A Reactive and Adaptive Data Flow Model For
Network-of-System Specification

Sabine Francis and Andreas Gerstlauer
The University of Texas at Austin, Austin, TX, USA
francisabine @utexas.edu, gerstl@ece.utexas.edu

Abstract—With embedded systems being increasingly net-
worked, appropriate models of computation and communica-
tion are needed for specification of such networks-of-systems.
Traditional dataflow models have shown their usefulness in
analyzing isolated systems. However, these models cannot express
the inherent requirements of connected applications, such as
dynamic behavior associated with network losses and reactivity
to external events. This paper proposes a Reactive and Adaptive
Data Flow (RADF) model that introduces a notion of empty
tokens to expose network losses and provide adaptivity at the
application level while maintaining overall determinism. Empty
tokens, combined with expanded actor semantics, are also used to
model reactivity to sporadic external events. We formally define
RADF semantics and show efficient methods for analyzing RADF
graphs in terms of their worst-case throughput and latency.

Index Terms—Adaptivity, connected embedded systems, data
flow modeling, network losses, reactivity.

I. INTRODUCTION

Embedded and cyber-physical systems are increasingly net-
worked and driven by data-dominated, computationally inten-
sive applications. Wireless sensor networks (WSNs) and the
Internet of Things (IoT) performing signal and data processing
tasks are examples of Networks-of-Systems (NoS) character-
ized by their connected and streaming behavior.

In traditional embedded system design processes, Models
of Computation (MoCs) are used for formal specification of
isolated system behavior. Such MoCs focus on expressing
computational aspects, including tradeoffs with analyzability
related to properties such as concurrency, determinism and
deadlocks. However, they typically lack support for richer
communication semantics required to model NoS. Traditional
embedded MoCs overconstrain the implementation of the
system by assuming and guaranteeing a lossless communica-
tion between processes. In reality, network communication is
inherently lossy. System implementations should be exposed
and allowed to adapt to losses in order to explore tradeoffs
between, among others, Quality of Service (QoS) and latency.
Existing communication models, such as queuing theories,
support analyses of network effects. However, they in turn
do not account for expressing system computation. Novel,
unified Models of Computation and Communication (MoCCs)
are thus needed to simultaneously capture both aspects.

Streaming application behavior in NoS is naturally captured
by dataflow MoCs and supported by effective analysis and
synthesis techniques. However, applications are also becoming
more dynamic as sporadic external events interact with stream-
ing components. Typical reactive MoCs, such as Synchronous
Reactive (SR) models, allow capturing event-driven behavior
in control-oriented form, but do not provide an appropriate

abstraction for data-driven streaming computations. By con-
trast, basic dataflow models can not easily express reactive
behavior as they rely on a predefined ordering of events to
maintain determinism. A unified MoCC should thus support
both reactive and streaming behavior.

This paper proposes a new MoCC called Reactive and
Adaptive Data Flow (RADF). RADF is based on an extension
of dataflow MoCs. We demonstrate our extensions on top of
a Synchronous Data Flow (SDF) basis; they can, however,
be equally applied to other dataflow variants. RADF captures
several dynamic aspects, by introducing notions of adaptivity
and reactivity. Adaptivity refers to the ability of an application
or its implementation to alter its behavior depending on
exposed network losses. Reactivity refers to the ability of a
system to adjust its behavior in reaction to external sporadic
events. RADF supports a network-like communication model;
traditional lossless queues between actors are replaced by lossy
ones. In addition, RADF incorporates a concept of empty
tokens, which allows modeling lost data, while preserving
determinism and analyzability. This permits for dynamic adap-
tivity to be modeled, without changing the semantics of the
underlying model. Empty tokens also allow modeling unavail-
ability of data. When combined with extended actor semantics,
reactivity to sporadic external events can be expressed.

The rest of the paper is organized as follows. Section II
discusses the related work. Section III presents the formal
definition of the RADF model. RADF performance analysis
is discussed in Section IV. Finally, Section V concludes the
paper with a summary and outlook on future work.

II. RELATED WORK

The main differences between RADF and other MoCs are
the modeling of dynamic behavior through a concept of empty
tokens and support for event-driven executions.

