
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 1

CASPHAr: Cache-Managed Accelerator Staging and
Pipelining in Heterogeneous System Architectures

Mochamad Asri, Andreas Gerstlauer, Senior Member, IEEE

Abstract—Integrating accelerators onto the same chip with
CPUs sharing the last level cache (LLC) is beneficial when CPUs
and accelerators frequently exchange data. However, if shared
data exceeds LLC capacity, expensive spills to and refetches from
DRAM will be incurred, limiting the benefits of such integrated
architectures. While this can be avoided through careful software
optimizations, such as fine-grain data tiling and accelerator
synchronization, this involves significant software changes and
programmer effort.

In this paper, we introduce CASPHAr, a LLC architecture
that performs automatic, software- and hardware-transparent
fine-grain data staging and synchronization between CPUs and
accelerators in hardware. CASPHAr tracks and synchronizes
producer and consumer accesses at cache line granularity. As
soon as some fraction of shared data is produced and becomes
ready in the LLC, the data will be delivered for processing in
the waiting consumer. Furthermore, CASPHAr extends existing
replacement policies to leverage synchronization information
for making better eviction decisions. All combined, CASPHAr
reduces data spills due to unnecessarily long lifetimes of shared
data in the cache. In addition, fine-grain staging and synchroniza-
tion inherently achieves system-level pipelining of interdependent
kernels that can outperform software optimizations. Results show
that CASPHAr can boost performance by up to 23% and achieve
energy savings of up to 22% over baseline accelerations.

Index Terms—Accelerator-rich architectures, Last level cache

I. INTRODUCTION

Accelerator-rich, heterogeneous system architectures have
arisen as a promising approach to provide massive compute
capabilities with high energy efficiency. A key challenge in such
systems is the efficient movement and exchange of data shared
between components. When accelerators are integrated as off-
chip devices placed near or in DRAM, any data exchanged
between host CPUs and accelerators has to travel between on-
and off-chip memories. Resulting round-trip data movement
overhead can account for up to 50% of total system energy [1].

Recent trends have proposed placing accelerators on the
same die as CPUs sharing the last-level cache (LLC) [2]. Such
integrated, on-chip heterogeneous architectures can minimize
or completely avoid unnecessary off-chip DRAM transfers
by allowing applications that frequently exchange data to
share data through the LLC. However, if the amount of
data exchanged between CPUs and accelerators exceeds LLC
capacity, expensive spills to and refetches from DRAM will
still take place. This can negate the performance and energy
benefits of on-chip integration.

Manuscript received April 07, 2022; revised June 11, 2022; accepted July 05,
2022. This article was presented in the International Conference on Compilers,
Architectures, and Synthesis for Embedded Systems (CASES) 2022 and appears
as part of the ESWEEK-TCAD special issue. This work was supported by
NSF grant CCF-1725743.

Mochamad Asri is with Meta, Inc. The work was performed while he
was at UT Austin. Andreas Gerstlauer is with the Electrical and Computer
Engineering Department at the University of Texas, Austin, TX 78712, USA.

Costly spills can be avoided by carefully optimizing the
software to match hardware constraints. Problem sizes can be
chunked into smaller pieces that fit into the LLC to reduce
DRAM spills to and refetches. Data partitioning and locality-
aware data placement in the memory hierarchy are widely
exploited to maximize performance gains, commonly referred
to as tiling or blocking optimizations supported by a high-
performance software library or a compiler [3], [4], [5], [6],
[7]. Using such optimizations, CPUs can stage data and invoke
accelerators repeatedly at finer sub-block granularity matching
LLC size [8]. For further performance gains, accelerator staging
on CPUs and executions of accelerators themselves can be
overlapped and pipelined across different sub-block iterations.
However, such fine-grain, block-level data staging optimizations
place a significant burden on the programmer, and software
has to be potentially re-written and re-optimized for every new
application or hardware generation.

