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Predictive OS Modeling for Host-Compiled
Simulation of Periodic Real-Time Task Sets
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Abstract—With the increasing complexity of embedded soft-
ware, host-compiled simulators have been introduced to address
the need for a fast simulation environment. However, designers
pay the price for higher performance with a loss in timing accu-
racy. In this letter, we introduce a novel predictive OS model to
provide fast software simulation with accurate scheduling of peri-
odic real-time tasks. The OS model predicts the next preemption
point by monitoring system state, and automatically and optimally
adjusting the granularity of back-annotated delays. We evaluated
our simulator on a range of periodic task sets. Our observations
show that we can achieve the same 99% accuracy as a simulation
at 1 ps granularity with an average 230x speedup.

Index Terms—Host-compiled simulation, RTOS modeling.

I. INTRODUCTION

ITH an ever increasing fraction of complex embedded
W software, efficient evaluation of software execution on
atarget architecture at early stages of the design process is a cru-
cial part of today’s system-level design methodologies. Trans-
action level modeling (TLM) approaches based on system level
design languages (SLDL), such as SystemC, provide high-level
hardware/software (HW/SW) cosimulation backplanes. How-
ever, integrating traditional instruction set simulators (ISS) into
TLM backplanes is no longer appropriate for simulation of soft-
ware execution due to their slow simulation speeds.

Recently, host-compiled or source-level approaches have re-
ceived widespread attention as solutions that can provide both
fast and accurate simulations [1]—-[4]. In such approaches, the
actual application code is natively compiled and executed on the
simulation host to achieve the fastest possible functional simu-
lation. To model timing, the code is back-annotated with execu-
tion delay estimates. Finally, back-annotated code is wrapped
into an abstract model of the OS [5], [6] and software execu-
tion environment [7], [8] integrated into a proprietary or stan-
dard-based SLDL and TLM cosimulation backplane. Such pro-
cessor models have been shown to simulate at speeds beyond
500 MIPS with more than 95% timing accuracy.

In HW/SW cosimulation approaches, higher speed is
achieved by coarse-grained simulation of the system, which in-
herently comes at a loss in timing accuracy. Several researchers
have focused on improving the accuracy of high-level simula-
tors while maintaining similar performance. Krause et al. [9]
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Fig. 1. Host-compiled software simulator.

present combined ISS and abstract RTOS model cosimulation.
This approach replaces an actual RTOS binary code with an
abstract model running outside the ISS and performs cycle-ac-
curate thread switches. Khaligh ef al. [10] present an adaptive
TLM simulation kernel, which changes the level of accuracy
during simulation to the level expected by designers. Schirner
et al. [11] introduce a granularity-independent approach for
accurate simulation of interrupts on host-compiled processor
models by applying optimistic prediction and correction. In all
cases, however, fundamental speed and accuracy tradeoffs re-
main. At higher levels of abstraction, real-time task simulators
allow early evaluation of real-time performance of a given task
set [12], [13], but are based on idealized task models that do not
allow for execution of actual task functionalities in a complete
system context.

By contrast, this letter presents a novel RTOS modeling ap-
proach for accurate and fast evaluation of real-time periodic task
sets in a host-compiled HW/SW cosimulation context. Tradi-
tionally, the assumption is that timing errors are bounded by an-
notated discrete timing granularities. However, this turns out not
to be the case when modeling preemptive behavior. The contri-
butions of this letter are twofold: (1) an analysis of error bounds
in preemption models that shows that errors can exceed limits
set by timing granularities is presented; and (2) a simple exten-
sion to existing RTOS models that is able to avoid such errors
and provide an accurate simulation of scheduling and preemp-
tion effects is proposed. The proposed RTOS model predicts the
next preemption point by monitoring the system state and opti-
mally adjusting the granularity of back-annotated delays in the
application code.

II. HOST-COMPILED SOFTWARE SIMULATION

Fig. 1 outlines the host-compiled software simulator, details
of which can be found in [14]. We follow a layered approach to
construct the simulator. Running on top of an SLDL simulation
kernel, a TLM layer provides a high-level interface to the rest
of the system and connects to a standard TLM backplane. An
OS model manages the scheduling, queuing, dispatch, and exe-
cution of application tasks according to an emulated scheduling
policy, ensuring that at any given time only one task is active
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Fig. 2. Error models in host-compiled simulation. (a) Theoretical order.
(b) Simulation order.

on the underlying TLM/SLDL kernel. Finally, the user applica-
tion is modeled as a set of sequential and concurrent high-level
C/C++ processes. It sits on top of and accesses services of the
OS layer via a canonical OS APIL

For the following discussion, we focus on analyzing preemp-
tive scheduling behavior. Without loss of generality, we con-
sider an ideal model that abstracts away other effects, where an
application is composed out of a set of periodic real-time tasks
I' = {m, 7 -7}, ordered by decreasing priorities P;. Each
task 7; is described by its period T; and execution time C;. The
jt" instance (job) of task 7; is denoted by 7;.;, and its response
time f?; ; is measured as the time elapsed between its release
time r; ; and the time f; ; when it finishes execution of one iter-
ation. For host-compiled simulation, task execution delays are
assumed to be modeled by timing values back-annotated at a
granularity of §;(C; = 8; * n). To model preemptions, the OS
scheduler is called at the end of each 8, interval (or when a task
makes an explicit OS kernel call).