Generally, streaming specifications are modeled by process
network or dataflow MoCs. Kahn Process Networks (KPNs)
support reactivity at the expense of undecidable model prop-
erties. Boolean Data Flow (BDF) [1] and the CAL Actor
Language (CAL) [2] are also Turing complete with similar
restrictions in analyzability. By contrast, SDF allows to stati-
cally analyze the graph but, due to its fixed consumption and
production rates, does not support any form of dynamic be-
havior. The Cyclo-Static Data Flow (CSDF) model [3] allows
for cyclical rate changes, but is still static in its expressiveness.

Many other generalizations of SDF support dynamic behav-
ior, by using varying rates and switching between scenarios
or modes of operation. Parameterized and modal dataflow

Fig. 1: RADF graph of wireless sensing example.

models, such as Heterochronous Dataflow (HDF) [4], Param-
eterized Synchronous Data Flow (PSDF) [5], Scenario-Aware
Data Flow (SADF) [6] and their variants [7], [8], combine
dataflow models with state machines to dynamically transition
between different configurations. Similarly, Reactive Process
Networks (RPN) extend KPNs to switch between streaming
modes at the occurrence of a particular event [9]. Nevertheless,
to ensure analyzability, all the previously listed models allow
rates to change only between two different iterations of the
graph. This puts a limitation on the dynamic behavior, in terms
of adapting execution to unpredictable changes, such as token
losses in the middle of an iteration. Furthermore, as we will
show later, modeling token losses as mode switches results
in state explosion as the number of combinations of losses
is exponential. Given the semantics of empty tokens, these
restrictions are relaxed in RADF. Boolean Parametric Data
Flow (BPDF) [10], Variable-Rate Data Flow (VRDF) [11] and
Schedulable Parametric Data-Flow (SPDF) [12] allow changes
in boolean parameters or actor rates within an iteration.
However, BPDF and SPDF are limited to boolean or non-
zero choices in rate adaptivity, respectively, while VRDF and
SPDF both require a separate analysis to guarantee global
consistency. By contrast, RADF supports more expressive
adaptivity patterns, where empty tokens separate adaptivity
from rate consistency of the underlying dataflow model.

The Streamlt programming language is designed to facilitate
the coding of streaming applications [13]. It expands on the
SDF model by supporting dynamic rates and synchronized
controlled messages, also known as teleport messages. The
latter are similar to empty tokens as they are not always
received. However, they are out-of-band messages, which are
not part of the in-band streams. In addition, they are a property
of the actors. In our model, empty tokens are a property of
the regular, in-band communication channels.

ITII. FORMAL DEFINITION

In this section, we formally define the RADF model. We
briefly summarize the semantics of the SDF model used in
this paper as the basis for RADF. In the following, we adopt
the original dataflow firing rule notation by Dennis [14].

An SDF graph is a network of actors communicating over
unbounded FIFO channels. The system is thus defined by a
tuple (A, C), where A and C represent, respectively, the sets of
actors and channels. In addition, Z,, and O,, denote the finite
sets of input and output data ports of an actor a, € A. In
SDF, actors consume and produce a fixed number of tokens
per firing and have a single firing rule, R, that specifies when
ap fires. R, = {Rp1,..., Rp N} is formed of N finite token
patterns, one for each of the N input ports of a,. Each pattern

R, , must only contain * representing token wildcards. a,, fires
when each R, ,, forms a prefix of the sequence of unconsumed
tokens at its input port ¢y, , € Z,. For example, assume an actor
a; with two input ports, 4o and 7; ;. At each of its firings, a;
consumes two tokens from i;o and one token from i; ;. The
firing rule of a; is thus Rj = {[*,], [*]}. a; executes when at
least two tokens are available at i; o and one token is available
at ¢5,1. We denote by 7, ,,, the firing or production rate of a,
associated to its output port o, ,, € O,. For example, at each
firing of a;, a; produces two tokens on its output port 0; ;75,0
is thus 2. Channels connect input and output ports. A channel
¢p,q € C is characterized by the tuple (0p m,iq.n,tpq), Where
opm € Op and iy, € Z, correspond to an output port and
input port, respectively, and ¢,, , to the number of initial tokens
that may exist on the channel. The state of an SDF graph
is the number of tokens on each channel. Its initial state is
thus determined by the number of initial tokens on each of its
channels. An iteration is defined as the minimal sequence of
actor firings that brings the graph back to its initial state [12].