Hardware-assisted accelerator synchronization and data
staging schemes have been proposed in prior work instead.
Full/empty bits associated with each main memory location [9],
[10] were employed early on to provide efficient fine-grain
synchronization between processors. More recently, automatic
handling of such producer/consumer synchronization has been
integrated into memory [11] and DMA [12] controllers shared
between CPUs and accelerators to enable fine-grain staging
and overlapping transparently in hardware without software
or programmer involvement. However, existing memory-level
data sharing schemes do not address the fundamental problems
associated with integrating accelerators at the cache level.
Expensive spills and refetches from/to DRAM still occur
with such schemes since data can only be exchanged at the
DRAM level. Providing an efficient hardware-assisted, fine-
grain data staging and synchronization for on-chip integrated
accelerators poses a set of uniquely different challenges.
Efficient mechanisms to track the synchronization status of
individual memory locations directly within the shared LLC
structure across both resident and evicted cachelines are
required. Furthermore, minimizing data spills within limited
LLC capacities requires approaches for intelligently managing
producer-consumer locality and data residency.

Towards those goals, we introduce CASPHAr1, a LLC ar-
chitecture for Cache-Managed, Fine-Grain Accelerator Staging
and Pipelining in On-Chip Heterogeneous Architectures. CAS-
PHAr supports transparent, efficient and seamless data sharing
between CPUs and accelerators. CASPHAr tracks, synchronizes
and coordinates production and consumption of data at cache-
line granularity directly in the LLC. Using existing cache
interfaces and stall mechanisms, CASPHAr provides drop-in

1Pronounced as ”Casper”, the friendly, transparent ghost.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 2

C

ComputeB: for(int i=0; i<m; i++){
// Pointer arithmetic setup
// int start = i*index
for(int j=start; j<n; j++)
B[j]= in[in_perm[j]] *in_scale[j];
//in_perm returns permutated index

}

B

in_perm

A

C

GEMM

out_scale

Input
Permutation

Output
Permutation

B j

i

in_scale

ComputeOut: for(int i=0; i<m; i++){
// Pointer arithmetic setup
// int start = i*index
for(int j=start; j<n; j++)
out[j]+= C[out_perm[j]]*out_scale[j];
//out_perm returns permutated index

}

C j

i

in

out_perm

out

Execution Flow
Host CPU

Compute B Read

Read

Write

Compute out

Shared Cache Accelerator Memory

B

in, in_perm,
in_scale

B
Write

C = A * B

Spill

A

Read

Read

Write

C
Spill

Read
Read

out, out_perm,
out_scale

out

Trigger Start

Sync End

Fig. 1: Data flow graph (DFG) and data movement patterns of a typical accelerated application.

synchronization and staging support for on-chip integrated
architectures without other hardware, accelerator and only
minimal software changes. A shared cache line is marked
as ready for any dependent consumer to access as soon as it
is produced. In doing so, CASPHAr reduces data spills due to
unnecessarily long lifetimes of shared data in the cache caused
by accelerator staging at too coarse granularity. Moreover,
fine-grain synchronization inherently enables overlapping and
pipelining of producer and consumer executions.

CASPHAr achieves such capabilities specifically with three
main techniques: 1) CASPHAr extends tag store bits in a
conventional cache architecture to enable producer-consumer
synchronization. 2) CASPHAr employs eviction range registers
to keep track of ready/staged cachelines that might have
gotten evicted without being consumed. In addition to tracking,
eviction registers are used to avoid unnecessary refetching
of evicted cachelines that are not ready/staged. 3) Finally,
CASPHAr extends existing replacement policies in the LLC to
synergistically and cooperatively leverage producer-consumer
information in order to manage data residency and evict staged
cache lines as soon as they are consumed.

In summary, our paper makes the following contributions:

• To the best of our knowledge, we are the first to
address the problem of cache-managed data movement and
coordination among heterogeneous system components in
on-chip integrated architectures.

• We propose a novel last-level cache architecture for
heterogeneous on-chip systems, CASPHAr, that provides
automatic and programmer-transparent accelerator staging
and pipelining optimizations in hardware. CASPHAr
uses extended tag stores and eviction range registers to
track and synchronize producer and consumer accesses at
fine cache line granularity. This minimizes spilling and
unnecessary refetching of shared data to DRAM while
maximizing execution concurrency among components.

• We introduce extensions to existing cache replacement
policies that are integrated with CASPHAr to improve
data residency and eviction decisions. Leveraging synchro-

nization information, existing policies can be extended to
evict staged lines as soon as they are consumed, which
minimizes spills due to capacity conflicts with other staged
or non-staged lines.

