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Abstract—Virtual platform prototypes are widely used for
early design space exploration at the system level. There is,
however, a lack of accurate and fast power and performance
models of hardware components at such high levels of abstrac-
tion. In this paper, we present an approach that extends fast
functional hardware models with the ability to produce detailed,
cycle-level timing and power estimates. Our approach is based
on back-annotating behavioral hardware descriptions with a
dynamic power and performance model that allows capturing
cycle-accurate and data-dependent activity without a significant
loss in simulation speed. By integrating with existing high-level
synthesis (HLS) flows, back-annotation is fully automated for
custom hardware synthesized by HLS. We further leverage state-
of-the-art machine learning techniques to synthesize abstract
power models, where we introduce a structural decomposition
technique to reduce model complexities and increase estimation
accuracy. We have applied our back-annotation approach to
several industrial-strength design examples under various ar-
chitecture configurations. Results show that our models predict
average power consumption to within 1% and cycle-by-cycle
power dissipation to within 10% of a commercial gate-level power
estimation tool, all while running several orders of magnitude
faster.

I. INTRODUCTION
The continued rise in hardware and software complexities

of embedded on-chip systems has necessitated the elevation
of the design process to higher levels of abstraction. Virtual
platform models capable of simulating whole systems are
widely employed to provide rapid feedback for design space
exploration. Instead of slow co-simulation with low-level RTL
or cycle-accurate models of accelerators and other IPs, a purely
functional modeling of hardware behavior is typically utilized.
Furthermore, high-level synthesis (HLS) is used to translate
such behavioral hardware models into final implementations.
This provides the ability to perform early exploration with an
automated path to implementation. However, the modeling gap
between virtual platforms and physical hardware implemen-
tations severely limits their usefulness. To support efficient
exploration, there is a need for hardware models that can
provide quick yet accurate estimates of critical system metrics
such as performance and power at a high level of abstraction.

Most previous work in high-level hardware modeling has
relied on fast yet coarse-grain estimation using state-based
models [1, 2, 3, 4]. Other approaches use accurate but slow ac-
tivity estimation at a fine-grain micro-architecture or register-
transfer level [5, 6, 7, 8, 9, 10]. More recently, solutions at
the intermediate representation (IR) level have emerged [11,
12, 13]. However, they still rely on fine-grain simulation
of the cycle-by-cycle behavior of individually scheduled IR
operations in control/dataflow graph (CDFG) or finite state
machine with data (FSMD) form to obtain accurate results.

Existing approaches all simulate hardware functionality at
the same level of detail at which performance and power is

modeled. This allows the functional simulation to drive an ac-
curate, potentially data-dependent estimation model, but it also
creates a fundamental tradeoff between speed and accuracy de-
pending on the simulation granularity. By contrast, we propose
a novel approach that is aimed at bridging the modeling gap by
dynamically back-annotating a high-level functional model of
hardware behavior with low-level power and performance esti-
mates. Instead of detailed micro-architecture or FSMD/CDFG
simulation, we statically synthesize a cycle-accurate and data-
dependent switching activity model of a given gate-level
implementation using machine learning approaches. Based on
resource scheduling and binding information, traces of operand
and result value transitions captured from a functional IR
simulation are then used to drive the abstracted offline or
online power-performance model. In contrast to prior work,
this enables cycle-accurate, data-dependent estimation at the
speed of a fast functional simulation.

The main contribution of this paper is a hardware model-
ing framework that realizes such a novel, fast yet accurate
white-box back-annotation approach. Our framework inte-
grates with existing, commercial HLS tools to provide a fully
automated, HLS-driven back-annotation process. Generated
hardware models are compatible with and can be seamlessly
integrated into existing SystemC/TLM based virtual platforms
or other system architecture simulators. Within our framework,
we make the following specific contributions: (1) We develop
a light-weight approach for extracting cycle-accurate signal
transition information from a high-level functional simulation
without the need for full architecture simulation; (2) We
propose a novel concept for dynamic back-annotation of fast
functional models with abstract, data- and cycle-dependent
power models generated using machine learning approaches;
(3) We introduce a novel approach for decomposing learning-
based power models using scheduling and binding information
to reduce model complexity while improving estimation accu-
racy; (4) To further reduce the overhead of extracting switching
activity information, learning-based feature selection is applied
to each decomposed power model.