We can analyze the accuracy of host-compiled simulation by
evaluating the response time of each task and measuring the
percentage of error using the following equation:

| R;(model) — R;(ideal)|
err; = -
R;(ideal)

Fig. 2(a) shows the theoretical execution of three periodic
tasks in which the first job 73 ; of task 73 is preempted by the
higher-priority job 7y ; at times r; 1 and 71 2. While 7; is in
its first iteration 71 1, a medium priority task 75 is released (at
time 72,1) and gets executed once 77 ; finishes (at time fi 1).
Subsequently, 73 1 resumes its execution only after both higher
priority jobs finish (at time fs 7).

In Fig. 2(b), the host-compiled simulation of the same task set
is shown. In this model, execution delays of tasks are divided
into discrete intervals. Since the OS scheduler is only called at
the end of each advance in time, the start of 71 1 is delayed until
the end of the current time interval of 73 ;. Consequently, the
start of 75 1 is also shifted by an equal amount to the delayed
time f{’l at which 7y ; finishes. As a result, the next job of 7
now starts in the last time interval of 75 1, and 75 ; gets pre-
empted by 71 » as soon as its last time interval expires. There-
fore, 72,1 cannot finish executing its last block of code, complete
its job, and return control to the OS kernel until it is resumed at
time f{ , = f5, when 7, 5 finishes.! In other words, f5 ; is now
determined by f7 ,.

As shown in this example, we can consider three sources of
errors in response times. In a first scenario, the start time of
a job of a higher priority task 7; is delayed by a lower pri-
ority task 7; running at its release time. The largest delay is
achieved when the higher priority job is released simultaneously
with the start of a new time interval of the lower priority job.

INote that if the last code block is instead moved to before the last time ad-
vance, a job can conversely finish too early by an equal amount.
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As such, the maximum error can be bounded from above by
err; < 111aX;?':i+1(6j)/C’.i.

In a second scenario, the start time of a job of a lower priority
task 7; 7, which is released when a job of a higher priority task
i, 1s running, is determined by the finish time of the higher
priority job. Hence, if the start time of 7; j, is shifted due to sce-
nario one or two, the start time of 7; ; is shifted equally. As such,
the maximum error in this scenario is equal to the maximum
error derived for scenario one or two of all higher priority tasks:
err; < maxz’;ll (crr;) = max? (6,)/C;.

Finally, the third scenario happens when the start time of 7; ;
is delayed due to scenario one or two such that a job of a higher
priority task 7; » becomes active while 7;; is executing its last
time interval, as is the case for 75 ; in Fig. 2(b). In this scenario,
the finish time of 7;; is determined by the finish time of all
higher priority tasks released while any higher priority task is
running, i.e., until 7; ; can get resumed. As such, the amount of
error depends on the system load and, assuming a well-behaved
system, is only limited by the task’s next deadline err; < (T —
C5)/C;.

As demonstrated by this analysis, the error in simulated task
response times in scenarios one and two is a function of the
modeled timing granularity. However, the possibility of large er-
rors in the third scenario severely limits host-compiled HW/SW
cosimulators for evaluating real-time performance.

III. PREDICTIVE RTOS MODEL

In the following, we propose a novel predictive abstract
RTOS model for fast yet accurate host-compiled simulation
of periodic real-time task sets. In this model, all sources of
preemption errors are eliminated and the designer does not
need to be concerned with selecting a proper granularity for
task delays. The key idea is to optimally and automatically
adjust the timing granularity by predicting the next scheduling
point based on the states of application tasks at any given time.

A. RTOS Model Architecture

Fig. 3 shows the structure of the abstract RTOS model, which
replicates a typical OS architecture. The RTOS model consists
of four internal queues that maintain the state of tasks running
on the processor. A Ready queue holds tasks that are ready to
execute and is sorted based on a user-defined scheduling policy.
An Idle queue holds periodic tasks that have called the kernel’s
TaskEndCycle() method at the end of their iteration. The Idle
queue is ordered based on the release time of each task’s next
iteration. Idle tasks are retrieved from the head of the queue and
placed in the Ready queue by the OS kernel at the start time of
their next period. Tasks waiting for an event are suspended and
transferred to a Wait queue upon calling a PreWait() method.
The blocked task will be placed back in the Ready queue when a
PostWait() method is called to release it. Finally, a Sleep queue
holds tasks that have been suspended until they are resumed
again.