• Using a cycle-accurate simulator [13], we demonstrate
that CASPHAr can improve performance by up to 23%
and reducing energy consumption by 22% compared
to baseline acceleration while achieving results similar
to or better than manual system-level data movement
optimizations in software.

The rest of this paper is organized as follows: after a
motivational example and a discussion of related work in
Sections II and III, Sections IV and V present an overview
of CASHPHAr and its main design, respectively, followed by
evaluation results in Section VI. Finally, Section VII concludes
the paper with a summary and outlook.

II. MOTIVATION

To better understand the effects of system-level data move-
ment overheads and potential optimization benefits, we evaluate
a typical computation and data flow pattern in an accelerated
system. We use the so-called U-List computation in a Finite
Multipole Method (FMM) application [6], [7] as a driving
example that is representative of a wide range of patterns
in scientific and accelerated computing [8]. FMM belongs to
the broad class of N-body methods used in computational
physics and machine learning [14], [15], [7], [6], [16]. The
U-List computation approximates a dense, O(N2) matrix-vector
multiplication by a sparse, O(N) matrix-vector multiplication.

Figure 1 shows the three main parts of the FMM U-List
computation: pre-processing, the main kernel performing a
General Matrix-Matrix Multiplication (GEMM), and post-
processing. The preprocessing step applies a permutation to
the input array (“in” in Figure 1) and assembles the result into
matrix B. This step mainly consists of light-weight computation
along with data shuffling and pointer chasing. As can be seen
from the right side of the figure, pre-processing is normally
performed on the CPU to produce B as input for the GEMM.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 3

B

in(0) in(1) in(n)

CPU

in(2)

Accel

C

out(0) out(1) out(n)out(2)

in(0)

gemm(0)

in(1) out(0)

gemm(1)

in(2) …….

…….

out(i-2) in(i)

gemm(i-1)

Time

Fig. 2: Execution with software blocking & pipelining.

The GEMM kernel is then performed on an accelerator, which
will use matrix B as one of its inputs to produce matrix C
as result. Note that, depending on the size of B and the size
of the shared cache, some fraction of B might get evicted
and spilled to the main memory before it can get used by
the accelerator. In this case, the accelerator has to load some
fraction of matrix B from main memory. Once the GEMM is
complete, matrix C is sent to the host CPU, which performs
a post-processing computation to assemble the final result in
the array labeled “out”. Similarly, if the size of C is larger
than the cache, a fraction of C might get evicted and spilled
to the main memory before the host CPU can access it. In this
case, the host CPU will experience cache misses that incur
expensive main memory accesses to re-load the spilled data.

From a data movement perspective, all data exchanges
of matrices B and C between CPU and accelerator should
ideally happen exclusively through the LLC without expensive
spills to main memory. One approach to avoid costly spills
is to tile the data into smaller pieces and perform accelerator
invocations on those blocked tiles. Moreover, blocking the
problem size into sub-kernels with smaller granularity has the
added benefit that software pipelining can be applied to exploit
additional overlapping and parallelism between accelerator
and CPU, as shown in Figure 2. Instead of processing the
entire matrices B and C at once, the CPU and accelerator
operate on smaller, blocked versions of matrix B and matrix
C whose total size is equal or smaller than the LLC capacity.
In doing so, expensive data spills to the main memory are
avoided and all data remains resident in the LLC for as long
as it is needed by either component. Furthermore, with the
i-th sub-block iteration of input permutation, GEMM, and
output permutation tasks denoted as in(i), gemm(i), and out(i),
respectively, the accelerator is operating on one sub-block of
the GEMM while the CPU simultaneously performs output
and input permutations for the sub-blocks of B and C from the
previous and next iterations, respectively.

Figure 3 shows the performance gains and total number
of DRAM accesses under software blocking and pipelining
optimizations as compared to a naive acceleration. As can be
observed, software blocking reduces DRAM accesses by more
than 2x. By chunking the problem size into smaller pieces, such
a blocking approach can keep the shared data resident in the
LLC while it is alive, such that most of the data is exchanged
through the LLC. In addition, software pipelining on top of

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

Original Blocking Blocking + Overlapping

N
or

m
al

ize
d

Ac
ce

ss
es

N
or

m
al

ize
d

Cy
cl

es

FMM Execution Cycles FMM DRAM Accesses

Fig. 3: Execution cycles and DRAM accesses of original vs.
software optimizations.

blocking can exploit additional overlapping and parallelism
between accelerators and CPUs, reducing execution cycles by
up to 30% over a naive acceleration.

