ensemble of
single-feature detectors have also been used [8]. While effective
in prior works, a single-feature ensemble cannot consider feature
interaction or importance without human intervention, and does
not offer a continuous decision function. Thus, it may perform
worse than a true OCC.

In binary classification, all benign data is grouped into a benign
class and all malware into a malware class. This method relies on
training with representative malware samples, posing a significant
challenge. Another limitation is the lack of detailed interpretation in
predictions; while the classifier can classify a test input as benign or
malicious, it doesn’t specify which specific benign task or malware
variant from the training set it most resembles. To address this, it
is beneficial to keep the scope of benign inputs well-defined. One
method is to adopt a single operating mode for the benign class
[42]. Other studies execute a scripted sequence of benign tasks and
treat the entire trace as a single benign input [12, 31].

In multiclass classification, benign tasks and malware are typi-
cally assigned to their own class during training. During test, inputs
are classified as a specific benign task or malware variant. Unlike
binary classification, multiclass classifiers provide deeper insights.
During training, this can indicate which classes are frequently con-
fused and reveal similarities between benign tasks and malware.
However, the challenge of constructing a representative training set
persists. Some studies have examined the generalization of trained
models to detect zero-day malware. Some works randomly allocate
malware samples for training and testing, but specifics about the di-
versity and representativeness of their training sets remain unclear
[11, 12].Wei et al. [39] avoid training onmalware altogether, instead
relying on lower confidence predictions to flag anomalies. How-
ever, reduced confidence for unseen malware is not guaranteed—a
classifier can confidentially label unseen data as in-class.
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Table 2: ML Pipelines of Power-Based Malware Detectors

ML Formulation Training Features Detector Algorithms Papers

One-Class
Classification Benign

BoW,
Time-Domain Stats,
Frequency-Domain Stats,

ocSVM [39, 42]

Binary
Classification

Benign &
Malware

Time-Domain Stats,
Frequency-Domain Stats,
Delay-Embedded Graph
of Discretized Timeseries

SVM, Decision Tree,
Linear Regression, Boosted Trees,
Beholder Project

[12, 31, 42]

Multiclass
Classification

Benign &
Malware

Spectrogram,
Time-Domain Stats,
Frequency-Domain Stats,
Time-Domain Stats with
Network Packet Features,
Delay-Embedded Graph

CNN, GradientBoosting, DecisionTree,
ExtraTrees, RandomForest, GaussianNB,
SVM, KNeighbors, MLP, LSTM,
J48, RandomTree, OneR, JRip, PART,
SMO, DecisionTable, ANFIS,

[6, 38, 42, 43],
[9, 11, 22, 29],
[12]

Benign DWT Wavelets LSTM [39]

Ensemble of
One-Class Classifiers Benign

Time-Domain Stats,
L2 Error,
Data-Smashing Distance

Ensemble of Single-Feature Detectors [8]

Regression Benign Timeseries,
Hierachical Timeseries,

MLP, LSTM, Autoencoder, DecisionTree,
Linear Regression,

[9, 20, 21, 38],
[29]

Signature Matching,
Statistical Tests

Benign &
Malware

Compressed Timeseries,
Compressed Spectrogram Chi2 Distance [24]

Benign

Timeseries,
Dimensionally Reduced Timeseries,
Spikes of Spectrogram,
Timeseries with Location Data

SAD, XCORR, Neyman-Pearson Criteria,
Komogorov-Smirnov Test,
Threshold Function

[2, 13, 33]

State-Transition Benign Timeseries,
Dimensionally Reduced Timesries HMM [30, 37]

3.1.2 Regression. For a regression-based detector, a raw timeseries
can provide separability through regression error. The simplest
approach is to segment the timeseries into windows and utilize
the error betweeen predicted and true future values as a proxy
for malicious behavior. The fundamental assumption is that inputs
from benign tasks, on which the regressor is trained, will produce
lower errors compared to inputs generated by unseen malware.
Typically, regressors are trained on a single benign task, but time-
series composed of up to four benign tasks have also been utilized
[38].

While regression error can serve as a proxy for class label, it’s also
susceptible to scenarios where a benign task with highly variable
and noisy power traces might produce a higher regression error
than a simple trace generated by malware.

3.1.3 Signature Matching. Signature matching refers to the com-
parison of known patterns or signatures against those from previ-
ously extracted benignware or malware. Users have the flexibility
to choose whether to train on malware or not. An advantage of this
approach is its minimal reliance on feature engineering; many im-
plementations compare raw traces against a known good signature
[3, 16]. However, the lack of feature engineering can be a drawback
when raw power traces contain too much noise [18].