An RADF graph is based on the same topology of actors,
channels and tokens. What changes are the semantics of the
actors and channels. Fig.1 shows an example of a wireless
sensing application that will be used to illustrate our exten-
sions. Iy and [; are sensor inputs preprocessed by actors ag
and aq, which in turn send their outputs to feature extraction
actors as and as. Actors ag and ay process an input event
that is triggered, e.g., once a button is pressed. Results are
agglomerated in a gateway a4 and sent to a cloud server as.
A. Adaptivity

Adaptivity is attained by exposing network losses to the
application level. The communication channels, connecting the
actors in RADF, have the same underlying semantics as the
queues of SDF models. However, and to model network losses,
they are by default allowed to be lossy (represented graphically
by dashed arrows). Optionally, channels can be specified to be
lossless (represented by solid arrows). Channels expose losses
to the application by replacing lost data by empty tokens.
Definition 1 (Empty Tokens). Empty tokens, represented in
token patterns by the symbol ©, are tokens that do not carry
any useful data.
Definition 2 (Lossless Channels). A channel c, 4 is lossless
if it maps the output token pattern [x,x, ..., %] 00 Op., t0 an
identical input token pattern on iy .
Definition 3 (Lossy Channels). c, , is lossy if it maps the
output token pattern [x,x,...,%| on 0, m, to an input token
pattern on g, that can contain one or more empty tokens.

It further follows that users may specify different execution
versions for each actor, depending on the combination of
empty and nonempty tokens present on their input ports. A
default version executes the actor when no other version is
defined for a given input token pattern. In addition, a special
idle version allows an actor to not execute when all its input
tokens are empty.

Definition 4 (RADF Actor). RADF actors are described
using multiple variants. Let a, € A be modeled by K

distinct versions, such that a’; corresponds to the kth version
associated with a specific firing rule Rg. Given SDF as the
basis, consumption and production rates are the same across
patterns. Tokens belonging to prefix patterns take any of the
values {@, x, *}, where @ represents an empty token, x a non-
empty token and * a token wildcard that covers any empty or
non-empty token. Actors can have the following variants:

o kM version, a’;: a’; is executed iff the token patterns on
its inputs match the associated firing rule RII‘,.

o Default version, ag: ag is mandatory and executed for
possible input patterns not matched by any other a’;.
Actors executing the aforementioned versions cannot produce
any empty tokens. In addition, an actor can optionally have a

special variant:

o Idle version, a?: a? is triggered when the input se-
quences on all inputs are formed of only empty tokens.
However, this variant is restricted to not execute any
code. Furthermore, its outputs are only formed of an all-

empty token pattern.

The concept of empty tokens coupled with fixed rates for
actors guarantees determinism while allowing for dynamic
behavior of RADF graphs. By contrast, and as was stated
earlier, existing modal models, like SADF, put limitations on
the dynamic behavior. Taking Fig.1 as an example, we assume
that a5 implements the as@ variant. If ¢4 5 drops the token in the
second firing of as, it follows from Definition 4 that a5 does
not execute any code. In SADF, this corresponds to a scenario
where a5 is omitted from the graph. However, SADF restricts
this scenario change to not occur during the same iteration
of the graph. SADF would therefore require token losses and
hence the scenario to execute to be known a priori, at the start
of the iteration. In contrast, in RADF, various variants can
be triggered whenever an actor fires, possibly with different
variants within the same iteration.

B. Reactivity

Reactivity in RADF is attained through support for pres-
ence of empty or non-empty tokens in external inputs and
subsequent execution of idle or non-idle actor variants. Empty
tokens model the absence of sporadic events in input patterns,
allowing an RADF graph to vary its behavior depending on
the occurrence of such events. To illustrate reactive execution,
we assume that a4, ag and a; of Fig.l implement a variant
a} having a firing rule R} = {[x,x],[x,x],[@]}, and idle
versions a§ and a¥, respectively. During a given iteration of
the graph, the button is not pressed: ag does not receive any
event, i.e. receives an empty token. Following Definition 4,
ae fires its idle version, which does not execute any code, and
empty tokens are output on cg 7. Subsequently, ar fires its idle
variant. When a4 receives non-empty tokens on its input ports
connected to cp 4 and c3 4, it fires its non-idle variant a}l as
empty tokens are injected on c¢7 4. ag and ay are said to form a
reactive island. The system implementation can be optimized

to not execute idle firings of such reactive chains.

Definition 5 (Reactive Island). A reactive island is a largest
possible region in the graph formed of connected actors, where

firing idle variants of the source actors of the island triggers
all subsequent actors in the island to fire their idle variants.