The rest of the paper is organized as follows: following a
discussion of related work, problem definition and an overview
of our back-annotation flow, Sections II and III elaborate on
each step of our methodology. Section IV shows experimental
results of applying the flow to a set of industrial-strength
design examples. Finally, Section V concludes the paper with
a summary and an outlook on future work.

A. Related Work
To generate higher-level timing and energy models of

custom hardware processors, library- or learning-based ap-
proaches can be utilized. In a library-based approach, an
overall model is assembled from pre-characterized component



data [5, 6, 7]. This enables rapid exploration but does not
accurately account for all glue logic and implementation-
level optimizations in a combined architecture. In learning-
based approaches, a low-level implementation is simulated
in a sampling fashion to derive a regression-based model
for a complete processor or each macro-block [8, 9, 10].
Such approaches can accurately reflect the behavior of the
final implementation, but require a potentially lengthy, one-
time training process for each new architecture. In all cases,
existing approaches require simulation at the RTL or micro-
architecture level to extract internal signal information driving
the generated models. There are several approaches that drive
a learned hardware model using state information extracted
from a functional simulation [2, 3, 4]. However, such state-
based models only support capturing coarse-grain hardware
transitions between different operation modes. By contrast,
we aim to drive a fine-grained, data-dependent model di-
rectly from a functional simulation. Our approach supports
both library- and learning-based methods, where our focus is
on learning-based generation of lightweight implementation-
level representations of complete hardware processors. A key
concern in learning-based methods is managing model com-
plexities without sacrificing accuracy. Existing approaches rely
on sampling a subset of key signals or state variables that are
identified either manually or in a trial-and-error process [8, 10].
By contrast, we automatically decompose a full power model
into several simpler models based on information about cycle-
specific resource utilization, which results in better accuracy
while reducing learning and estimation overhead.

For software running on processors, so-called source-level
or host-compiled modeling approaches have recently emerged
as an alternative to micro-architecture or instruction-set sim-
ulation. In such approaches, a source or IR model of the
application is statically back-annotated with timing and energy
estimates extracted from low-level simulations [11, 14]. To
capture control-flow dependent effects, such back-annotation
is typically performed at the basic block level. Our proposed
approach is motivated by host-compiled software modeling.
In contrast to existing host-compiled solutions, however, our
custom hardware models are also aimed at accurately capturing
data-dependent power effects. Instead of back-annotating static
per block estimates, we dynamically annotate the functional
simulation with cycle-level, data-dependent metrics in an on-
line or offline fashion.

B. Back-Annotation Flow
Figure 1 shows an overview of our back-annotation driven

hardware power and performance modeling flow. A given
behavioral hardware model is synthesized down to an RTL
description using a standard high-level synthesis process. In
the process, we extract the intermediate representation of the
design generated by the HLS tool after front-end optimizations.
The proposed flow integrates a dynamic, switching activity-
based timing and power model into the IR to generate the back-
annotated hardware model. Working at the IR level allows
us to accurately reflect source-level optimizations, such as bit
width reductions that affect tracking of internal signals in the
synthesized RTL datapath. At the same time, the IR is extracted
in C/C++ form before back-end synthesis in the HLS tool, i.e.
it remains at a fast functional level.

In addition to the IR, we extract back-end scheduling
and binding information from the HLS flow. A timing back-
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Fig. 1. Overview of hardware back-annotation flow.

annotation process uses this micro-architecture mapping data
to capture and trace cycle-accurate performance and switching
activity of the hardware at the IR level. Power model synthesis
then utilizes switching activity traces generated from the tim-
ing model together with gate-level power traces obtained from
the synthesized hardware implementation to learn a power
model. A full power model is thereby decomposed into several
simpler models using scheduling and binding information.
Each decomposed power model is futher simplified using a
decision tree-based feature selection to reduce the amount
of switching information that needs to be collected. The
simpilifed power models are trained with gate-level power
traces and corresponding switching activity traces for a given
set of training inputs. Finally, the trained power models are
integrated with the already annotated timing model to complete
the power back-annotation process. In the process, unnecessary
activity tracing not utilized after feature selection is removed.
This final step creates the back-annotated hardware model.

II. BACK-ANNOTATION
In the following, we describe the timing and power back-

annotation process through which the intermediate represen-
tations of the hardware behavior is gradually refined into a
back-annotated hardware model.

