
Memory Latency Distribution-Driven Regulation1

for Temporal Isolation in MPSoCs2

Ahsan Saeed #

Robert Bosch GmbH, Germany
Denis Hoornaert #

Technical University of Munich, Germany
3

Dakshina Dasari #

Robert Bosch GmbH, Germany
Dirk Ziegenbein #

Robert Bosch GmbH, Germany
4

Daniel Mueller-Gritschneder #

Technical University of Munich, Germany
Ulf Schlichtmann #

Technical University of Munich, Germany
5

Andreas Gerstlauer #

The University of Texas at Austin, U.S.A.
Renato Mancuso #

Boston University, U.S.A.
6

7

Abstract8

Temporal isolation is one of the most significant challenges that must be addressed before Multi-9

Processor Systems-on-Chip (MPSoCs) can be widely adopted in mixed-criticality systems with10

both time-sensitive real-time (RT) applications and performance-oriented non-real-time (NRT)11

applications. Specifically, the main memory subsystem is one of the most prevalent causes of12

interference, performance degradation and loss of isolation. Existing memory bandwidth regulation13

mechanisms use static, dynamic, or predictive DRAM bandwidth management techniques to restore14

the execution time of an application under contention as close as possible to the execution time in15

isolation.16

In this paper, we propose a novel distribution-driven regulation whose goal is to achieve a17

timeliness objective formulated as a constraint on the probability of meeting a certain target18

execution time for the RT applications. Using existing interconnect-level Performance Monitoring19

Units (PMU), we can observe the Cumulative Distribution Function (CDF) of the per-request20

memory latency. Regulation is then triggered to enforce first-order stochastical dominance with21

respect to a desired reference. Consequently, it is possible to enforce that the overall observed22

execution time random variable is dominated by the reference execution time. The mechanism23

requires no prior information of the contending application and treats the DRAM subsystem as24

a black box. We provide a full-stack implementation of our mechanism on a Commercial Off-25

The-Shelf (COTS) platform (Xilinx Ultrascale+ MPSoC), evaluate it using real and synthetic26

benchmarks, experimentally validate that the timeliness objectives are met for the RT applications,27

and demonstrate that it is able to provide 2.2x more overall throughput for NRT applications28

compared to DRAM bandwidth management-based regulation approaches.29

2012 ACM Subject Classification Computer systems organization → Real-time systems30

Keywords and phrases temporal isolation, memory latency, real-time system, multi-core31

Digital Object Identifier 10.4230/LIPIcs.ECRTS.2023.432

Funding Ahsan Saeed: This work has received funding from the European Union’s Horizon 202033

research and innovation programme under grant agreement No 871669.34

Denis Hoornaert: Denis Hoornaert was supported by the Chair for Cyber-Physical Systems in35

Production Engineering at TUM and the Alexander von Humboldt Foundation.36

Renato Mancuso: The material presented in this paper is based upon work supported by the National37

Science Foundation (NSF) under grants number CCF-2008799 and CNS-2238476.38

1 Introduction39

An important trend across industrial, automotive and avionics domains is the adoption of40

MPSoCs. However, a key barrier in designing mixed-criticality systems is the presence of41

© Ahsan Saeed and Denis Hoornaert and Dakshina Dasari and Dirk Ziegenbein and Daniel
Mueller-Gritschneder and Ulf Schlichtmann and Andreas Gerstlauer and Renato Mancuso;
licensed under Creative Commons License CC-BY 4.0

35th Euromicro Conference on Real-Time Systems (ECRTS 2023).
Editor: Alessandro V. Papadopoulos; Article No. 4; pp. 4:1–4:23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:ahsan.saeed@de.bosch.com
https://orcid.org/0000-0002-1574-688X
mailto:denis.hoornaert@tum.de
https://orcid.org/0009-0009-7419-549X
mailto:dakshina.dasari@de.bosch.com
mailto:dirk.ziegenbein@de.bosch.com
mailto:daniel.mueller@tum.de
https://orcid.org/0000-0003-0903-631X
mailto:ulf.schlichtmann@tum.de
https://orcid.org/0000-0003-4431-7619
mailto:gerstl@ece.utexas.edu
https://orcid.org/0000-0002-6748-2054
mailto:rmancuso@bu.edu
https://orcid.org/0000-0003-3558-5216
https://doi.org/10.4230/LIPIcs.ECRTS.2023.4
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

4:2 Memory Latency Distribution-Driven Regulation for Temporal Isolation in MPSoCs

3000 3250 3500 3750 4000 4250 4500
Runtime (ms)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Pr
ob

ab
ilit

y

Controlled
Degradation

Isolation
Contention
Target

Figure 1 Execution time distributions in isolation (blue) and contention (red). The controlled
degradation target can be expressed by reasoning in terms of controlled distribution shift (green).

shared resources like the main memory, the cache and the interconnect, which makes it42

non-trivial to bound the execution time of RT applications running on these MPSoCs. This43

is because when two or more applications are executed in parallel on different cores, which44

we refer to as the contention scenario, the interaction between them on shared hardware45

resources can lead to unforeseen and unpredictable delays [8,34,36]. It is well known that46

memory contention is a key source for performance degradation [7], and practitioners across47

the industry and academia are looking for solutions that facilitate temporal isolation between48

applications while using COTS platforms.49

Existing hardware-oriented mechanisms for memory interference control require dedic-50

ated hardware [2, 11, 13] that is not feasible in COTS multi-core platforms. In contrast,51

software-oriented memory bandwidth management-based regulation mechanisms are prom-52

ising grassroots techniques to approach the problem of controlling memory interference by53

periodically monitoring the memory bandwidth originating from each core and stalling cores54

when the egress memory bandwidth exceeds a pre-defined threshold. This threshold can be (1)55

fixed and computed offline for a given combination of applications [5,41], (2) predicted on the56

fly [5, 41, 42] or (3) computed dynamically by instrumenting the current memory utilization57

at the memory controller [23]. A common denominator across the above approaches is that58

(1) the system parameters for regulation are based on experimental evaluation and not on59

a formal analysis (2) they focus on restoring the execution time of an application under60

contention as close as possible to the execution time in isolation.61

Ideally, however, the aggressiveness of regulation should directly depend on the target62

execution time. Indeed, if the RT applications have sufficient slack, less aggressive regulation63

is desirable as it enables better progress for the NRT applications. Consider the qualitative64

situation depicted in Figure 1. On the left (resp., right) side of the figure, we depict the65

distribution of execution time of an application executing in isolation, blue area (resp.,66

contention, red area). Controlled degradation (green area) is achieved if a bounded shift is67

allowed from the solo case and in the direction of the contention case. With this intuition, a68

timeliness objective can be non-ambiguously expressed as a (1) target execution time and (2)69

a condition on the mass of the execution time distribution that can cross said target.70

In this paper, we propose a distribution-driven regulation approach, whose goal is to71

achieve a timeliness objective formulated as a constraint on the probability of meeting a72

certain target execution time. This definition allows us to unite WCET-like constraints and73

high-percentile latency constraints typical of real-time cloud systems (tail latency). The74

Ahsan Saeed et al. 4:3

basic premise of our approach stems from the observation that the latency distribution75

of memory transactions of an application under contention gets skewed compared to the76

execution in isolation. Therefore, it is possible to precisely influence the overall application77

execution time so long as we can (1) characterize this distribution and (2) affect its shape78

via regulation. With this basic principle, we first theoretically compute the reference CDF79

from the distribution of the per-request memory latency for a given target execution time.80

Then, we enforce first-order stochastical dominance by periodically checking that the CDF81

of the observed memory latency distribution of the RT application (obtained by sampling at82

the PMU) stays above the reference CDF of the per-request memory latency. In case this83

condition is violated, the NRT cores are suspended till the condition of first-order stochastical84

dominance holds again. If the reference per-request memory latency first-order stochastically85

dominates the observed latency, then it follows that the overall execution time random86

variable is dominated by the reference execution time random variable. Consequently, the87

observed execution time achieves the timeliness objective.88

The proposed distribution-driven regulation truly considers the impact of memory conten-89

tion on the latency and execution time of an application, as opposed to memory bandwidth-90

based [5, 41, 42] or memory utilization-based approaches [23]. Furthermore, we can also91

control the level of degradation while guaranteeing timeliness by varying the reference CDF92

of the per-request memory latency.93

With this work, we make the following contributions:94

1. To the best of our knowledge, our work is the first that demonstrates the use of an95

interconnect-level PMU to capture the latency distribution of memory transactions and96

to leverage it for precise control over an application’s execution time under contention.97

2. We mathematically characterize the distribution of memory latency for an application98

and demonstrate its effect when the application is executed in isolation and contention.99

3. We provide a formal mathematical proof supporting how our proposed approach meets100

the imposed timeliness objective for the RT applications, ultimately enabling controlled101

degradation.102

4. Finally, we perform an evaluation on a COTS platform (Xilinx Ultrascale+ MPSoC)103

using an extensive set of realistic and synthetic benchmarks from the San Diego Vision104

Benchmarks [35], DAPHNE [30], and IsolBench [33] suites. We demonstrate its effect-105

iveness in (1) allowing controlled degradation, (2) providing probabilistic guarantees for106

RT application, and (3) reducing the execution time of NRT applications by up to 2.2x107

compared to DRAM bandwidth management-based regulation approaches.108

The rest of the paper is organized as follows: Section 2 provides the survey of related109

work. Section 3 describes the system model and the main assumptions of our approach.110