At the core of the OS model is the OS scheduler, which is
invoked by the OS API methods whenever a context switch is
possible or required. It blocks the currently running task and
dispatches the task at the top of the Ready queue to execute.
In addition, the OS kernel advances simulation time whenever
the currently running task calls a TimeWait() method. In con-
ventional OS models, the granularity of delays is defined by the
application code and the scheduler is called after advancing the
simulation time to allow for preemption of the current task by
any available higher priority task. As described in Section II,



RAZAGHI AND GERSTLAUER: PREDICTIVE OS MODELING FOR HOST-COMPILED SIMULATION OF PERIODIC REAL-TIME TASK SETS 7

Running Task

OS Kernel A TimeWait
Scheduler pashENECycle Tasksleep AdvanceSimTime
PreWait
READY IDLE WAIT SLEEP

ttt{ @end of period JPostWait

Fig. 3. Abstract RTOS model.
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Function PredictNextPreemptionTime (task runningTask):

1  for tasks in Idle Queue do

2 if idleTask::Priority > runningTask::Priority then

3 predictedTime := idleTask::nextPeriod - currentTime
4 return PredictedTime

5 endif

6  endfor

(@)

Function TimeWait (long long nsec, task runningTask):
1 remainedDelay := nsec
2 while remainedDelay > ¢ do
3 adjustedDelay := PredictNextPreemptionTime(runningTask)
4 if ( [Empty(Wait) ) then
5 adjustedDelay := defaultDelayGranularity
6 endif
7 if adjustedDelay > remainedDelay then
8 adjustedDelay := remainedDelay
9 endif
10 remainedDelay := remainedDelay - adjustedDelay
11 AdvanceSimTime(adjustedDelay)
12 Scheduler()
13 endwhile

(b)

Fig. 4. Timing granularity adjustment. (a) Preemption point prediction.
(b) Time delay.

this limits the possibility of accurately modeling preemptions.
By contrast, our predictive OS model automatically adjusts the
granularity of user-defined delays in order to call the scheduler
at actual preemption points.

B. Predictive Scheduler

The key idea behind removing the preemption error is to pre-
dict the next possible preemption point and invoke the scheduler
at the proper time. Fig. 4(a) shows the algorithm for predicting
the next preemption time in a system running a set of periodic
tasks. Since the Idle queue is sorted based on the tasks’ next re-
lease times, the preemption point is defined by the first task with
a priority higher than the currently running task.

Fig. 4(b) shows the pseudo code of the TimeWait() method
in the predictive OS model. It first computes the adjusted time
delay by calling the method to predict the next preemption point
(line 3). Since the exact preemption point is unknown when-
ever a task is waiting for an external event, the OS kernel, in
this case, falls back to a user-defined default timing granularity
(lines 4-6). After advancing the simulation time by the adjusted
delay (line 11), the OS scheduler is called to perform a con-
text switch and block the current task until it is scheduled again
(line 12). This loop continues until the user-defined delay is con-
sumed. As can be seen, the designer does not need to settle on
a granularity for back-annotated delays. The OS kernel itself
breaks delays into a number of smaller steps as needed, in order
to automatically provide the best timing granularity for fully ac-
curate results.

IV. EXPERIMENTAL RESULT

We simulated a set of randomly generated artificial peri-
odic tasks and compared the simulation performance of our
OS model to a conventional model under different timing
granularities. Accuracy is analyzed by comparing results to
the execution of tasks on a reference ISS [15] modeling a
singlecore MIPS Malta platform running a Linux 2.6 kernel
configured with preemption and high resolution timers.

The experimental setup consists of randomly generated peri-
odic tasks with uniformly distributed periods over [1, 100] ms
and task weights w; = C,/T; over [0.001,0.1] for small (S),
[0.1,0.4] for large (L), and [0.001,0.4] for medium (M) tasks.
The priority of tasks are assigned inversely to their periods
following a ratemonotonic scheduling scheme. The execution
delay of tasks is modeled by a delay loop of no-operation
(NOP) instructions. We ran each task set for 10 s of simulated
time. At a nominal rate of 100 MIPS simulated by the reference
ISS, this corresponds to 1000 million NOP instructions. Task
sets have been generated to cover various task weight ranges
under different total system utilizations U = >~ w;.