A. Timing Back-Annotation
Figure 2 shows the HLS-driven timing back-annotation

flow, accompanied by representative models and code snippets
at various stages. Behavioral C++/SystemC code is first trans-
lated into an IR by the HLS front-end process in which control
and datapath optimizations, such as bit width or operator
strength reductions, loop unrolling, if-conversion and function
inlining are performed. The HLS flow then converts the
generated IR into a CDFG, and resource allocation, scheduling
and binding steps assign the control steps and hardware
resources for each node. In the HLS tool, this abstracted micro-
architecture information is internally represented as a FSMD
model before generating the final RTL.

1) Cycle-level signal tracing: We extract both the IR-level
code as well as FSMD-level scheduling and binding infor-
mation from the HLS tool. By back-annotating the abstracted
micro-architecture information into the IR, we are able to trace
cycle-accurate switching activity of each datapath resource at
the IR level. We first extract information about the mapping of
IR operations into control steps and datapath resources from
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Architecture Info [XML]
<NODE ID=1
 RTLName=M0
 State  =3, BIT = (8,4,4) 
 FILE=“c_mult.cpp”
>
    Label1: %1= MUL %2, %3 
<\NODE>
<NODE ID=2
 RTLName=M1
 State  =3, BIT = (16,8,8) 
 FILE=“c_mult.cpp”
>
    Label1: %4= MUL %5, %6 
<\NODE>
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….
Label1:
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   t1=%call getBits(%2,3,0)
   t2=%call getBits(%3,3,0)
   %call trace(%1, t1, t2, M0,3)
    …  
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Fig. 3. Signal extraction process.

the FSMD model. This information allows us to track cycle-by-
cycle activity while taking into account resource sharing and
other back-end synthesis optimizations. We capture the flow of
data and associated switching activity by tracing the operands
and results of each IR operation. To later map data activity
into signal transitions of actual hardware resources, we further
include resource binding information in the captured traces.

Figure 3 shows code snippets for the signal extraction
and tracing process. The mapping information is provided
by the HLS tool in the form of an FSMD architecture file
that stores each operation node’s scheduling, binding, and bit
width information. We back-annotate the IR code with calls
to a trace() function, which stores the operands and results of
each IR operation together with the resource scheduling and
binding information to later compute the switching activity.
To take bit width optimizations into account, an additional
getBits() function is annotated to extract the actual number of
bits utilized in the hardware.

2) Switching activity computation: The synthesized hard-
ware implementation will generally exploit operation-level
parallelism and scheduling flexibility to achieve maximum
performance under given resource or timing constraints. As
a result, operators in the IR are not necessarily simulated in
the same order in which they execute in the final hardware.
Figure 4(a) and 4(b) show such intra- and inter-block level out
of order execution scenarios, respectively.

In order to rearrange out-of-order execution traces captured
in the IR simulation into in-order traces for hardware estima-
tion, we perform an online reordering of traced information.
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Fig. 4. Signal trace rearrangement.

As shown in Figure 4(a), the execution order of two operators
in the same basic block can be reversed during back-end HLS
scheduling if there is no dependency between the operations.
We associate a reordering table with each basic block. In these
tables, row and column tags indicate the control states and
utilized resource IDs in the current basic block, respectively.
The tracing function stores operands and results in the table
based on annotated control step and resource data. At the
end of each basic block, an additionally annotated function is
called to sequentially compute the Hamming distances of all
signals toggling in each control step. This switching activity
information is then committed to either a tracing file or the
final power model. In addition, for performance estimation, a
global cycle counter is increased by the number of cycles spent
in the block.

As shown in Figure 4(b), the execution of basic blocks can
be overlapped in case of pipelined hardware loops. This results
in some operators in the second iteration to be executed before
the last operator in the first iteration. To accurately account for
such effects, we introduce an additional pipeline buffer that
retains the signal traces of previous iterations to restore out-of-
order executions across basic blocks. Location and parameters
of pipelined blocks are extracted from the HLS tool together
with other scheduling and binding information. When first
entering the header block of a pipelined loop, an initial pipeline
buffer data structure is created. If a pipelined execution is then
detected at the end of a loop body block, the entries of the
reordering table are first committed to the separate pipeline
buffer, and before the start of each loop iteration, all completed
control steps, i.e. entries corresponding to the loop initiation
interval (II) are committed from the pipeline buffer to the
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tracing file or power model. With each such iteration, entries
of the loop body reordering table are sequentially committed to
the pipeline buffer where they will be added to the remaining
buffer contents, which will contain uncommitted signal data
from previous iterations. After end of execution of a loop, all
remaining entries in the pipeline buffer are committed and the
buffer is deleted to emulate flushing of the pipeline. Overall,
this approach allows us to accurately trace the signal transitions
of hardware resources without the need for a lockstep pipeline
simulation.