After presenting the main theory behind our approach and its mathematical formalization111

in Section 4, Section 5 describes the overall architecture and the main algorithm of our112

approach. Section 6 describes the implementation, and Section 7 discusses the experimental113

setup and presents the results. Finally, Section 8 concludes with a summary and outlook on114

future work.115

2 Related Work116

There has been a significant amount of work [18] to tackle the issue of memory interference.117

The first category includes techniques that essentially employ memory bandwidth management-118

based regulation. In this category of approaches, the effects of memory contention are119

statically regulated by controlling the outgoing memory bandwidth from each core as in120

ECRTS 2023

4:4 Memory Latency Distribution-Driven Regulation for Temporal Isolation in MPSoCs

MemGuard [5, 41, 42], or by directly measuring the utilization at the memory controller [23]121

and then based on the observed utilization, dynamically regulating the outgoing memory122

bandwidth from each of the cores. In these approaches, the designer has to experimentally123

derive the correct system parameters, and furthermore, there are no formal techniques to124

guarantee the impact of such a regulation on the execution time of the application.125

The second category includes profile-driven approaches like E-WarP [27,29] and the work126

in [1], where an application’s behavior is profiled to sufficiently characterize it. Then, together127

with insights into the underlying regulation mechanism—E-WarP uses Memguard under the128

hood—it is possible to accurately predict the worst-case execution time. In contrast, the129

proposed approach in this paper is not about predicting the WCET but rather about setting130

a target execution-time distribution and adjusting the regulation scheme accordingly.131

The third category of approaches falls broadly into the category of WCET estimation132

approaches [14,18,20]. These approaches perform WCET estimation by leveraging detailed133

models of the memory subsystem and do not assume any specific regulation approach. They134

only consider worst-case memory access latencies considering a certain arbitrary memory135

placement (bank arrangement) and the underlying workload.136

Next, there are the hardware-based regulation mechanisms, which include using a dedic-137

ated memory controller [2] or additional hardware like FPGAs [11,13], which is orthogonal138

to our approach. In addition, embedded high-performance platforms are increasingly offering139

QoS modules [25,31,45] on the interconnect between masters (CPUs, GPUs, DMAs) and main140

memory to regulate and prioritize memory requests. However, the existing QoS modules141

account for the traffic generated by the core cluster connected to the interconnect as a142

single master, which does not alleviate cross-core contention [21]. Secondly, a static QoS143

configuration may lead to inefficiencies in the utilization of the underlying DRAM subsystem144

for dynamic workloads.145

Other hardware-based techniques for COTS platforms, such as RDT [9,28] and MPAM [44],146

essentially enforce a desired memory bandwidth limit at the hardware-level. This reduces147

the regulation overhead and significantly improves the granularity of bandwidth regulation.148

The recently proposed MemPol [46] loosely belongs to this category because it leverages149

debug interfaces to halt/resume CPUs with the goal of enforcing a target bandwidth.150

Despite said benefits, the aforementioned shortcomings of memory bandwidth management-151

based regulation are still present. Nonetheless, a promising direction for future work entails152

combining the techniques proposed in this paper with hardware-based bandwidth enforcement.153

We approach the problem from a different perspective by not relying on the notion of154

DRAM bandwidth. Instead, we directly reason on the properties of the observed distribution155

of latencies for the memory transactions performed by the application under analysis.156

Our approach starts by considering design-time timeliness constraints and uses one such157

specification to construct a target cumulative distribution (CDF). The latter is then used158

to enact regulation. The proposed approach also makes no assumptions on the memory159

transactions generated by the contending applications.160

3 System Model and Assumptions161

We hereby review the key assumptions and the system model required for the results presented162

in Section 4 to hold. These assumptions are also experimentally validated in Section 7.2 and163

Section 7.3.164

A1: Multicore Platform Topology. We assume a system comprised of m application165

CPUs Π1, . . . , Πm. For simplicity, we assume that the high-criticality workload is only166

Ahsan Saeed et al. 4:5

deployed on CPU Π1, which can be considered the real-time core. The memory hierarchy167

comprises zero or more levels of cache. Cache misses caused by load or store instructions168

at the last-level cache (LLC) cause read/write memory requests to be initiated towards a169

single shared main memory subsystem via a single shared bus. Note that we distinguish170

between memory instructions (load/store) and the resulting traffic that they might cause171

in terms of read (and possibly write) requests to the underlying main memory subsystem.172

A2: Cache Model. We assume that (1) either all the cache levels are private per-core173

caches, or (2) if shared cache levels exist, they can be partitioned among the cores to prevent174

inter-core cache interference. All the cache levels adopt a write-back, write-allocate policy. By175

write-allocate, store instructions that cause a cache miss to trigger a read memory request176

downstream to fill the cacheline to be modified. A cacheline that has been modified is marked177

as dirty. By write-back, cache refills might trigger a write memory request downstream if the178

cache replacement policy has selected a dirty cacheline for eviction. We make no assumption179

about the specific cache replacement policy adopted by the cache controllers at the different180

levels. We make no assumption about the inclusiveness of adjacent cache levels.181

A3: In-order CPUs. We assume that the considered CPUs are unable to reorder instruc-182

tions. Thus, the latency incurred by pending load instructions is additive with respect to183

the time spent executing instructions that do not perform memory operations. The same is184

true for store instructions. This assumption is pessimistic yet safe if out-of-order CPUs are185

considered instead.186

Timing anomalies arising due to microarchitectural effects can violate this assumption.187

In this work, we followed a measurement-based evaluation approach. Therefore, timing188

anomalies are accounted for in the measured runtime. If these anomalies are to be estimated189

using static analysis, the work in [12] demonstrates that timing anomalies can be statically190

bounded and accounted for at design time without introducing an intractable amount of191

pessimism.192

A4: Blocking reads, non-blocking writes. As per A2, both load and store instructions193

cause an LLC cache miss to trigger a read request to the main memory. As per A3, the194

latency incurred by such read requests is additive with respect to the time spent by the rest195

of the instructions that do not generate main memory requests. Conversely, if a memory196

instruction triggers a write-back to the main memory, the resulting write memory transaction197

is carried out non-blockingly with respect to the instruction stream under analysis. Therefore,198

the latency of read requests in main memory is on the critical path from the standpoint of199

total execution time, while the latency of write requests is not. This is not to say that the200

contention generated by write requests is not considered, but rather that what matters is201

their impact on the latency of read transactions.202

Note that, in typical DRAM subsystems, batched write requests could be prioritized203

over reads, causing read requests to temporarily stall. However, by controlling the latency204

distribution of read requests, one can control how this reflects into the total execution time,205

essentially factoring in the overall impact of write requests.206

A5: Measurable Read Latency Distribution. We assume that the platform provides a207

performance monitoring unit (PMU) capable of collecting measurements on the latency of208

read memory requests. The PMU shall be located at the interface of the shared bus and209

main memory subsystem. The latency is measured as the difference between the timestamp210

at which a read request is forwarded to the main memory and the timestamp at which the211

response for the said request is returned (request turnaround time). We assume that, when212

queried, the PMU can return (an approximation of) the distribution of the observed latencies213

of read requests issued by a core Πk under analysis. We will discuss the ability to do so in214

ECRTS 2023

4:6 Memory Latency Distribution-Driven Regulation for Temporal Isolation in MPSoCs

Table 1 Summary of notation used

Symbols Descriptions Symbols Descriptions

Eisol Total execution time in isolation l̄σ2 Variance of read memory transactions reference
Ereg Total execution time under regulation Lisol Total latency of read memory trans. in isolation

Ē Total execution time target lmin Min read latency
C Non-memory compute time lmax Max read latency
L Total latency of read memory transactions li Latency of an individual read memory transaction i

lµ Mean latency of read memory transactions N Worst-case number of read requests
lσ2 Variance of read memory transactions α Acceptable tolerance for execution time to exceed Ē

l̄µ Mean latency of read memory trans. reference

commercial platforms in Section 6.215

A6: Computation and Read-latency Additivity. By A4 and A5, we can decompose216

the worst-case execution time E as a sum of two contributions E = C + L, where L is the217

total latency of read memory transactions. Let N denote the worst-case number of read218

requests and let us indicate the per-request latency as li, then L =
∑N

i=1 li. C denotes the219

time spent for anything other than waiting for read responses, and is a constant, regardless220

of whether the workload executes in isolation vs. contention. Conversely, li and thus L and221

E are random variables that are affected by the level of congestion of the main memory222

subsystem. In practice, we observe a small deviation (less than 1.8%) in the value of C223

when measured in isolation vs. under contention, as evaluated in detail in Section 7.3. One224

such deviation might arise from contention over Miss Status Holding Registers (MSHR) [33]225

or LLC tag/data banks [6]. For the sake of simplicity, C is assumed to be constant in our226

theoretical formulation. In practical instantiations of our framework, this value should be227

experimentally derived and a safe upper-bound on the compute-only time shall be used.228

A7: Profiled Critical Workload. We assume that the high-criticality workload deployed229

on Π1 can be profiled offline to derive the worst-case execution time Eisol and total read230

latency Lisol in isolation. This can be done using traditional measurement-based approaches231

and allows us to upper-bound the value of C = Eisol − Lisol, which is the time spent by the232