3.1.4 State-Transition Approach. A fewworks adopt a state-transition
methodology, where a probabilistic state-machine is fitted to benign

behavior and the inverse likelihood of state-transition sequences
represents anomalousness. Liu et al. [30] exemplify this by ini-
tially employing fine-grained sampling to categorize instructions
or states within a given task. Once instructions are identified, a
control flow graph (CFG) is constructed. Subsequently, a hidden
Markov model (HMM) is trained either on the CFG itself or on the
instruction stream. During test, the HMM assesses the likelihood
that a specific sequence of CFG transitions or instructions origi-
nated from the training process. This approach, when applied at
the instruction level, has shown efficacy in detecting code modifica-
tions, including zero-day vulnerabilities. However, its practicality
is constrained by the necessity for a relatively simple benign task
where instructions can be clearly identified. Additionally, the in-
struction sequence or CFG must be sufficiently uncomplicated for
an HMM to effectively learn, thus limiting its current application
to basic MCU-grade systems.

3.2 Feature Selection
ML algorithms used for malware detection rely on selecting the
right features that enable differentiation between benign and ma-
licious inputs. When employing similarity or distance measures
for detection, extensive feature extraction is often unnecessary.
Aguayo et al. [2] utilize Neyman-Pearson correlation as a distance
metric between known good traces and test inputs. Kim et al. [24]
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compress time windows and spectrograms using one-way compres-
sion via Fast Fourier Transform. Almshari et al. [3] employ F-Test
of sample variances and 2-way ANOVA. Sehatbakhsh et al. [33]
sample spectra and use spikes as features. Similarity measures can
also serve as features for other ML algorithms; Bridges et al. [8] use
L2-norm error and Data Smashing Distances alongside time-domain
statistical features.

In classification-based detectors, most studies utilize time-domain
statistics such as mean, variance, skewness, kurtosis, and interquar-
tile range [3, 6, 8, 11, 18, 22, 31, 39]. Others employ spectrograms de-
rived from FFT of time-series windows [38, 43]. Frequency-domain
features such as zero crossing rate, energy, energy entropy, spec-
tral centroid and more may be used [42]. Clark et al. [11] utilize
energy from specific frequency bands. Dawson et al. [12] discretize
time-series data, construct a delay-embedded graph, and employ
the Beholder Project phase-space classifier [17]. In regression-based
detectors, modifications to the standard approach include apply-
ing discrete wavelet transform to the timeseries and employing a
weighted hierarchical timeseries structure [21, 39].

3.3 Machine-Learning Takeaways
Systematizing the ML methodologies from previous studies re-
veals a reliance on optimistic assumptions. Some detectors train
on malware with the expectation that this data will generalize to
detect out-of-sample malware in real-world scenarios, yet other
works show cases where this assumption does not hold [11, 12, 24].
Many works utilize regression-based detectors, which rely on the
assumption that a malware will yield greater error than benignware
[3, 9, 20, 21, 29]. Wei et al. [39] propose using classification predic-
tion confidence as a metric for anomaly detection, which, while
intuitive, may not reliably detect all types of malware. We consider
these as examples of incorrect framing between ML problems and
malware detection. In a security context, these assumptions and
methodologies should be approached with caution. We highlight a
research gap in inappropriate utilization of tools borrowed from the
ML community [34].

4 Attacks and Datasets
In Table 3, we categorize attacks from prior studies by grouping
them into stages derived from the MITRE ATT&CK matrix [35].
The stages that have received the most attention are Execution and
Collection/Exfiltration/Impact. This focus can be attributed to two
main reasons. First, these stages highlight critical vulnerabilities
and often result in significant consequences. Second, such attacks
typically exhibit high power consumption or induce noticeable
changes in system state, making them easier for side-channel de-
tectors to identify.

As mentioned in Section 1, few, if any, papers release their power
traces, and flaws have been discovered in popular public datasets
used in timeseries anomaly detection. The power side-channel com-
munity lacks established public datasets for testing. Wu et al. [41]
suggest that the timeseries anomaly detection community should
address dataset limitations, study implications, and collaborate to
develop rigorous and realistic datasets. We advocate for similar ef-
forts for power side-channel research. Currently, the lack of rigorous
public datasets remains a significant research gap.

Table 3: Attacks Evaluated in Power-Based Malware Detec-
tion.