B. Power Back-Annotation
After collecting tracing information from the back-

annotated timing model using simulations of a training set,
power models are synthesized in an offline, one-time learning
process described in subsequent sections. For online estimation
using actual input data, the power back-annotation process
integrates the trained power model with the existing switch-
ing activity annotations to create the final hardware model.
Synthesized power models are thereby able to compute cycle-
level and data-dependent power consumption estimates from
the captured activity traces in an online or offline fashion.

For online power estimation, existing trace function calls
inserted during timing back-annotation are augmented to re-
place the tracing of computed switching activity with calls to a
regression model library. At the start of hardware simulation,
pre-compiled power model parameters, coefficients and data
structures are loaded into matching regression models for each
control step. At runtime, the power model corresponding to the
current control step then estimates its power consumption from
the dynamically computed switching activities.

As part of the power back-annotation process, unnecessary
signal tracing calls inserted during timing back-annotation are
removed. For timing back-annotation, all arithmetic operators
in the datapath are traced, which can negatively affect the
simulation speed. After feature selection and decomposition
of power models (as described in the following sections),
the power models are simplified by reducing the number of
signals needed to model power consumption. Discarded signals
are removed from the back-annotation to reduce the runtime
overhead of extracting switching activity information.

III. POWER MODEL SYNTHESIS
We utilize machine learning techniques to synthesize a

power model from activity data collected during a one-time,
offline training phase. As indicated in Figure 1, this process
consists of three steps: decomposing power models, simplify-
ing power models with feature selection, and learning to train
and synthesize final power models.

A. Structural Power Model Decomposition
Existing approaches for power estimation at the RTL or

micro-architecture level mostly rely on linear functions to

model the relationship between switching activity and power
consumption of a hardware module. Given switching vectors
A(t) of internal or external signals, the power consumption
(P (t)) can be modeled as a linear equation P (t) = C · A(t),
where C is a coefficient vector. To simplify such a model,
related signals, e.g. of busses can be grouped and switching
activities modeled as the Hamming distances within the group.
To find the model coefficients, linear least squares regression
over a sampled set of training vectors has been widely em-
ployed. In general, a linear least squares regressor is not well
suited for handling of high dimensional vectors, and a large
number of training vectors is required to avoid overfitting.
Feature selection of a key subset of signals can reduce the
model dimensions, but this may result in a loss of accuracy.

As an alternative to traditional feature selection, we intro-
duce an approach for reducing power model dimensions that
exploits available scheduling and binding information to iden-
tify and remove unnecessary signals. We thereby decompose
a global power model for a complete hardware module into
separate models for each control step. For each FSMD state,
the power consumption only depends on switching activities
of operators scheduled in this step, which can be modeled
with a subset of all signals. We illustrate this with the help of
a small example. Figure 5 shows a simple micro-architecture
in which three resources (MUL0, MUL1 and ADD) are al-
located. The power consumption of the complete hardware
processor can be estimated as a function of the switching
vectors An(t), n = a . . . i of the signals connecting the internal
resources. By contrast, the power model Pi(t) of a given
control state Si can be constructed from the much smaller
subset of signals connecting the resources scheduled in the
given state only. For example, the power consumption in state
S3 (P3(t)) can be estimated from three signals instead of all
nine. All other signals are known to not toggle during this state.
As such, a power model decomposition based on structural
micro-architecture information is able to reduce the complexity
of the model with little to no information loss.

B. Feature Selection
Decomposition based on the FSMD information still has

limitations in handling states with high resource utilization,
such as pipelined states with many scheduled operators. More-
over, decomposition still requires all signals to be traced across
states, which decreases simulation speed. We therfore apply
additional feature selection to further reduce complexity and
improve estimation latency.

As part of basic timing back-annotation, we already se-
lect only key signals to trace based on the expected power
contribution of resources in the micro-architecture. The power
consumption of complex units, such as adders, multipliers or
registers will be much higher with larger variations than the
power of simple logic units, such as multiplexers or bitwise
logic operators. Hence, we only sample the signals connected
to such resources. Based on the resource mapping information
extracted from the FSMD, we trace input and output signals for
IR operations mapped to arithmetic units. To also take registers
into account, we extract the variable mapping information from
the FSMD and trace any outputs of operations that store their
results in registers.