CPU to carry out any other operation except waiting for read requests to be fulfilled. As233

per A2, C is computed with statically partitioned shared caches (if any). As per A5, Lisol234

measurement is enabled by the PMU.235

A8: I.I.D. Read Transaction Latencies. We assume that li are independent samples236

from the same (unknown) distribution. Intuitively, the independence arises from the fact that237

between any two subsequent read transactions, a random amount of time can elapse, and a238

random amount of congestion can be caused by interfering CPUs. Thus, li’s are independent239

and identically-distributed (i.i.d.) random variables.240

4 Distribution-Driven Regulation241

In this section, we introduce the theoretical results that represent the foundation of the242

proposed distribution-driven regulation. We introduce the notations in Table 1.243

Regulation Goal. Unlike the related literature surveyed in Section 2, our goal is to achieve244

a timeliness objective formulated as a constraint on the probability of meeting a certain245

execution time target Ē. Formally, given an execution time target Ē and an acceptable error246

α ∈ [0, 1], the goal of regulation can we written as247

P (Ereg ≤ Ē) ≥ 1 − α, (1)248

where Ereg is the actual execution time observed under regulation and (possibly) in the249

Ahsan Saeed et al. 4:7

presence of main memory contention for the application under analysis. When α is such that250

α → 0, then Ē represents a worst-case execution time (WCET) constraint. Note however251

that the timeliness constraint formulation in Eq. 1 is more generic. For instance, setting252

α = 0.01 expresses a 99th-percentile tail latency requirement on Ereg.253

Goal-driven Regulation Strategy. We hereby describe how the regulation strategy can254

be built from the goal formulated in Eq. 1 given a value of Ē and α. Following the notation255

and assumptions in A6 (Section 3), we can rewrite Eq. 1 as follows:256

P (C + L ≤ Ē) = P

(
N∑

i=1
li ≤ Ē − C

)
≥ 1 − α. (2)257

The key insight into our approach is that, by controlling the distribution of per-request258

latency li via regulation, we can directly control the distribution of the total memory latency259

L and thus impact the distribution of Ereg to satisfy Eq. 1.260

As we previously mentioned, li’s are independent and identically-distributed random261

variables (as per A8) following an unknown distribution. Call lµ and lσ2 , respectively, the262

(unknown) mean and variance of the li random variables. From the Central Limit Theorem263

(CLT) [10], it holds that the random variable Z constructed as264

Z =
∑N

i=1 li − Nlµ√
Nlσ2

= L − Nlµ√
Nlσ2

∼ N (0, 1), (3)265

follows a standard normal distribution, i.e. a normal distribution with mean µ = 0 and266

variance σ2 = 1. The latter property is captured by the notation Z ∼ N (0, 1). Note that267

Eq. 3 only holds for large values of N . Since our goal is to analyze and regulate memory-268

intensive applications, this condition holds. In fact, our experiments described in Section 7269

highlight that for the considered applications, the order of magnitude of N is somewhere270

between 106 and 107.271

From Eq. 3 we can derive that L ∼ N (Nlµ, Nlσ2). Let us indicate with Φ(x) the272

Cumulative Distribution Function (CDF) of the standard normal distribution. We can then273

rewrite Eq. 2 as follows:274

P (L ≤ Ē − C) = Φ
(

(Ē − C) − Nlµ√
Nlσ2

)
≥ 1 − α. (4)275

So far, we have treated lµ and lσ2 as unknown values. The insight at this point is that,276

when regulation is performed (by pausing/resuming the activity of interfering cores), we can277

exert direct control over the underlying distribution of L =
∑N

i=1 li and thus over the value278

of Nlµ and Nlσ2 . In fact, our goal is not to enforce a specific value of lµ and lσ2 . Instead, it279

is enough to identify two values l̄µ and l̄σ2 such that the following inequality holds for every280

value of Ē ∈ R+:281

Φ
(

(Ē − C) − Nlµ√
Nlσ2

)
≥ Φ

(
(Ē − C) − Nl̄µ√

Nl̄σ2

)
≥ 1 − α. (5)282

Regulation Condition. Recall from A5 in Section 3 that we are able to periodically283

snapshot the distribution of read latencies. By enacting start/stop control over the interfering284

cores, we can impact such distribution. We are now ready to derive the condition according285

to which, given a snapshot, we should pause or resume the activity of the interfering cores.286

More specifically, we can observe the CDF of the random variable li while the application287

under analysis is running. Call this observed CDF function Fl(t) = P (li ≤ t). If regulation288

ECRTS 2023

4:8 Memory Latency Distribution-Driven Regulation for Temporal Isolation in MPSoCs

is applied such that289

∀t ∈ R+, Fl(t) ≥ Φ
(

(Ē − C) − l̄µ√
l̄σ2

)
= F̄l(t), (6)290

then we have two properties. The first, is that F̄l(t) is the CDF of a random variable291

lnorm
i ∼ N (l̄µ, l̄σ2). The second is that lnorm

i is said to first-order stochastically dominate292

li [26]. Indeed, Eq. 6 is one possible definition of first-order stochastic dominance, also293

indicated with the notation lnorm
i ≥1 li.294

It is a known result [26, Theorem 1.A.3] [19, Lemma 6] that stochastical dominance295

between random variables implies stochastical dominance in the aggregate. Formally, given296

two random variables X and Y and a positive integer k, if Y is k-th order stochastically297

dominated by X (i.e., X ≥k Y), then ∀n ∈ N+ and i.i.d. replicas X1, . . . , Xn of X and298

Y1, . . . , Yn of Y it holds that299

n∑
i=1

Xi ≥k

n∑
i=1

Yi =⇒
n∑

i=1
Xi ≥1

n∑
i=1

Yi. (7)300

Next, we note that from Eq. 7 and 6 it immediately follows that
∑N

i=1 lnorm
i ≥1

∑N
i=1 li.301

Moreover, by leveraging the properties of the normal distribution [17], we know that302 ∑N
i=1 lnorm

i ∼ N (Nl̄µ, N l̄σ2). This brings us to the final step. That is, the random variable303

L under regulation is first-order stochastically dominated by a normal distribution of mean304

Nl̄µ and variance Nl̄σ2 . This means that, as long as Eq. 6 is ensured via regulation, Eq. 5305

holds.306

Final Formulation. Putting everything together, we have the following workflow. First,307

given the target Ē and α, numerically compute l̄µ and l̄σ2 such that308

Φ
(

(Ē − C) − Nl̄µ√
Nl̄σ2

)
≥ 1 − α (8)309

holds. Second, use the same values of l̄µ and l̄σ2 to construct the target per-request310

latency CDF F̄l as described in Eq. 6. Next, at runtime, observe the CDF of li, namely311

Fl, and pause/resume (regulate) the activity of the non-real-time CPUs to ensure that312

∀t ∈ R+, Fl(t) ≥ F̄l(t). So long as this inequality holds, it also holds that P (C + L ≤ Ē) =313

P (L ≤ Ē − C) ≥ 1 − α because Eq. 5 holds.314

4.1 Discrete-domain Formulation315

The results derived so far in Section 4 assume that we are able to snapshot online a continuous316

distribution of read latency accesses. This is practically impossible with realistic hardware.317

In this subsection, we relax precisely this requirement.318

Let lmin and lmax be the minimum and maximum possible read latency. Consider a319

realistic PMU that defines K latency observation bins with configurable size b. If a transaction320

i was counted in the first bin, then its latency li was somewhere in the range [lmin, lmin + b);321

more in general, if it was counted in the kth bin with k ∈ {0, . . . , K − 1}, then its latency322

was somewhere in the range [lmin + kb, lmin + (k + 1)b).323

When queried, the PMU reports the number of read transactions completed by Π1 whose324

latency fell in each of the K bins. Assume that this number is cumulative since the time at325

which the application was launched—if it is reset after a snapshot, e.g. to prevent overflows326

in the counters, then it can be accumulated in software at each snapshot. In software, divide327

Ahsan Saeed et al. 4:9

Pr
ob

ab
ili

ty

Clock Cycles
min min

+b
min
+2b

0 maxmax
-b

max
-2bmin

+kb

.....

P (Lmin + kb < Li ≤ Lmin + (k + 1)b)

min+
(k+1)b

Figure 2 Visual representation of the read-
latency PMF.

C
um

ul
at

iv
e

Pr
ob

ab
ili

ty

Clock Cycles

lmin0

F l(lmin + (k + 1)b)

1

Compliant Fl(k)

Non-compliant Fl(k)

lmin

+kb
lmin

+(k + 1)b
lmax

Figure 3 Discretized, compliant and non-
compliant latency CDF.