Stage Instance/Family Papers
Initial Access Replay Attack [16]
Discovery/
Resource
Development

Botnet [38]

Execution Code Modification [2, 16, 42]
Control Flow Hijack [30, 33]
Cause Spam [11, 13]
Virus [22]
Microarchitecture Attacks [39, 43]
Evasive 𝜇-Arch Attacks [39]
Covert-Channels [9, 39]

Persistence/
Defence Evasion Rootkit [8, 13, 42],

[12, 22, 31]
Backdoor [22]

Lateral
Movement Worm [22, 24, 29]

Collection/
Exfiltration/
Impact

DDOS [16]

Ransomware [18, 22]
Spyware [11, 29]
Battery Depletion/
Electrical Theft [6, 24]

Data Deletion [18]
Other Fabricated Virus [3, 20]

5 Case Study
To assess the impact of research gaps in deployment contexts and
ML formulations of prior works we conducted a case study using
an advanced high-performance embedded multi-core development
platform executing drone-based workloads. Our setup consists of
a Portwell PCOM-C700 Type VII carrier board with a Portwell
PCOM-B700G processor module. This module features an 8-core
Intel Xeon D-1539 embedded-class processor. Power consumption
was monitored using a Hall-effect current sensor clamped around
the 12V CPU power cable. Current sensor readings were sampled at
2 KHz. Sliding window extraction was employed to generate model
inputs.

For regression-based detectors, windows were divided into a
1000-sample input sequence and a 3-sample prediction sequence
with a stride of 1 and 2, respectively. For other machine learning
formulations, we transformed each sliding window into a feature
vector. The feature vector comprised of statistical features including
mean, min, max, amplitude, negative amplitude, and range, and
bag-of-words (BoW) features following the methodology of [36].
We created a dictionary by discretizing a trace to 11 levels, forming
n-grams and adding the k most popular n-grams to the dictionary,
with 𝑛 “ 𝑘 “ 5. A bash script running on a separate desktop PC
was used to automate the data collection, sending commands to
ensure that the target board executed in a specified state before
triggering the sampling of data on the oscilloscope. Power traces
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for all possible modes were collected and divided using a 50-50
train-test split.

We executed three benign applications representing typical drone
tasks: a SHA-3 implementation from the Extended Keccak Code
Package [23], a face detection application using the OpenCV library
running a video benchmark [40], and an autonomous drone package
delivery benchmark from MAVBench [7]. We use Meltdown [28],
Spectre [25] and L1 covert-channel [19] microarchitectural attacks
as best-case malware for detectability due to their noisy power
signatures. Although microarchitectual attacks only form a subset
of threats evaluated by prior works and seen in the real world,
we focus on their evaluation to test the limits of all evaluated de-
tectors across different operating modes. A detector that cannot
detect noisy microarchitectural attacks will not be able to detect less
power-hungry software exploits or an evasive power-mimicking
attack as described by Wei et al. [39].

5.1 ML Detectors
We select a representative approach for each ML formulation de-
tailed in Table 2. Due to our use of coarse-grained sampling, we omit
the state-transition approach, which requires fine-grain sampling
for classifying individual instructions. Detectors were implemented
using Python, leveraging Scikit-Learn for shallowmodels and Keras
for deep learning models. Each approach is optimized by selecting
preprocessing parameters and model hyperparameters via a ran-
dom parameter search [5]. Parameters yielding best results for each
approach’s inherent scoring function were selected. Performance
estimations were made by blocked cross-validation [4].

We use Support Vector Classification (SVC) as an example of bi-
nary classification, Random Forest (RF) for multiclass classification,
and both RF and Long Short-Term Memory (LSTM) for regression.
We also implement an ensemble of single-feature ensembles follow-
ing Bridges et al. [8].

In addition to emulating existing methodologies, we propose an
alternative malware detector that employs an ensemble of OCCs.
This method is similar to [8], but in contrast to fitting an ensem-
ble to each benign task our detector employs an OCC for each
benign mode. By training on modes instead of tasks, our detector
effectively handles scenarios where multiple benign tasks execute
concurrently. Our detector is trained by fitting a one-class pipeline,
composed of a OCC and z-score normalizer, to each benign mode.
We then ensemble the scores of the one-class pipelines and take
the minimum as benign samples should be classified as in-class by
at least one pipeline while malicious samples should be classified
as outliers by all. We assess our one-class ensemble detector in two
implementations, one which uses Isolation Forests (IFs) and the
other which uses ocSVMs as the OCC.