To further reduce feature sets, we additionaly leverage a
decision tree approach from machine learning [15]. Decision
trees are well known for their ability to automatically deter-



TABLE I. BENCHMARK SUMMARY.

Piped States RTL op. IR op. Gates Invoc. Cycles

GEMM No 6 11 11 703 3,000 2,202,000
Yes 4 20 20 964 3,000 1,308,000

DCT No 23 88 139 7007 10,800 1,933,200
Yes 12 62 127 6309 10,800 1,015,200

HDR No 18 35 69 4883 1,300 1,293,500
Yes 19 41 103 7887 1,300 1,072,500

mine relative importance of features from the training data.
We apply such feature selection after model decomposition.
Feature selection first trains a decision tree model, extracts the
importance of the signals, and then selects the key signals that
exceed a given threshold.

C. Learning
Each power model is trained from given power and activity

traces using established machine learning algorithms. Activity
traces contain cycle times, states and corresponding switching
vectors. Power traces contain actual power measurements from
an equivalent gate-level simulation for the same set of training
inputs. Activity and power traces are partitioned into states
and inputs based on decomposed power models in each control
step. Each power model is then trained with the correspond-
ing partitioned traces and checked for accuracy using cross-
validation methods.

Power behavior of complex arithmetic units is generally
not linear [6]. We thus support linear as well as non-linear
regression models. Depending on hardware functionality, input
data statistics and complexity of models, a non-linear machine
learning model can represent the power consumption behavior
better than a typical linear least squares model. However, this
comes at the expense of estimation overhead. Our learning flow
utilizes a cross-validation based model selection to find the
best power model for given a training set. In doing so, power
model synthesis trains each available learning model with the
given training vectors and picks the final model according to
cross-validation scores.

IV. EXPERIMENTAL RESULTS
We have implemented a fully automated realization of

our back-annotation driven power and performance hardware
modeling flow utilizing the Vivado HLS [16] engine (based
on an LLVM IR) and the scikit-learn [17] machine learning
library. We applied this flow to generate models for pipelined
and non-pipelined hardware designs of a 6x6 general matrix-
matrix multiplication (GEMM), a 2D discrete cosine transform
(DCT) and a weight computation block of a high dynamic
range (HDR) imaging application [18]. Hardware designs were
synthesized using Synopsys Design Compiler with the Nangate
45nm Open Cell Library [19] at 200Mhz clock frequency.
GEMM, DCT and HDR designs were simulated with 3000
random test matrices, a 640x320 24-bit RGB image and a
200x100 24-bit RGB image, respectively. Gate-level power
was estimated using Synopsys PrimeTime PX with VCD files
generated from full gate-level simulation. All experiments were
performed on a quad-core Intel i7 workstation running at 3.5
GHz. Table I summarizes benchmarks and synthesis results
including key IR operators and (shared) RTL resources selected
for initial back-annotation and tracing.

To learn power models, we used training sets consisting of
separate matrices and images with 300 GEMM, DCT and HDR
invocations each. In each case, we were able to synthesize
power models within 10 minutes including trace generation.
Depending on the trace length, model synthesis takes between

TABLE II. RESULTS OF DECISION TREE BASED FEATURE SELECTION.

GEMM DCT HDR
Piped No Yes No Yes No Yes

RTL op. 5 (-55%) 4 (-80%) 9 (-90%) 13 (-79%) 9 (-74%) 9 (-78%)
IR op. 5 (-55%) 4 (-80%) 28 (-80%) 37 (-71%) 26 (-62%) 41 (-60%)

TABLE III. SIMULATION SPEED [CYCLES/S].
Piped C BA-L BA-NL BAS-NL RTL Gate

MAT No 146.8M 4.87M 1.31M 1.97M 48.9K 612
Yes 87.2M 0.64M 0.42M 1.03M 30.4K 363

DCT No 32.2M 1.19M 1.11M 2.02M 16.1K 413
Yes 16.9M 0.36M 0.30M 0.85M 6.8K 188

HDR No 64.7M 2.26M 1.22M 1.47M 23.5K 276
Yes 53.6M 1.85M 0.85M 1.11M 21.5K 199

Avg. 66.9M 1.86M 0.87M 1.41M 24.53K 342

80 and 420 seconds for one-time gate-level simulation plus
20-120 seconds for total training time. We employed a 6-
fold cross validation based model selection, where decomposed
power models for each state are selected among a linear least
squares, a linear Bayes ridged, a non-linear decision tree, and a
non-linear gradient boosting regressor. For all cases and states,
a non-linear decision tree or gradient boosting regressor was
selected as the final power model. During decision tree based
feature selection, signals of RTL resources whose aggregated
importance was larger than the average resource importance
were chosen. Results of this feature selection are summarized
in Table II.