C. Reactive and Adaptive Data Flow
Definition 6 defines the complete RADF model.

Definition 6 (RADF). An RADF model is formed by the tuple
(A,C,Cyr), where A, C and Cy, represent, respectively, the sets
of actors, lossless channels and lossy channels.

1) The execution semantics of the actors in A are defined
in Definition 4.

2) C and Cy, are defined, respectively, in Definition 2 and
Definition 3. Initial tokens, which might be empty, may
be present on the channels to avoid deadlocks.

IV. PERFORMANCE ANALYSIS

The performance of RADF graphs is studied in terms of
their throughput and latency metrics.

A. Throughput

For analysis purposes, we can assume that at the beginning
of each iteration, token losses are known. Under this as-
sumption, the different scenarios can be explicitly enumerated,
and the RADF graph can be converted into an equivalent
SADF model with a fully connected FSM. SADF throughput
analysis techniques introduced in [15] can then be applied.
These techniques are at least linear in the number of scenarios.
However, the number of SADF scenarios resulting from the
RADF to SADF conversion is exponential. An RADF-SADF
conversion is possible by traversing the RADF graph in a
breadth-first fashion and iteratively constructing SDF graphs
forming the different SADF scenarios. For every RADF node
visited, existing partial SDF subgraphs are replicated and
each of them extended with one of the different RADF actor
variants. We use Fig.l to illustrate the conversion, where
we assume that ay implements 32 variants, corresponding to
its 32 possible input token patterns, and as implements two
variants. In addition, all other actors possess a single variant
as their input ports are connected to lossless channels. Thus,
converting the RADF graph of Fig.l1 into an SADF model
results in 64 distinct scenarios. This shows how modal models
in general grow exponentially in the number of modes as the
number of variants per lossy link increases. Thus, even under
the assumption of token losses being known a priori, RADF
expresses behavior that would require an exponential number
of configurations. In the worst case, we assume that all chan-
nels of an RADF graph are lossy. Every actor a,, with rp ,
as its firing rate, has 2% Tp.m possible patterns. The total
number of modes or scenarios thus equals H;;O 2 =0 Toum,

Instead, RADF supports an alternative approach for com-
puting the throughput that applies the simpler SDF analysis
techniques introduced in [16] directly on the graph formed of
the RADF actor variants taking the worst-case execution time
(WCET). For SADF, this approach over- or underestimates
results [15]. Obtaining SADF throughput from the SDF graph
formed of the WCET actors across all scenarios can be too pes-
simistic because the resulting SDF graph might not represent
a feasible scenario or a feasible scenario sequence. The former

also implies that simply analyzing the worst-case scenario
in an SADF graph might be too optimistic. This can occur
in pipelined executions where iterations can overlap in such
a way that accumulating individual actor WCET is instead
triggered by a sequence of different scenarios. For worst-case
analysis of RADF, scenarios with infeasible or independent
non-WCET actor variants can be excluded. This significantly
reduces complexity compared to the full expansion above.
However, lossless channels can create dependencies between
actor variants that are not captured by the single WCET
combination. We can assume that in the worst case all channels
are lossy. Under this assumption, the SDF graph composed
of WCET variants always represents a possible scenario and
a possible execution sequence of the RADF graph. This
approach is simpler, but does not always provide tight bounds.
Definition 7 (Feasible Variant). We denote by feasible variant
an actor variant that can execute in a given graph instance.

Definition 8 (Actor WCET). We denote by the WCET of an
actor its WCET among all its feasible variants.

Proposition 1. Assuming lossy channels, the combination of
WCET actor variants results in a possible execution sequence
of an RADF graph.

Proof: Let ¢, 4, connect the output and input ports of
ap to ag, respectively. Even when part of a reactive island,
actors a, and a, will have at least one feasible non-idle variant
triggered by non-empty tokens received from primary inputs or
non-idle actors outside the island. Since feasible idle variants
do not execute any code, it further follows from Definition
4 that the WCET variant of a, will be a non-idle version
that always outputs non-empty tokens. Assuming that c, 4 is
lossy, a, can execute any of its feasible versions, including
its WCET variant. Given that the input patterns characterizing
these variants can only be realized through the loss of zero or
more tokens on ¢, 4, the combination of variants of a, and a,
is a feasible execution sequence.]

Proposition 2. A worst-case bound on throughput of an RADF
graph is calculated as the throughput of the SDF graph formed
by taking the WCET of each actor.