In conclusion, blocking optimizations can benefit in two
ways: (i) reducing DRAM accesses, and (ii) opening software
pipelining opportunities to exploit additional overlapping and
parallelism between components. However, such a software-
driven approach puts a significant burden on the programmer.
The software effort of dealing with fine-grained data staging and
synchronization can quickly outweigh the benefits and hinder
widespread adoption of accelerator-rich on-chip heterogeneous
architectures. In the next sections, we detail our cache-centric
approach to exploit (i) and (ii) transparently with minimal
software changes and to tackle associated design challenges in
on-chip integrated architectures.

III. RELATED WORK

Several prior works optimize data movement using software-
and hardware-centric solutions.
Software-centric optimizations: Manual, compiler or library
based support has been proposed to exploit parallelism and reg-
ular communication patterns in stream programs by formulating
a set of cache-aware optimizations that improve instruction
and data locality [3], [4], [5], [6], [7], [8]. All such approaches
unlock system-level gains and data movement reductions at
the expense of increased software burden.
Hardware-assisted approaches for dependent kernels: On
the hardware/architecture side, several mechanisms have been
proposed to achieve fine-grain data staging optimizations be-
tween interdependent kernels that can avoid caveats of software-
based approaches. The work in [11] has employed full/empty
bits in DRAM managed by a shared memory controller
to overlap host-to-device memory copies with computation.
They assume a discrete memory space between CPU and
accelerator and thus are limited to the context of explicit data
copy/transfer between CPU and accelerator private memories.
The scheme in [12] instead extends a DMA controller with
local full/empty information to synchronize data transfers at
cacheline granularity. However, they require modifications on
the accelerator side to comply with their design, and staging
support is limited to one direction (i.e., CPU producer and
accelerator consumer) in a DMA context with specific transfer
patterns. In both schemes, data is shared through off-chip
memories. Data exchanges still have to happen at the DRAM
level and management of limited on-chip storage capacities
is not addressed. The work in [17] has proposed throttling

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 4

of producers and consumers to avoid spills from last-level
caches. Such an approach is orthogonal to our work. CASPHAr
tackles cache-managed synchronization. By contrast, throttling
still requires synchronization, but can be applied on top of
CASPHAr to provide further gains. More recently, [18], [19],
[20] proposed methods and architectures to optimize coherence
interfaces for many-accelerator SoCs. However, coherency
management among private/shared caches is orthogonal to
data staging and synchronization issues in CASPHAr.
Hardware-assisted approaches for independent kernels: In
the context of heterogeneous systems, Lee et al. demonstrate
a cache management policy that is aware of differences in
latency sensitivity and thread-level parallelism of CPU and
GPU applications [21]. Li et al. propose a finer-grained
cache management policy to cope with heterogeneous CPU-
GPU accesses, leveraging behavior variations among various
LLC sets [22]. In particular, CPU and GPU requests are
prioritized disparately in each LLC set during cache block
insertion and promotion, based on per-core utility behavior
and per-set CPU-GPU miss counters. Such approaches have
significant advantages in that they boost performance through
microarchitecture techniques that are user-transparent. However,
these works all assume that CPUs and GPUs are co-running
independent tasks where no data sharing issues are involved.
CASPHAr is conceptually different from these approaches.
CASPHAr addresses data-sharing problems that arise when
interdependent tasks frequently exchange data.

Overall, existing works fall into either software-centric
optimizations or hardware optimizations with assumptions of
no or little DRAM-level sharing. Software-centric approaches
suffer from the cost of significant programmer effort in
dealing with system-level optimizations such as synchro-
nization, pipelining and overlapping. Existing hardware- or
microarchitecture-driven optimizations have not considered
system-level considerations of frequent data sharing between
CPUs and accelerators, or are limited to the context of off-chip
integration at the DRAM level. To the best of our knowledge,
we are the first to address the problem of cache-managed
system-level data movement coordination and orchestration in
on-chip heterogeneous architectures.

IV. CASPHAR OVERVIEW

In this section, we provide an overview of the key CASPHAr
concepts. We first explain the basic system architecture on
which CASPHAr is based. We then introduce the CASPHAr
paradigms on top of this base architecture. Finally, we demon-
strate how CASPHAr interfaces with software.