Table III shows the simulation speeds of back-annotated
(BA) models as compared to those of a pure source-level,
RTL or gate-level simulation. We compare between back-
annotated models with a traditional least squares regressor
(BA-L), the non-linear result after model selection (BA-NL),
and the final simplified model including decision tree based
feature selection (BAS-NL). Least squares regressors were
directly implemented in C++ while non-linear models were
integrated as calls to the scikit-learn library using Python
bindings, which results in additional simulation overhead. We
can observe that decision tree based feature selection improves
simulation throughput by a factor of 1.6 on average. Compared
to a pure source-level simulation, the back-annotated model
(BAS-NL) is on average 47 times slower. It is, however nearly
4100 and 57 times faster than a gate-level or RTL power
simulation, respectively.

Figures 6 and 7 compare the accuracy of the power models
against a gate-level power simulation. We measure both cycle-
by-cycle as well as data-dependent invocation-by-invocation
mean absolute error (MAE) normalized against average power.
For the non-linear models, we separately applied structural
decomposition (BA-NLD) and structural decomposition in-
cluding decision tree based feature selection (BAS-NLD).

On a cycle-by-cycle level (Figure 6), selection of non-linear
models results in an up to 3% better MAE than traditional
least squares models used in literature. In the GEMM case,
the least squares models are comparable since the complexity
of the datapath and hence power models is low (11 and 20
non-pipelined and pipelined resources, respectively). In the
HDR case, least squares regression was unable to find a stable
model. We can further observe that, in all cases, decomposition
improves accuracy. Note that decomposition does not incur
any simulation overhead, i.e. these accuracy gains do not
come with a reduction in simulation speed. Overall, structural
decomposition reduces cycle-by-cycle MAE by up to 23%
compared to basic NL models. After finally applying decision
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Fig. 6. Cycle-by-cycle power model accuracy.
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Fig. 7. Accuracy of modeling invocation-by-invocation average power.

tree based feature selection, simulation speed is significantly
improved, but additional inaccuracies can be introduced. The
MAE of the pipelined DCT models is increased by 3%. In all
other cases, MAE increases by less than 1%.

In terms of invocation-by-invocation error (Figure 7), re-
sults are similar. Decomposition can significantly improve
accuracy, while decision tree based feature selection tends
to incur an accuracy loss. Overall, our final models (BAS-
NLD) estimate cycle- and invocation-level power consumption
to within 10% and 3%, respectively, compared to gate-level
power results. In all cases, average errors across the whole
simulation are below 1%.

Finally, Figure 8 shows the cycle-by-cycle and invocation-
by-invocation profiles of estimated versus measured power
waveforms for the pipelined DCT and HDR designs. As the
profiles show, our back-annotated models are 100% timing
accurate and can accurately track cycle-level power behavior
within each invocation as well as data-dependent effects across
different invocations of the same design.

V. SUMMARY AND CONCLUSIONS
In this paper, we presented a novel approach for gen-

erating fast functional hardware models back-annotated with
cycle-accurate and data-dependent power and performance
estimates. Our back-annotation approach is fully automated
by integrating with commercial off-the-shelf tools for custom
hardware synthesized by high level synthesis. The proposed
power model synthesis flow exploits structural scheduling
and binding information to generate accurate and fast power
models using advanced machine learning techniques. Asso-
ciated back-annotated models capture key signal transitions
without detailed full micro-architecture simulation. Our flow
has been evaluated on several industry-strength benchmarks
and generated models. Results show that our approach is able
to achieve orders of magnitude speedup compared to gate-
level or RTL power simulation, all while producing fully
cycle-accurate timing results and estimating power with less
than 10% cycle-by-cycle and less than 1% average error. In
future work, we plan to integrate such fast and accurate power
and performance models with virtual platform or full-system
simulators to support system-level architecture exploration.
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Fig. 8. Power traces for pipelined designs.
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