5.2 Detector Results
We test detectors for both single- and multi-task contexts and de-
ployment scenarios involving 1, 2, or 3 benign applications running
in the system. For the 1-benign and 2-benign scenarios, we eval-
uated all possible deployment instances depending on the subset
of applications included in the system. Within each deployment
instance, we report ROC-AUC between all possible pairs of benign
and infected modes.
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Figure 1: Detector ROC-AUC for single- and multi-core set-
tings in 1-, 2-, and 3-benign contexts.
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Figure 2: Ensemble detector ROC-AUC for single- and multi-
core settings in 1-, 2-, and 3-benign contexts.

Figures 1 and 2 show ROC-AUC distributions of non-ensemble
and ensemble detectors across all instances and mode pairs in
each deployment scenario. Figure 1 shows that no previous non-
ensemble approach exhibits good detection rates across all cases.
Moreover, all prior works demonstrate notably weak detection
performance in the multi-core context. Underperformance can be
attributed to improper problem formulations and the increased
complexity of our setup.

Figure 2 shows that for all ensemble models and cases, the ROC-
AUC remains above 0.80, greatly outperforming prior works of
Figure 1. The Bridges ensemble [8] is consistently outperformed by
our ensembles utilizing OCCs, likely due to limitations discussed
in Section 3.1.1.

6 Discussion
Our empirical evidence confirms that multi-core presents signifi-
cant challenges as it increases detection complexity and does not
scale well. All detectors perform worse in the multi-core context.
As a result, we advise limiting deployments to targets with a re-
stricted number of applications and benign modes. Furthermore,
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we recommend the use of applications with periodic power signa-
tures and minimal variance. This approach helps to narrow down
the range of benign behavior, thereby reducing the likelihood of
misclassification.

Within this context, it is crucial to evaluate each deployment
scenario and pairing of benign and infected mode individually,
taking into account the worst-case performance, since an attacker
can invariably exploit the worst-case scenario to carry out their
attack. Worst-case behavior is poor for most existing works as
improper formulations can catastrophically fail. It is not difficult
to find instances of poor performance when an improper problem
formulation is applied against a challenging benchmark. Reliance
on average-case performance can lead to misleading conclusions.

Our results also underscore that malware detection hinges sig-
nificantly on the appropriate formulation of the detection problem,
rather than on the application of the most advanced ML models.
Our ensemble detector, which utilizes lightweight OCCs, surpasses
deep learning approaches due to its design specifically tailored for
malware detection. While different threat models may necessitate
distinct problem formulations, the fundamental principle remains:
the chosen ML tools should be aptly suited to the specific context
of malware detection. Basic models can outperform complex ones
when applied in the appropriate problem formulation.

Detection outcomes were significantly influenced by factors such
as the sampling rate, preprocessing methods, feature engineering,
and parameter selection. Awell-structuredmodel may fail to deliver
effective performance if the data mining process is compromised.
Although feature engineering may not be intellecutally novel, it
proved to be a critical component for achieving our detection results.
Thus, it is imperative to place a strong emphasis on understanding
the data and techniques used in its preparation. Advanced ML
cannot make up for deficiencies in domain expertise.

While it is vital to achieve good performance from a detector,
understanding the detector’s limitations is equally, if not more, im-
portant. This understanding enables researchers and practitioners
to make informed decisions regarding the feasibility of a specific
approach. With our platform and detector, we can anticipate robust
detection results against microarchitectural attacks. However, we
have not evaluated against software-exploiting attacks and recom-
mend caution when considering our approach for threat models
that encompass such attacks.

7 Summary and Conclusions
In this paper, we systematically examined power side-channel de-
tectors and pinpointed three significant research gaps: lack of eval-
uation on parallel task sets, inappropriate utilization of ML tools, and
lack of rigorous public datasets. To investigate these gaps, we carried
out a case study on a contemporary, complex embedded system
running multiple parallel tasks. We found that effective strategies
in single-core settings do not necessarily succeed in multi-core
environments. We proposed an ensemble-based detection scheme
that has been demonstrated to be effective in such settings, and
we discussed guidelines and limitations of power-based malware
detection. To encourage further development, we publicly released
our datasets at [1]. In future work, we aim to further characterize

the operating range of our proposed detector and explore alterna-
tive approaches for more complex detection scenarios, including
heterogeneous hardware platforms, software-based attacks, and
power-mimicking malware.
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