OS or Hypervisor

DRAM

Memory Controller

CORECORE
NRT

CORE
NRT

CORECORE
NRT

CORE
NRT

CORECORE
NRT

CORE
NRT

CORECORE
RT

CORE
RT

Memory Latency Distribution-Driven Regulator

Interconnect Bus

Performance Monitoring Unit (PMU)

Figure 4 Overview of our system architecture consisting of MPSoC.

the number of transactions in each bin (i.e. the height of the bin) by the total number of328

transactions in the entire snapshot. The result is a valid observed Probability Mass Function329

(PMF) fl(k) for the read request latency li for the generic request i. Figure 2 provides a330

visual representation of the PMF. In other words, the height of each bin provides the value of331

fl(k) = P (lmin + kb ≤ li < lmin + (k + 1)b). From the acquired PMF, it is easy to compute332

the corresponding observed CDF as333

Fl(k) =
k∑

j=0
fl(j) = P (li < lmin + (k + 1)b). (9)334

Recall that (Eq. 6) we can construct a normal distribution F̄l(t) of reference with335

appropriate values of l̄µ and l̄σ2 such that Eq. 8 is satisfied. At runtime, whenever a new336

read latency distribution snapshot is acquired, it is enough to check the following condition:337

∀k ∈ {0, . . . , K − 1}, Fl(k) ≥ F̄l(lmin + (k + 1)b). (10)338

This condition is visually depicted in Figure 3. Indeed, if the condition expressed in Eq. 10339

holds, then our reference lnorm
i ∼ N (l̄µ, l̄σ2) first-order stochastically dominates li. This is340

the case for the blue curve in Figure 3. Conversely, if for some k Eq. 10 does not hold, the341

ECRTS 2023

4:10 Memory Latency Distribution-Driven Regulation for Temporal Isolation in MPSoCs

Algorithm 1 Memory Latency Distribution-Driven Regulator

input : number of latency bins K, reference CDF F̄k ∀ k ∈ {0 . . . K − 1}
1 foreach regulation interval r do
2 foreach latency bin k ∈ {0 . . . K − 1} do
3 Sample the height of latency bin lk,r

4 γk,r = γk,r−1 + lk,r

5 end
6 foreach latency bin k ∈ {0 . . . K − 1} do
7 fk,r = γk,r∑K−1

k=0
γk,r

▷ Normalize bins to obtain PMF

8 Fk,r =
∑k

m=0 fm,r ▷ Construct observed CDF
9 end

10 if F0,r < F̄0 ∨ · · · ∨ FK−1,r < F̄K−1 then
11 suspend all NRT cores
12 else
13 resume all NRT cores
14 end
15 r = r + 1
16 end

non-real-time CPUs must be paused—regulation must be triggered. This is the case for the342

orange line in Figure 3. The implicit assumption, which we validate in Section 7.3, is that343

pausing the interfering CPUs allows to shift the observed Fl(k) in subsequent snapshots.344

Finally, note that numerically computing the value of F̄l(t) online can lead to excessive345

overhead in the regulator. Instead, the K values of F̄l(k) necessary to check the validity of346

Eq. 10 can be pre-computed offline and stored in a lookup table for efficient online retrieval.347

These values are depicted as red dots in Figure 3.348

5 System Overview349

An overview of our system architecture is depicted in Figure 4. We consider an MPSoC in350

which a core designated as RT core is dedicated to host time-sensitive RT applications, while351

the others are designated as NRT cores that host performance-oriented NRT applications.352

The purpose of the memory latency distribution-driven regulator introduced in Section 4353

is to achieve the timeliness objective (Equation (1)) on the execution time of applications354

running on the RT core. The regulator is activated periodically on each NRT core using a355

timer interrupt. The timer interrupt triggers the sampling of memory latency distribution356

using the Performance Monitoring Unit (PMU) (shown in blue in Figure 4) for the memory357

transactions originating from RT core. This memory latency distribution is normalized to358

obtain the probability mass function (PMF), as described in Section 4.1 and then is used359

to derive the cumulative distribution function (CDF). From the CDF, we enforce the rule360

of first-order stochastic dominance (Equation (6)), which states that if any bin violates the361

reference CDF for the target distribution of execution time, the regulation is triggered, and362

all the NRT cores are suspended, as highlighted with red lines in Figure 4.363

In principle, the regulator could reside either in software, such as the Operating System364

(OS) or hypervisor, or in hardware, such as a Field Programmable Gate Array (FPGA). For365

analysis and evaluation of the mechanism, the regulator optionally stores the PMF and key366

characteristics in the DRAM memory.367

The proposed mechanism can be implemented on any platform on which we are able to368

Ahsan Saeed et al. 4:11

measure (1) memory latency distribution and (2) filter the memory transaction on a per core369

basis.370

5.1 Memory Latency Distribution-Driven Regulator Algorithm371

Algorithm 1 sketches our proposed distribution-driven regulation. Let the total number of372

bins in the memory latency distribution be denoted by K. Furthermore, we denote by F̄k373

the reference CDF assigned to each bin.374

At the beginning of each regulation interval r > 1, the regulator first samples the number375

of transactions (since the last interval) with latency that falls in bin lk,r. This is repeated376

for each bin (Line 3). The samples are accumulated into the variable γk,r (Line 4). We then377

apply height normalization to derive the PMF fk (Line 7). The PMF is converted into a378

CDF Fk by summing up the probabilities associated with the variable up to each bin (Line379

8). This CDF Fk is then compared against the reference CDF F̄k for each bin (Line 10). If380

the condition in Eq. 10 does not hold, all the NRT cores are suspended (Line 11). They will381

be resumed only when Eq. 10 holds again (Line 15).382

The theoretical formulation provided in Section 4 assumes that the PMF (or CDF) of the383

per-request latency can be observed infinitely fast. Clearly, this is not possible in realistic384

hardware, hence a non-zero regulation interval Tr must be picked. Because of that, what385

could happen is that during Tr, the distribution of memory latencies shifts so drastically that386

it cannot be recovered. Although this can happen, its effect can be easily bounded. In the387

worst-case, right after a snapshot that satisfied Eq. 10 (otherwise, the NRT cores would be388

stopped) with exact equalities between left- and right-hand sides, a back-to-back sequence of389

memory transactions with latency lmax occurs. These can be at most ⌈Tr/lmax⌉ because Π1390

is an in-order CPU (A3 in Section 3). Thus, the extra time cost H = (lmax − lmin)⌈Tr/lmax⌉391

can be accounted for by computing a new, more restrictive Ē′ = Ē − H. Interestingly,392

since we can observe the typical latency distribution under unrestricted contention, it is also393

possible to compute the probability that such a case can occur.394

6 Implementation395

We have performed a full-system implementation that includes a partitioning hypervisor396

augmented to support the proposed memory latency distribution-driven regulator. The397

implementation is carried out on the Xilinx Ultrascale+ Multi-Processor System-on-Chip398

(MPSoC) ZCU102 [40]. The SoC features 4 ARM Cortex A53 [4] cores clocked at 1.2 GHz.399

Each core has its own private L1 data and instruction cache, whereas the 4 cores share a400

unified L2 cache. The SoC also features a tightly-coupled FPGA, which is not needed to401

implement the proposed approach. We only use the FPGA for the validation experiments on402

the nature of DRAM read transaction latencies conducted in Section 7.2.403

We use the Jailhouse-RT partitioning hypervisor [15, 27] to partition resources in our404

system, which is an ideal choice for this type of implementation because it is lightweight,405

easy to port/modify, includes support for cache coloring [16,43] and bandwidth regulation,406

and is open-source.407

6.1 AXI Performance Monitor (APM)408

We sample the memory latency in the Xilinx Ultrascale+ MPSoC [40] using the AXI409

Performance Monitor (APM) hardware module. The APM measures the key performance410

metrics like the amount of read/write memory transactions, min/max/total latency, and411

ECRTS 2023

4:12 Memory Latency Distribution-Driven Regulation for Temporal Isolation in MPSoCs

other performance metrics for the AMBA AXI [3] in a system. The APMs implemented on412

Xilinx Ultrascale+ MPSoC [40] are based on the Xilinx AXI Performance Monitor available413

as a LogiCORE IP [37].414

The APM has 10 hardware counters that can be configured to simultaneously monitor415

up to 10 performance metrics for any interface points called slots on the AXI interconnect.416

There is also a global-clock counter in addition to these 10 hardware counters that run at417

the APM clock frequency of 533.5 MHz.418

The APM can be configured to monitor the performance metrics for a particular slot419

using the Metric Selector register. Furthermore, the APM contains a Range Incrementer420

module that compares the performance metric count with the low and high ranges from the421

Range register and increments the count of the given performance metric by one if the value422

falls within the limits. The Range Incrementer is useful in obtaining the read/write latency423

ranges that we leverage in this work to sample the memory latency distribution.424

We configured 8 Metric Selector registers in conjunction with 8 Range registers to monitor425

read memory latency (as defined in Section 3 A6: Measurable Read Latency Distribution) with426

respectively low and high ranges of 0-40, 41-80, 81-120, 121-160, 161-200, 201-240, 241-280,427

and 281-2000 clock cycles. The rationale behind the selection of these ranges is discussed in428

Section 7.4. These 8 performance metrics provide the number of read memory transactions429

that fall within the given read memory latency limits, referred to as bins. Furthermore,430

2 Metric Selector registers are configured to report the total number of read transactions431

and total read latency. The total number of read transactions is N , as used throughout432

the mathematical formalization in Section 3. Additionally, we verify that the total number433

of read transactions and the sum of all bins are always the same. This ensures that no434

memory transaction escapes the bins. The global-clock counter is used as the reference for435

all the calculations in this paper. The included hardware counters can be set and read via a436

memory-mapped interface.437

The APM slot is configured to monitor the AXI communication between the cores and the438

memory controller. In addition, we employ the AXI ID filtering to monitor the transactions439

emanating from a core with a certain AXI ID. The AXI IDs for the cores are evaluated440

experimentally. Once the AXI IDs for each core have been determined, we utilize the Filter441

and Mask registers to set up AXI ID filtering.442

Currently, the APMs are adopted in Xilinx Ultrascale boards. However, since these APM443

IPs are part of the AXI bus, they are deployable on other SoCs. They can also be deployed444

in programmable logic (FPGA) to gather statistics on the traffic observed over AXI bus445

segments generated, for instance, by in-FPGA accelerators.446

7 Validation and Evaluation447

In this section, we first experimentally validate the key assumptions presented in Section 3.448

Then we discuss the key design parameters of our system. Finally, we present a full system449

evaluation where we validate the effectiveness of our approach to ensure the timeliness of450

different sets of applications.451

7.1 Experimental Setup452

We evaluate our approach on the Xilinx Ultrascale+ Multi-Processor System-on-Chip453

(MPSoC) ZCU102 [40] as introduced in Section 6. A combination of real-world [35], [30], and454

synthetic [33] benchmarks are used to evaluate the proposed approach. For our real-world455

benchmarks, we use a subset of the benchmarks in the San Diego Vision Benchmark Suite456

Ahsan Saeed et al. 4:13

Table 2 Summary of permutation testing results for Synthetic (table upper half) and Real-world
(table lower half) memory traffic. Test pass noted with ✓and fail with ×.