Proof: From Proposition 1, it follows that the SDF graph
composed of the actors” WCET variants is a possible execu-
tion sequence of the RADF graph assuming lossy channels.
Furthermore, lossless channels can not increase the execution
time of actors beyond their WCET. Given that the throughput
analysis searches for the longest cycle, analyzing the WCET
SDF gives thus a lower bound on the throughput. [|
B. Latency

Latency is defined as the difference in the firing times
between source and sink nodes of the dataflow graph. Similarly
to the throughput analysis, one approach converts the RADF
model into its equivalent SADF model, and finds the latency
per the methods proposed in [17]. However, and following
the same reasoning as for throughput calculation, a simpler
approach finds an upper bound on the latency by analyzing
the latency of the WCET SDF. This analysis is based on the
(max, +) characterization of the resulting SDF graph [18].

V. SUMMARY AND CONCLUSIONS

In this paper, we presented a Reactive and Adaptive Data
Flow (RADF) MoCC designed to model embedded and
cyber-physical networks-of-systems. RADF extends traditional
dataflow models by incorporating the notion of empty tokens
to represent network losses and the absence of sporadic events,
and by extending actor semantics to define different variants.
These properties make RADF more expressive than traditional
dataflow models and easier to analyze than existing modal
models. We showed that analyzing the throughput and the
latency of the RADF graph, formed of the actors having
the worst-case execution times over all variants, provides
RADF performance metrics with low complexity. Future work
involves expansion of the semantics of the model and their
concrete realizations, which, similar to existing system design
methods, will require synthesis approaches, where multiple
implementation choices can potentially be supported. We also
plan to investigate analysis techniques to support probabilistic
performance treatment, including tradeoffs in terms of latency,
throughput and quality of service.

VI. ACKNOWLEDGEMENTS
This research is supported by NSF grant CSR-1421642.
We also thank the anonymous reviewers for their valuable
feedback in improving this paper.
REFERENCES

[1] J. Buck and E. Lee, “Scheduling dynamic dataflow graphs with bounded
memory using the token flow model,” in /ICASSP, 1993.

[2] J. Eker and J. Janneck, “CAL language report,” University of California
at Berkeley, Tech. Rep., Dec 2003.

[3] G. Bilsen, et al., “Static scheduling of multi-rate and cyclo-static DSP-
applications,” in VLSI Signal Processing VII, 1994.

[4] A. Girault, et al., “Hierarchical finite state machines with multiple
concurrency models,” IEEE TCAD, vol. 18, no. 6, Jun 1999.

[5] B. Bhattacharya and S. Bhattacharyya, “Parameterized dataflow model-
ing for DSP systems,” IEEE TSP, vol. 49, no. 10, Oct 2001.

[6] B. Theelen, et al., “A scenario-aware data flow model for combined long-
run average and worst-case performance analysis,” in MEMOCODE,
2007.

[7]1 M. Skelin, et al., “Parametrized dataflow scenarios,” in EMSOFT, 2015.

[8] K. Desnos, et al., “PiMM: Parameterized and interfaced dataflow meta-
model for MPSoCs runtime reconfiguration,” in SAMOS, 2013.

[91 M. Geilen and T. Basten, “Reactive process networks,” in EMSOFT,

2004.

V. Bebelis, et al., “BPDF: A statically analyzable dataflow model with

integer and boolean parameters,” in EMSOFT, 2013.

M. Wiggers, et al., “Buffer capacity computation for throughput con-

strained streaming applications with data-dependent inter-task commu-

nication,” in RTAS, 2008.

P. Fradet, et al., “SPDF: A schedulable parametric data-flow MoC,” in

DATE, 2012.

W. Thies, et al., “Teleport messaging for distributed stream programs,”

in PPoPP, 2005.

E. Lee and E. Matsikoudis, The Semantics of Dataflow with Firing.

Cambridge University Press, 2007.

M. Geilen and S. Stuijk, “Worst-case performance analysis of syn-

chronous dataflow scenarios,” in CODES+ISSS, 2010.

A. Ghamarian, et al., “Throughput analysis of synchronous data flow

graphs,” in ACSD, 2006.

F. Siyoum, et al., “End-to-end latency analysis of dataflow scenarios

mapped onto shared heterogeneous resources,” IEEE TCAD, vol. 35,

no. 4, April 2016.

M. Skelin, et al., “Worst-case latency analysis

parametrized dataflow MoCs,” in DASIP, 2015.

[10]

(11]

[12]
[13]
[14]
[15]
[16]

(17]

[18] of SDF-based