A. Base System Architecture

Figure 4 shows the baseline system architecture we assume
in this work. The accelerator shares the LLC with CPU cores.
It is coupled at the interconnect network between the L2 cache
and LLC in the same way as other cores are interconnected in
multicore systems. CASPHAr is independent of the coherency
management approach used. For the remainder of this paper
we assume accelerators to be non-coherent, which is a system-
architecture design commonly used in previous work [23],
[24]. Since the accelerator itself explicitly manages all memory

L2

CPU

L1

LLC

LSU

Dev Dev Dev Dev

① Flush all
data to LLC

Accel

③ Read data

DRAM

PEPE PE …

…

PEPE PE …
…

② Data Spill

Local Mem

SoC

Fig. 4: Baseline system architecture.

and internal scratchpad accesses, it is typically desirable to
avoid the overhead of having it participate in the coherency
protocol. Previous work has shown that enforcing coherency
between CPU and accelerators can have significant overhead,
generating significant bus and coherency traffic that potentially
limits acceleration benefits [25], [26].

Instead, we assume that the accelerator expects necessary
data to be in the LLC or DRAM when it starts computing.
Consequently, the programmer through the software ensures
explicit flushes of any dependent data to the LLC before
triggering the accelerator. This is a similar approach used
in previous work [23], [27], [28], [29]. As can be seen from
Figure 4, the CPU stages data to the accelerator by first flushing
it to the LLC. The accelerator is synchronized to not start
reading the data until the CPU completes flushing the complete
staged data. If the data footprint is below the LLC capacity,
all staged data will be resident in the LLC. However, if the
data size exceeds LLC capacity, some data will get spilled to
DRAM. Thus, when the accelerator subsequently reads the
data, it may find a fraction of it in the LLC and some other
part in DRAM due to the earlier spills.

Similarly, once the accelerator is finished computing, it writes
the result back to the LLC for the CPU to access. If result
size exceeds LLC capacity, as discussed previously, spills to
DRAM will be incurred, and the CPU may experience LLC
misses requiring some of the data to be fetched from memory
when is starts accessing the results.

B. CASPHAr System Architecture

In contrast to the base architecture, CASPHAr frames the
data staging and synchronization as a fine-grain in-cache pro-
ducer and consumer transaction. CASPHAr allows a producer
to stage data and synchronize with the consumer at cache
line granularity. Therefore, instead of waiting for the full data
footprint to be written to the LLC, CASPHAr enables CPUs
and accelerators to exchange any dependent data as soon as it
becomes ready.

Figure 5 illustrates the data movement flow in CASPHAr.
The CPU stages data to the accelerator by storing individual
items normally into a shared memory address (Write). Once
the CPU has finished writing a location, i.e. after the last write

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 5

L2

CPU

L1

LLC

LSU

Dev Dev Dev Dev

① Write & Produce

Accel

DRAM

PEPE PE …

…

PEPE PE …

…

② Read & Consume

Local Mem

SoC

Fig. 5: CASPHAr system architecture.

to a shared memory address, the CPU marks the data line as
ready in the LLC (Produce). In the process, the CPU needs to
ensure that the produced data is available in the shared LLC.
Consequently, the CPU needs a way to simultaneously flush
data to the LLC and mark it as produced.

The x86 ISA has a software flush instruction (clflush) that
evicts the targeted line all the way to DRAM, i.e. if the block
exists in the LLC, it will be invalidated and further evicted.
In our scenario, we wish to manage the eviction and keep or
store the line in the LLC by not invalidating and potentially
updating an already existing, or by allocating a new LLC line
that potentially replaces and evicts others. At the same time,
we need to provide a mechanism to indicate that a flushed line
has been produced. There are two plausible options to support
this: (1) adding a special instruction in the ISA that handles
both eviction only to the LLC and flagging as produced, or (2)
setting a configurable register in the LLC controller to identify a
range of addresses that should not be invalidated but kept/stored
and flagged when software eviction happens. We opted for
the latter implementation due to its simplicity and transparent
change from the software perspective. This approach will also
not require any modifications of the accelerator design for
cases when the accelerator is the producer.