Test no. 1 2 3 4 5 6 7 8 9 10 Pass (%)

Synthetic Benchmarks: AXI Traffic Generator

Rand. Pattern + Rand. ITG ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 100
Rand. Pattern + Fix ITG ✓ ✓ ✓ × ✓ ✓ × ✓ ✓ × 70
Seq. Pattern + Rand. ITG ✓ ✓ × × ✓ ✓ ✓ ✓ ✓ ✓ 80
Seq. Pattern + Fix ITG ✓ ✓ × × ✓ ✓ × ✓ ✓ × 60

Real-world Benchmarks: SD-VBS

Best-case ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 100
Worst-case ✓ × ✓ × ✓ ✓ × ✓ × × 50
Mode-case ✓ ✓ ✓ × ✓ ✓ ✓ ✓ ✓ ✓ 90

(SD-VBS) [35]. The input dataset for the benchmark applications comes in 9 different sizes.457

Since we are interested in DRAM-bounded applications, we use the ones with the largest458

input data size (named FullHD). The other benchmark suite is the Darmstadt Automotive459

Parallel Heterogeneous Benchmark Suite (DAPHNE) [30], which represents parallelizable460

workloads from the automotive domain. For our evaluation, we used the applications that run461

exclusively on the CPU. We also use a synthetic ’Bandwidth’ benchmark from the IsolBench462

suite [33] that is engineered to continuously perform memory write operations. In the rest of463

the paper, we refer to this benchmark as the MemBomb application.464

Unless otherwise stated, all experiments refer to the isolation scenario or simply isolation465

in which the disparity application is running on the designated RT core with no other466

applications running in parallel. In contrast, a contention scenario or simply contention467

happens when the same disparity application is running on the designated RT core while468

synthetic MemBomb applications are running on the three NRT cores. The disparity469

application is selected as it has the lowest average IPC and the highest average memory470

utilization [23] in the benchmark suite, making it an ideal candidate for demonstrating471

memory interference-related effects.472

For consistency, we always activate the hypervisor. The regulator is activated on each473

NRT core to facilitate comparison with a memory bandwidth management-based regulation474

(MemGuard [5]). However, the current implementation can be extended to sample the PMU475

values from only one NRT core responsible for suspending the other NRT cores. All the476

obtained results are calculated on 100 runs for each configuration to remain statistically477

significant.478

7.2 Validation of I.I.D. Assumption A8479

In order to validate hypothesis A8 in Section 3, i.e., that the latencies of read memory480

transactions emitted by the cores are i.i.d., we perform 10 different statistical tests called481

Permutation Tests [32]. These tests are designed to find evidence that empirical samples are482

i.i.d.. The rationale is that if i.i.d. holds in all cases, the regulation system is guaranteed to483

be operated correctly. Conversely, if the i.i.d. property is validated only in some cases, a484

full-system implementation and evaluation are necessary to assess the correct end-to-end485

behavior of a system that employs the proposed distribution-driven regulation.486

Performing permutation testing requires measuring the memory latency of individual487

ECRTS 2023

4:14 Memory Latency Distribution-Driven Regulation for Temporal Isolation in MPSoCs

disparity tracking mser ndt_mapping
Benchmark Applications

0

5,000,000

10,000,000

15,000,000
LL

C
M

iss
es

 (c
ou

nt
)

Isolation
Contention

(a) Similar LLC misses for applications on RT
core in isolation and contention.

disparity tracking mser ndt_mapping
Benchmark Applications

0

1,000

2,000

3,000

4,000

Co
m

pu
te

 T
im

e
(m

s)

Isolation
Contention

(b) Similar Compute Time for applications on
RT core in isolation and contention.

Figure 5 Experimental results to validate the key assumptions, as stated in detail in Section 3,
hold for our system.

memory transactions at the finest granularity. The aforementioned APMs can only measure488

aggregated latency values and are thus not suitable for the purpose. Instead, and only for489

these experiments, we leverage the tightly-coupled FPGA of the evaluation platform.490

The experiment is divided into four successive steps: (1) generate memory traffic, (2)491

capture the activity at the AXI level, (3) measure and compile each transaction’s response492

time, and (4) perform a set of permutation tests.493

To evaluate the memory latency of both synthetic and real-world benchmarks, we494

implement two distinct FPGA designs. The first FPGA design is composed of an AXI495

Traffic Generator (ATG) [38], which generates heavy synthetic memory traffic toward the496

memory controller. We configure the ATG to generate four types of access patterns that497

combine random and sequential accesses with random and fixed inter-transaction gaps (ITG).498

The traffic activity created by the ATG is captured and stored for post-processing by an499

Integrated Logic Analyzer [39] (ILA), which is also instantiated in the FPGA.500

The second FPGA design is implemented to evaluate the real-world memory traffic by501

observing the activity originating from the main CPUs running SD-VBS benchmarks in502

isolation. The design is a simplified version of the approach introduced in [22] and consists503

of only a loopback IP linking the core cluster with the memory controller through the504

FPGA (i.e., no transformations are performed on the transactions’ address). Similarly, the505

Jailhouse-RT hypervisor [15] is instrumented to target the FPGA memory range instead of506

the memory controller, making the hypervisor and benchmark memory traffic observable507

via an ILA. We run different SD-VBS benchmarks with different inputs in a sequence and508

randomly acquire fragments of memory traces. Thus, while we know that the captured509

activity belongs to some SD-VBS benchmark, we cannot determine which trace corresponds510

to which specific benchmark.511

Table 2 shows the results of the first 10 permutation tests performed on the two FPGA512

designs, on the top and bottom, respectively. For synthetic benchmarks, the number of513

passed tests increases as randomness in the pattern, and ITG is introduced. Therefore, for514

ATG with random memory access pattern and random ITG has the highest tests pass of515

100%, whereas sequential memory access pattern with fixed ITG has the lowest test pass of516

60%. Hence, the percentage of tests pass increases as access pattern and ITG randomness517

grow.518

For real-world benchmarks, 30 snapshots of memory traffic are captured. Since applications519

Ahsan Saeed et al. 4:15

0 40 80 120 160 200 240 280 2000
Memory Latency (Clock Cycles)

0.0

0.2

0.4

0.6

0.8

1.0
Pr

ob
ab

ilit
y

Isolation

(a) Isolation

0 40 80 120 160 200 240 280 2000
Memory Latency (Clock Cycles)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y

Contention

(b) Contention

Figure 6 Impact of memory interference on the shape of nor-
malized memory latency distribution for disparity on RT core.

0 75 150 225 300 375 450 525 2000
Memory Latency (Clock Cycles)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y

Contention

Figure 7 Impact of bin size
on the shape of memory latency
distribution.

have different phases, the ILA buffer is small, and memory transactions are captured520

asynchronously, we observed variation in the results of permutation tests. In the best-case521

scenario, all tests are passed, although pass percentages as low as 50% have been seen on522

rare occasions. The mode (value that appears most often) indicates a 90% pass.523

In summary, the permutation testing indicates that not all tests are passed under all524

scenarios, albeit an indication that A8 holds in most of the cases has emerged. Nonetheless,525

we conduct a full-stack implementation to verify that the timeliness objective (Equation (1))526

we impose is, in fact, met with real-world applications.527

7.3 Validation of Other Key System Assumptions528

In this subsection, we experimentally validate that the key assumptions, as stated in detail529

in Section 3, hold for our system.530

Validation of A2: Cache Model: First, we show that the total numbers of LLC misses531

for an application executed in isolation and contention scenarios are comparable. Figure 5a532

illustrates the average total number of LLC misses that occur during 100 runs for disparity,533

tracking, mser and ndt_mapping in isolation and contention, respectively. It can be observed534

that the total number of LLC misses is comparable in both scenarios, with an average535

difference of less than 1% in their counts. This demonstrates that there is no inter-core cache536

interference, which is consistent with assumption A2.537

Validation of A6: Computation and Read-latency Additivity and A7: Profiled538

Critical Workload: Next, we show that the compute time C of an application remains the539

same in isolation and contention. We measure the worst-case execution time E and the total540

latency of read memory transactions L and determine the compute time C by: C = E − L541

In Figure 5b, it is shown that the compute time of the application under consideration542

(disparity, tracking, mser and ndt_mapping) is similar in both the scenarios, with an average543

difference of less than 1.8%. Thus, assumptions A6 and A7 hold.544

Validation of A5: Measurable Read Latency Distribution: Finally, we demonstrate545

the capability of measuring (an approximation of) the latency distribution of read memory546

transactions in a COTS platform—without redirecting memory transactions through the547

FPGA—as stated in A5.548

Figure 6 shows the normalized read memory latency distribution obtained from the549

APM present in the evaluation platform (Xilinx Ultrascale+ MPSoC [40]) in isolation and550

contention. According to Figure 6a, the majority of individual memory read transactions for551

disparity have a latency of less than 80 clock cycles in isolation.552

When multiple contending MemBomb applications are running in parallel, the disparity553