We analyzed the accuracy of our approach by comparing
the response times of periodic tasks in the reference ISS with
our host-compiled simulator. Delays were back-annotated into
host-compiled models directly from measurements taken when
running on the ISS. Model error was measured as the average
absolute difference in individual task response times over
all tasks and task iterations. Table I summarizes the task set
properties and compares the accuracy and performance of our
predictive RTOS (P-RTOS) model with that of a conventional
model at four different back-annotation granularities. We can
observe that the highest possible accuracy is achieved using
the P-RTOS model. This is equivalent to a conventional model
at 1 ps granularity, which loses a large amount of accuracy
at coarser granularities. Note that although we would expect
to see zero errors on the predictive model, our previous ex-
perience has shown [14] that remaining errors are caused by
OS contextswitch overheads and nonideal behavior of a real
Linux system not included in our RTOS model. In terms of
simulation performance, an average simulation speed of 67
GIPS is achieved on the P-RTOS model. This is 233 times
faster than the original OS model at a granularity of 1 s and
similar to the original model at 1 ms granularity.

In the conventional OS model, designers are responsible for
choosing the timing granularity to achieve acceptable accuracy
and performance. However, selecting the proper granularity is
not straightforward. For example, using the granularities of 1
ps and 10 ps, the same accuracy is provided while the former
simulates 10 times faster than the latter. In addition, the lack of
a reference platform for many applications makes it impossible
to find a reliable granularity. Fig. 5 plots the tradeoff between
average accuracy and simulation speed over all task sets. As can
be seen, decreasing the timing granularity results in higher accu-
racy but comes at a loss in simulation performance. By contrast,
our predictive model provides both fast and accurate results re-
gardless of the timing granularity.

In order to evaluate our approach under realistic conditions
with HW/SW interactions, we also simulated a task set com-
posed out of a subset of applications from the automotive cate-
gory of the MiBench suite [16]. Benchmarks were converted to
execute periodically and concurrently based on rate monotonic
scheduling policy, where task Susan(edge) was modified to in-
teract with an FPGA by streaming its outputs over the system
bus. The resulting task set was simulated for 500 s both on the
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TABLE 1
ARTIFICIAL PERIODIC TASK SET CHARACTERISTICS AND SIMULATION RESULTS
Task Set S1 S2 S3 S4 S5 M1 M2 M3 M4 L1 L2 L3
Number of Tasks 7 11 9 12 13 4 4 4 3 3 3 3
Avg. Task Weight 0.047 0.043 0.062 0.058 0.064 0.136 0.173 0.176 0.286 0.21 0.212 0.294
CPU Utilization 0.33 0.47 0.56 0.70 0.84 0.54 0.70 0.71 0.86 0.63 0.64 0.89
Avg. Err. (1us) 0.53% | 0.48% | 0.48% | 0.79% | 0.88% | 0.41% | 0.08% | 0.45% | 0.08% | 0.17% | 0.18% | 0.14%
Avg. Err. (10us) 0.54% | 0.53% | 0.49% | 0.82% | 0.89% | 0.42% | 0.08% | 0.44% | 0.08% | 0.18% | 0.18% | 0.13%
Avg. Err. (100us) 095% | 1.63% | 096% | 347% | 2.98% | 0.83% | 0.11% | 0.95% | 0.13% | 0.21% | 0.28% | 0.34%
Avg. Err. (1000us) 577% | 7.34% | 557% | 159% | 12.8% | 5.02% | 032% | 099% | 1.22% | 1.77% | 0.90% | 2.41%
Avg. Err. P-RTOS 0.53% | 048% | 0.48% | 0.79% | 0.88% | 0.41% | 0.08% | 0.45% | 0.08% | 0.17% | 0.18% | 0.14%
Speed [GIPS] (1us) 0.55 0.36 0.31 0.25 0.20 0.33 0.25 0.25 0.21 0.28 0.27 0.19
Speed [GIPS] (10us) 4.5 3.6 2.8 2.3 2.1 2.8 23 24 1.9 24 24 2.0
Speed [GIPS] (100us) 20 20 25 17 6 14 14 14 12 12 17 10
Speed [GIPS] (1000.s) 100 50 50 50 25 100 100 100 500 100 50 50
Speed [GIPS] P-RTOS 107 32 33 19 18 62 107 54 85 99 103 87
R suitable for rapid, early evaluation of the real-time perfor-
5% | mance of periodic task systems within a HW/SW cosimulation
= 19 | context. In this work, we focused on solutions for avoiding
g errors in the preemption model. We have started to integrate
& 3% 1 this approach into our full host-compiled processor model and
5" 5%, | system simulator, which support sporadic tasks and inter- and
intra-processor task communications [17]. In the future, we
1% plan to include models of cache, pipeline, and other dynamic
0% : effects that influence preemption costs, task execution times
0.01 01 i 10 and hence, accuracy of overall real-time scheduling behavior.
Simulation Time [sec.]
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