ECRTS 2023

4:16 Memory Latency Distribution-Driven Regulation for Temporal Isolation in MPSoCs

benchmark experiences a significant increase in memory latency, resulting in a shift of the554

memory latency distribution to the right (higher memory latency bins), as seen in Figure 6b.555

Under contention, the majority of individual memory read transactions have latency in the556

range of 41 to 160 clock cycles.557

7.4 Configuration Parameters558

Configuring the proper system parameters is one of the primary challenges system designers559

face when implementing any regulating mechanism. In this subsection, we explain the key560

design parameters of our approach and the rationale behind their selection.561

7.4.1 Regulation Interval562

The choice of the regulation interval Tr is a trade-off between regulation granularity and563

overhead due to the generation of more frequent timer interrupts. The smaller regulation564

granularity is beneficial for finer grain control over the enforcement of our regulator. A565

regulation interval Tr = 1 ms has shown to yield good results and is set throughout the566

evaluation setup.567

7.4.2 Total Bins568

The number of bins defines the quantization that can be used to approximate the memory569

latency distribution. The PMU present in our evaluation platform offers 10 hardware counters570

as described in Section 6.1, which can be accordingly used to set 10 latency bins. However,571

we only dedicate 8 hardware counters for measuring memory latency distribution, resulting572

in 8 bins. The other two hardware counters are reserved for the purposes of (1) measuring573

the total number of read transactions as well as (2) the total read latency. This is done to574

validate the key system assumptions that are specified in Section 3.575

7.4.3 Bin Size576

The bin size of the memory latency distribution needs to be chosen in such a way that all577

possible individual read memory latencies can be covered while ensuring that distribution578

shifts can be effectively captured. Simultaneously, one must ensure that the bins are equally579

spaced and without discontinuities to provide a well-formed distribution snapshot when580

sampled. To determine the appropriate bin size, the APM is initially configured to measure581

the minimum and maximum memory latency values during a set of application runs. We582

observed a minimum read latency of 38 clock cycles and a maximum of approximately583

600 clock cycles. Based on these values, we fix 40 clock cycles as the bin size. We also584

experimented with a larger bin size of 75 clock cycles with the same setup as shown in585

Figure 6b, which resulted in nearly empty bins with memory latency values greater than 375586

clock cycles, as seen in Figure 7. We set the upper limit of the last bin to 2000 clock cycles in587

order to capture all conceivable memory latencies that a memory transaction may encounter.588

7.5 Effectiveness of the Approach589

The objective of this experiment is to show that, given Ē and α, Eq. 1 holds. Figure 8590

summarizes the execution time distribution of applications during 100 runs and compares the591

target execution time Ē against the actual execution time Ereg. As a point of reference, the592

execution time distribution in isolation (blue) and contention (orange) are also provided. The593

Ahsan Saeed et al. 4:17

3400 3600 3800 4000 4200 4400 4600
Execution time (ms)

0.0

0.1

0.2

0.3

0.4

0.5
Pr

ob
ab

ilit
y

EEreg EEreg

Isolation
Contention
1st Target (expected)
1st Target (actual)
2nd Target (expected)
2nd Target (actual)

(a) disparity on RT core and MemBomb on NRT
cores.

4300 4400 4500 4600 4700 4800 4900
Execution time (ms)

0.0

0.1

0.2

0.3

0.4

0.5

Pr
ob

ab
ilit

y

EEreg

Isolation
Contention
1st Target (expected)
1st Target (actual)

(b) tracking on RT core and MemBomb on NRT
cores.

3800 4000 4200 4400 4600 4800
Execution time (ms)

0.0

0.1

0.2

0.3

0.4

0.5

Pr
ob

ab
ilit

y

EEreg

Isolation
Contention
1st Target (expected)
1st Target (actual)

(c) mser on RT core and MemBomb on NRT cores.

4100 4200 4300 4400 4500 4600 4700 4800 4900
Execution time (ms)

0.0

0.1

0.2

0.3

0.4

0.5

Pr
ob

ab
ilit

y
EEreg

Isolation
Contention
1st Target (expected)
1st Target (actual)

(d) ndt_mapping on RT core and MemBomb on
NRT cores.

Figure 8 Execution Time Distribution (for 100 runs each).

expected discretized execution time distribution of the target execution time is theoretically594

computed and is depicted as a discretized bell curve, whereas the actual execution time595

distribution is experimentally evaluated and depicted by a bar plot.596

Figure 8a presents the target execution time Ē of 3755 ms and 4018 ms with an acceptable597

error α = 0.10% for 1st and 2nd target execution times, respectively. Notably, as there are598

multiple possible normal distributions for a given Ē, we fix σ =
√

µ
2 and σ =

√
µ
6 for the 1st599

and 2nd Ē, respectively and then find the corresponding mean µ that is evaluated to 3700 ms600

and 4000 ms, respectively. Lowering/rising the standard deviation σ only narrows/widens601

the normal distribution curve and thus controls the tightness of the timeliness objective. The602

actual execution time Ereg for the given α is 3683 ms and 3997 ms , respectively and less603

than the target execution time. Hence the timeliness goal defined in Equation (1) is satisfied.604

In order to validate the applicability of the approach for diverse workloads, we applied605

the same methodology to a number of different applications. We considered tracking, mser606

and ndt_mapping to be RT applications hosted on the RT core, while MemBomb running607

on the three NRT cores, as shown in Figure 8b, Figure 8c and Figure 8d, respectively. We608

use the same target execution time Ē of 4560 ms with an acceptable error α = 0.10% for609

all three sets of experiments. Also, we use the same σ =
√

µ
2 . The actual execution time610

Ereg for tracking, mser and ndt_mapping was measured as 4387 ms, 4399 ms and 4315 ms,611

respectively, which is less than the target execution time and hence satisfies the timeliness612

ECRTS 2023

4:18 Memory Latency Distribution-Driven Regulation for Temporal Isolation in MPSoCs

3600 3700 3800 3900 4000 4100
Execution time (ms)

0.0

0.1

0.2

0.3

0.4

0.5
Pr

ob
ab

ilit
y

= 0.99

= 0.7

= 0.3

= 0.01
= 0.99

= 0.7

= 0.3

= 0.01

1st Target (expected)
2nd Target (expected)

1st Target (actual)
2nd Target (actual)

Figure 9 Validation of timeliness objective
for various values of acceptable error α.

0 40 80 120 160 200 240 280 2000
Memory Latency (Clock Cycles)

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e

Pr
ob

ab
ilit

y

Isolation
Contention
Target

Figure 10 CDF for disparity on RT core.

goal defined in Equation (1).613

Figure 9 shows the validation of the timeliness objective for various values of α for the614

same set of applications and experimental setup used in Figure 8a. We consider four values615

of α: 0.01, 0.3, 0.7 and 0.99. These are applied to both the expected and achieved target616

execution time distribution and highlighted by dashed and solid lines, respectively, in Figure 9.617

We found out that, for any value of α, the criteria Ereg < Ē holds. This provides empirical618

evidence to corroborate our expectation that the timeliness constraint formula presented in619

Equation (1) indeed holds for arbitrary values of α.620

Finally, we illustrate the CDF of read memory latency observed by the dispartiy application621

in isolation and under contention, as well as the enforced reference CDF. The reference622

CDF F̄ used in Figure 8 for the 1st target execution time Ē of 3755 ms is highlighted with623

green lines in Figure 10. The CDF in isolation (blue lines) and contention (orange lines) are624

computed using the same PMFs previously shown in Figure 6. It can be noted that the F̄ (k)625

computed for each bin k lies between the envelope defined by the CDFs measured in isolation626

(upper bound) and under contention (lower bound). These F̄ (k) values are subsequently used627

by the memory latency distribution-driven regulator (Algorithm 1) to achieve an execution628

time Ereg that meets the timeliness objective.629

7.6 Impact of Regulation on the Average Memory Latency630

The selection of the target execution time Ē impacts the aggressiveness of the regulation,631

which in turn affects the average memory latency of an application. The average memory632

latency is defined as the total read memory latency divided by total number of read memory633

transactions over the Tr = 1 ms regulation interval.634

The average memory latency of disparity under the same experimental setup as in635

Figure 8a is shown in Figure 11. However, instead of presenting the average memory latency636

over 100 runs, we present the WCET case: where the observed execution time is the highest.637

It can be observed that the average memory latency for the 1st target execution time,638

with an observed WCET of 3714 ms, is around 70 clock cycles. For the 2nd target with639

an observed WCET of 4037 ms, the average memory latency is around 90 clock cycles.640

Consequently, the average memory latency is proportional to the target execution time Ē.641

As the target execution time for the 2nd target is more relaxed relative to the 1st target,642

the overall percentage of regulation that is enforced on the NRT cores decreases from 75% to643

Ahsan Saeed et al. 4:19

0 1000 2000 3000 4000
Time (ms)

0

25

50

75

100

125

Av
er

ag
e

M
em

or
y

La
te

nc
y

(C
lo

ck
 C

yc
le

s)
0

25

50

75

100

Re
gu

la
tio

n
on

 N
RT

 c
or

es
 (%

)

Contention
1st Target
2nd Target
Isolation.
1st Target (% regulation)
2nd Target (% regulation)

Figure 11 Impact of regulation on the average memory latency for disparity on RT core.

50% as seen in Figure 11. The percentage of regulation is calculated by dividing the total644

number of regulation intervals in which the NRT cores are suspended by the total number of645

regulation intervals in the experiment. Hence, the percent regulation that is enforced on the646

NRT cores is inversely proportional to the target execution time Ē.647

It is worthwhile to note that traditional DRAM bandwidth management-based regulation648

mechanisms [5, 23, 41] tend to bring the actual execution time as close as possible to the649

isolation scenario. However, our approach allows for the actual execution time to be anywhere650

between the execution time in contention to isolation.651

7.7 Comparison with DRAM bandwidth-based regulation652

To demonstrate that distribution-driven regulation is more beneficial than traditional DRAM653

bandwidth-based regulation mechanisms, we compare the slowdown ratio experienced by654

the applications running under the following scenarios (1) unregulated execution, in which655

the applications are running in parallel on their respective cores without any regulation656

mechanism, (2) a memory bandwidth management-based regulation (MemGuard [5])1, and657

(3) distribution-driven regulation. We define the slowdown ratio of an application as the658

ratio of execution time under contention to the execution time in isolation.659

We use the latest implementation of MemGuard [5] that regulates LLC write-backs in660

addition to LLC misses, ported to the partitioning hypervisor and configured for static661

bandwidth reservation. The key parameter used by MemGuard is the guaranteed (worst-case)662

bandwidth, which is approximately 960 MB/s for our evaluation platform based on the work663

in [24]. We allocated half of the said bandwidth for the application running in the RT core,664

and the remaining is distributed equally among the three applications running in the NRT665

cores.666

Once the configurations for MemGuard have been selected, the parameters of the667

distribution-driven regulator (target execution time Ē and acceptable error α) are selected668

in such a way that the actual execution time Ereg for the application running on the RT669

core is the same under MemGuard and distribution-driven regulation. This allows for a fair670

comparison of slowdown ratios for applications running on NRT cores while keeping the same671

slowdown ratios for the application running on the RT core.672

1 Comparison against a more recent work [23] is not possible due to the unavailability of memory utilization
metric in our evaluation platform, which is necessary for the latter work.

ECRTS 2023

4:20 Memory Latency Distribution-Driven Regulation for Temporal Isolation in MPSoCs

Table 3 Slowdown Ratio of benchmarks in contention without regulation and with different
regulation mechanisms

RT Core NRT Cores
disparity MemBomb on each NRT Core

Unregulated MemGuard Distribution-Driven Unregulated MemGuard Distribution-Driven
1.28 1.03 1.03 3.79 16.67 7.05

disparity MemBomb (HB) on each NRT Core
1.25 1.03 1.03 1.41 8.07 3.49

We conducted the evaluation with two different sets of applications. In the first set673

of applications, disparity is running on the designated RT core while synthetic MemBomb674

applications are running on the three NRT cores. In the second set of applications, only675

the MemBomb is modified to perform memory write operations for half of its duration676

periodically. We refer to this modified MemBomb application as MemBomb Half Blast (HB).677

Table 3 shows the slowdown ratios for different run settings compared to the execution678

times in isolation. We compare (1) unregulated runs in which the applications are executed679

concurrently in the respective cores with no regulation mechanism in place to (2) the proposed680

distribution-driven regulator and to (3) regulation done using MemGuard.681

As expected, both regulation approaches achieve the same slowdown ratios of 1.03 for682

disparity. However, with MemGuard, both sets of applications running on the NRT cores683

suffer the highest slowdowns of 16.67 and 8.07, respectively. By contrast, the distribution-684

driven regulator is able to improve the slowdown ratio of the NRT applications on average685

by 2.2× compared to MemGuard.686

8 Conclusion and Future Work687

In this work, we presented a novel distribution-based regulation mechanism that enforces a688

timeliness objective formulated as a constraint on the probability of meeting any execution689

time target, which can be anywhere between the execution time in isolation and contention690

scenario. The timeliness objective is met by directly controlling the distribution of total691

memory latency via regulation, which eventually impacts the distribution of the observed692

execution time.693

We implemented our solution inside the Jailhouse-RT hypervisor [15] and deployed it on a694

COTS platform (Xilinx Ultrascale+ MPSoC) to demonstrate its effectiveness in meeting the695

timeliness objective for time-sensitive RT applications. Our approach can also be extended to696

handle multiple RT cores by assigning ranks to the RT cores based on their criticality level.697

The level of criticality then determines the order of suspension of the cores. If the observed698

CDF is below the reference CDF, the NRT cores are suspended first, followed by the RT699

core with the lowest criticality level, and so on, until the observed CDF no longer remains700

below the reference CDF. This is not immediately feasible with the same PMU due to the701

limited number of AXI ID filtering blocks. However, APM blocks can be instantiated on the702

on-chip FPGA, and memory traffic can be observed through-FPGA instead.703

References704

1 Ankit Agrawal, Renato Mancuso, Rodolfo Pellizzoni, and Gerhard Fohler. Analysis of Dynamic705

Memory Bandwidth Regulation in Multi-core Real-Time Systems. In IEEE Real-Time Systems706

Symposium (RTSS), 2018.707

Ahsan Saeed et al. 4:21

2 Benny Akesson, Kees Goossens, and Markus Ringhofer. Predator: A predictable SDRAM708

memory controller. In IEEE/ACM/IFIP International Conference on Hardware/Software709

Codesign and System Synthesis (CODES+ISSS), 2007.710

3 ARM. An introduction to AMBA AXI. https://developer.arm.com/documentation/102202.711

4 ARM. ARM® Cortex®-A53 MPCore Processor - Technical Reference Manual. ht-712

tps://static.docs.arm.com/ddi0500/f/DDI0500.pdf.713

5 Michael Bechtel and Heechul Yun. Denial-of-Service Attacks on Shared Cache in Multicore:714

Analysis and Prevention. In IEEE Real-Time and Embedded Technology and Applications715

Symposium (RTAS), 2019.716

6 Michael Bechtel and Heechul Yun. Cache Bank-Aware Denial-of-Service Attacks on Multicore717

ARM Processors. In 29th IEEE Real-Time and Embedded Technology and Applications718

Symposium (RTAS 2023), San Antonio, Texas, USA, May 2023.719

7 Roberto Cavicchioli, Nicola Capodieci, and Marko Bertogna. Memory interference charac-720

terization between CPU cores and integrated GPUs in mixed-criticality platforms. In IEEE721

International Conference on Emerging Technologies and Factory Automation (ETFA), 2017.722

8 Dakshina Dasari, Benny Akesson, Vincent Nélis, Muhammad Ali Awan, and Stefan M. Petters.723

Identifying the sources of unpredictability in COTS-based multicore systems. In IEEE724

International Symposium on Industrial Embedded Systems (SIES), 2013.725

9 Giorgio Farina, Gautam Gala, Marcello Cinque, and Gerhard Fohler. Assessing Intel’s Memory726

Bandwidth Allocation for resource limitation in real-time systems. In IEEE International727

Symposium On Real-Time Distributed Computing (ISORC), 2022.728

10 H. Fischer. A History of the Central Limit Theorem: From Classical to Modern Probability729

Theory. Sources and Studies in the History of Mathematics and Physical Sciences. Springer730

New York, 2010. URL: https://books.google.com/books?id=v7kTwafIiPsC.731

11 Johannes Freitag and Sascha Uhrig. Closed Loop Controller for Multicore Real-Time Systems.732

In Architecture of Computing Systems (ARCS), 2018.733

12 Sebastian Hahn, Michael Jacobs, and Jan Reineke. Enabling Compositionality for Multicore734

Timing Analysis. In International Conference on Real-Time Networks and Systems (RTNS),735

RTNS ’16, 2016.736

13 Denis Hoornaert, Shahin Roozkhosh, and Renato Mancuso. A Memory Scheduling Infra-737

structure for Multi-Core Systems with Re-Programmable Logic. In Euromicro Conference on738

Real-Time Systems (ECRTS), 2021.739

14 Hyoseung Kim, Dionisio de Niz, Björn Andersson, Mark Klein, Onur Mutlu, and Ragunathan740

Rajkumar. Bounding memory interference delay in cots-based multi-core systems. In IEEE741

Real-Time and Embedded Technology and Applications Symposium (RTAS), 2014.742

15 J. Kiszka, V. Sinitsin, H. Schild, and contributors. Jailhouse Hypervisor. URL: https:743

//github.com/siemens/jailhouse.744

16 Tomasz Kloda, Marco Solieri, Renato Mancuso, Nicola Capodieci, Paolo Valente, and Marko745

Bertogna. Deterministic memory hierarchy and virtualization for modern multi-core embedded746

systems. In 2019 IEEE Real-Time and Embedded Technology and Applications Symposium747

(RTAS), pages 1–14, 2019. doi:10.1109/RTAS.2019.00009.748

17 D.S. Lemons, P. Langevin, and A. Gythiel. An Introduction to Stochastic Processes in749

Physics. Johns Hopkins Paperback. Johns Hopkins University Press, 2002. URL: https:750

//books.google.com/books?id=Uw6YDkd_CXcC.751

18 Claire Maiza, Hamza Rihani, Juan M. Rivas, Joël Goossens, Sebastian Altmeyer, and Robert I.752

Davis. A Survey of Timing Verification Techniques for Multi-Core Real-Time Systems. ACM753

Computing Surveys (CSUR, 52(3):1–38, 2019.754

19 Xiaosheng Mu, Luciano Pomatto, Philipp Strack, and Omer Tamuz. From blackwell dominance755

in large samples to renyi divergences and back again, 2019. URL: https://arxiv.org/abs/756

1906.02838v3, doi:10.48550/ARXIV.1906.02838.757

20 Rodolfo Pellizzoni and Heechul Yun. Memory Servers for Multicore Systems. In IEEE758

Real-Time and Embedded Technology and Applications Symposium (RTAS), 2016.759

ECRTS 2023

https://books.google.com/books?id=v7kTwafIiPsC
https://github.com/siemens/jailhouse
https://github.com/siemens/jailhouse
https://github.com/siemens/jailhouse
https://doi.org/10.1109/RTAS.2019.00009
https://books.google.com/books?id=Uw6YDkd_CXcC
https://books.google.com/books?id=Uw6YDkd_CXcC
https://books.google.com/books?id=Uw6YDkd_CXcC
https://arxiv.org/abs/1906.02838v3
https://arxiv.org/abs/1906.02838v3
https://arxiv.org/abs/1906.02838v3
https://doi.org/10.48550/ARXIV.1906.02838

4:22 Memory Latency Distribution-Driven Regulation for Temporal Isolation in MPSoCs

21 Falk Rehm, Jörg Seitter, Jan-Peter Larsson, Selma Saidi, Giovanni Stea, Raffaele Zippo, Dirk760

Ziegenbein, Matteo Andreozzi, and Arne Hamann. The road towards predictable automotive761

high - performance platforms. In Design, Automation Test in Europe Conference Exhibition762

(DATE), 2021.763

22 Shahin Roozkhosh and Renato Mancuso. The potential of programmable logic in the middle:764

Cache bleaching. In 2020 IEEE Real-Time and Embedded Technology and Applications765

Symposium (RTAS), pages 296–309, 2020. doi:10.1109/RTAS48715.2020.00006.766

23 Ahsan Saeed, Dakshina Dasari, Dirk Ziegenbein, Varun Rajasekaran, Falk Rehm, Michael767

Pressler, Arne Hamann, Daniel Mueller-Gritschneder, Andreas Gerstlauer, and Ulf Schlicht-768

mann. Memory Utilization-Based Dynamic Bandwidth Regulation for Temporal Isolation769

in Multi-Cores. In IEEE Real-Time and Embedded Technology and Applications Symposium770

(RTAS), 2022.771

24 Gero Schwäricke, Rohan Tabish, Rodolfo Pellizzoni, Renato Mancuso, Andrea Bastoni, Alex-772

ander Zuepke, and Marco Caccamo. A Real-Time Virtio-Based Framework for Predictable773

Inter-VM Communication. In IEEE Real-Time Systems Symposium (RTSS), 2021.774

25 Alejandro Serrano-Cases, Juan M. Reina, Jaume Abella, Enrico Mezzetti, and Francisco J.775

Cazorla. Leveraging Hardware QoS to Control Contention in the Xilinx Zynq UltraScale+776

MPSoC. In Euromicro Conference on Real-Time Systems (ECRTS), 2021.777

26 Moshe Shaked and J. George Shanthikumar, editors. Stochastic Orders. Springer778

New York, 2007. URL: https://doi.org/10.1007%2F978-0-387-34675-5, doi:10.1007/779

978-0-387-34675-5.780

27 P. Sohal, R. Tabish, U. Drepper, and R. Mancuso. E-WarP: A System-wide Framework for781

Memory Bandwidth Profiling and Management. In IEEE Real-Time Systems Symposium782

(RTSS), 2020.783

28 Parul Sohal, Michael Bechtel, Renato Mancuso, Heechul Yun, and Orran Krieger. A Closer784

Look at Intel Resource Director Technology (RDT). In International Conference on Real-Time785

Networks and Systems (RTNS), 2022.786

29 Parul Sohal, Rohan Tabish, Ulrich Drepper, and Renato Mancuso. Profile-driven memory787

bandwidth management for accelerators and cpus in qos-enabled platforms. Real-Time Syst.,788

58(3):235–274, sep 2022. doi:10.1007/s11241-022-09382-x.789

30 Lukas Sommer, Florian Stock, Leonardo Solis-Vasquez, and Andreas Koch. DAPHNE - An790

automotive benchmark suite for parallel programming models on embedded heterogeneous791

platforms: work-in-progress. In International Conference on Embedded Software Companion792

(EMSOFT), 2019.793

31 Ashley Stevens. Quality of Service (QoS) in ARM Systems: An Overview. In ARM White794

paper, 2014.795

32 Meltem Sönmez Turan, Elaine Barker, John Kelsey, Kerry McKay, Mary Baish, and Michael796

Boyle. Recommendation for the Entropy Sources Used for Random Bit Generation, 2018.797

URL: https://csrc.nist.gov/publications/detail/sp/800-90b/final.798

33 P. K. Valsan, H. Yun, and F. Farshchi. Taming Non-Blocking Caches to Improve Isolation in799

Multicore Real-Time Systems. In IEEE Real-Time and Embedded Technology and Applications800

Symposium (RTAS), 2016.801

34 Prathap Kumar Valsan, Heechul Yun, and Farzad Farshchi. Addressing Isolation Chal-802

lenges of Non-Blocking Caches for Multicore Real-Time Systems. ACM Real-Time Systems,803

53(5):673–708, 2017.804

35 S. K. Venkata, I. Ahn, D. Jeon, A. Gupta, C. Louie, S. Garcia, S. Belongie, and M. B. Taylor.805

SD-VBS: The San Diego Vision Benchmark Suite. In IEEE International Symposium on806

Workload Characterization (IISWC), 2009.807

36 Bryan C. Ward, Jonathan L. Herman, Christopher J. Kenna, and James H. Anderson.808

Outstanding Paper Award: Making Shared Caches More Predictable on Multicore Platforms.809

In Euromicro Conference on Real-Time Systems (ECRTS), 2013.810

https://doi.org/10.1109/RTAS48715.2020.00006
https://doi.org/10.1007%2F978-0-387-34675-5
https://doi.org/10.1007/978-0-387-34675-5
https://doi.org/10.1007/978-0-387-34675-5
https://doi.org/10.1007/978-0-387-34675-5
https://doi.org/10.1007/s11241-022-09382-x
https://csrc.nist.gov/publications/detail/sp/800-90b/final

Ahsan Saeed et al. 4:23

37 Xilinx. AXI Performance Monitor LogiCORE IP Product Guide (PG037).811

https://docs.xilinx.com/v/u/en-US/pg172-ila.812

38 Xilinx. AXI Traffic Generator v3.0 LogiCORE IP Product Guide (PG125).813

https://docs.xilinx.com/v/u/en-US/pg125-axi-traffic-gen.814

39 Xilinx. Integrated Logic Analyzer v6.2 LogiCORE IP Product Guide (PG172).815

https://docs.xilinx.com/v/u/en-US/pg037_axi_perf_mon.816

40 Xilinx. Zynq UltraScale+ MPSoC ZCU102 Evaluation Kit.817

https://www.xilinx.com/products/boards-and-kits/ek-u1-zcu102-g.html.818

41 H. Yun, G. Yao, R. Pellizzoni, M. Caccamo, and L. Sha. Memory Bandwidth Management for819

Efficient Performance Isolation in Multi-Core Platforms. IEEE Transactions on Computers820

(TC), 65(2):562–576, 2016.821

42 Heechul Yun, Waqar Ali, Santosh Gondi, and Siddhartha Biswas. BWLOCK: A Dynamic822

Memory Access Control Framework for Soft Real-Time Applications on Multicore Platforms.823

IEEE Transactions on Computers (TC), 66(7):1247–1252, 2017.824

43 Xiao Zhang, Sandhya Dwarkadas, and Kai Shen. Towards Practical Page Coloring-Based825

Multicore Cache Management. In ACM European Conference on Computer Systems, EuroSys826

’09, 2009.827

44 Matteo Zini, Daniel Casini, and Alessandro Biondi. Analyzing Arm’s MPAM From the828

Perspective of Time Predictability. IEEE Transactions on Computers (TC), 72(1):168–182,829

2023.830

45 Matteo Zini, Giorgiomaria Cicero, Daniel Casini, and Alessandro Biondi. Profiling and831

controlling I/O-related memory contention in COTS heterogeneous platforms. Software:832

Practice and Experience, 52(5):1095–1113, 2022.833

46 Alexander Zuepke, Andrea Bastoni, Weifan Chen, Marco Caccamo, and Renato Mancuso.834

MemPol: Policing Core Memory Bandwidth from Outside of the Cores. In 29th IEEE Real-835

Time and Embedded Technology and Applications Symposium (RTAS 2023), San Antonio,836

Texas, USA, May 2023.837

ECRTS 2023

	1 Introduction
	2 Related Work
	3 System Model and Assumptions
	4 Distribution-Driven Regulation
	4.1 Discrete-domain Formulation

	5 System Overview
	5.1 Memory Latency Distribution-Driven Regulator Algorithm

	6 Implementation
	6.1 AXI Performance Monitor (APM)

	7 Validation and Evaluation
	7.1 Experimental Setup
	7.2 Validation of I.I.D. Assumption A8
	7.3 Validation of Other Key System Assumptions
	7.4 Configuration Parameters
	7.4.1 Regulation Interval
	7.4.2 Total Bins
	7.4.3 Bin Size

	7.5 Effectiveness of the Approach
	7.6 Impact of Regulation on the Average Memory Latency
	7.7 Comparison with DRAM bandwidth-based regulation

	8 Conclusion and Future Work