CASPHAr then tracks the produced status of individual
cache lines in the LLC. It tracks the status even if a cache
line is spilled to and later re-fetched from main memory.
The accelerator in turn accesses any shared memory location
in a normal fashion (Read). If a shared location has not
been produced yet, CASPHAr will indicate a standard miss
condition and use regular miss handling mechanisms to block
or delay the access until the data is ready. Finally, once
the accelerator has finished accessing the shared location,
it resets the line back to the default status (Consume). We
assume that accelerators operate out of local scratchpads and
read/write shared locations only once. Under this assumption,
no modifications of accelerators are required to explicitly mark
lines as produced or consumed.

Communication of accelerator results back to the CPU
follows a similar flow, but in the opposite direction, i.e. with the
accelerator being the producer and the CPU consuming shared

data. In this case, the CPU needs a mechanism to indicate
that a shared line has been finally consumed, i.e. that the last
access has occurred. Since this is equivalent to marking the
line as candidate for eviction, we utilize the same evict-to-LLC
instruction to indicate both production and consumption of
data. Note that this will also evict data from L1 and L2 caches
to the LLC on consumption. However, since consumption is
equivalent to indicating that data will not be accessed further,
it is actually beneficial to evict it from and thus free up space
in the higher-level caches.

All combined, unlike the base architecture, a consumer in
CASPHAr does not need to wait until the full data region
has been staged. Instead, it can access any cache line as soon
as it is produced. Hence, data spills occurring in the base
architecture due to long lifetime of shared data in the cache
caused by coarse-grain data staging and synchronization can
be avoided. Moreover, CASPHAr takes advantage of such
fine-grain synchronization by inherently allowing accelerator
executions to overlap with data staging on the CPU in an out-of-
order/dataflow style. As a result, CASPHAr allows for system-
level pipelining of interdependent kernels to be seamlessly
achieved through its microarchitecture.

Overall, CASPHAr acts like a synchronized shared buffer of
arbitrary size between producers and consumers that is realized
transparently between LLC and DRAM. Note that CASPHAr
supports irregular, random and non-conforming access patterns
of producers and consumers. However, achievable benefits
depend on the order and timing of shared memory accesses
made by the involved components. CASPHAr will be able
to avoid data spills as long as the maximum number of
simultaneously alive (i.e. produced but not yet consumed)
shared data items is smaller than the LLC size. It will remain
beneficial as long as the peak shared buffer fill state is smaller
than the complete shared data region size. In the worst-case,
producers and consumers access items in opposite order, or
consumers do not start processing data until producers are
already finished. In such cases, CASPHAr will automatically
fall back to a default base architecture execution.

C. Software Interface

To fully leverage the CASPHAr concept, software will
require only minimal modifications. CASPHAr envisions phys-
ically contiguous memory regions dedicated to data exchanged
between CPUs and accelerators. Any data structures that are
shared between components are physically mapped to this
region. Such an approach is widely used to simplify accelerator
data exchange [30], [31]. The programmer can access the shared
regions from conventional user-space virtual addresses, which
are mapped to a physically contiguous memory region by
the OS. CASPHAr in turn allows the user program or OS
to configure the start and end address of the shared regions
through a set of memory-mapped configurable register in the
LLC controller. The CASPHAr cache controller will then use
this information to identify if a cacheline access belongs to a
shared region and hence requires tracking.

Such an approach does not require any modifications to the
basic application code. However, to make use of fine-grain
synchronization and overlapping opportunities, the accelerator

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 6

ComputeB: for(int i=0; i<m; i++){
// Pointer arithmetic setup
// start = i*index
for(int j=start; j<n; j++){
B[j]= in[in_perm[j]] *in_scale[j];
int flsh_cnt = CL_SIZE/sizeof(B[j]);
//Flush at end of cacheline
if(j!=0 && ((j+1)%flsh_cnt)==0)

}//in_perm returns permutated index
}

B j

i

ComputeOut: for(int i=0; i<m; i++){
// Pointer arithmetic setup
// start = i*index
for(int j=start; j<n; j++)
out[j]+= C[out_perm[j]]*out_scale[j];
int flsh_cnt = CL_SIZE/sizeof(B[j]);
//Flush at end of cacheline
if(j!=0 && ((j+1)%flsh_cnt)==0)

}//out_perm returns permutated index
}

C j

i

clflush(&B[j]); clflush(&C[out_perm[j]]);

Fig. 6: CASPHAr programming model.

Host CPU

Compute B

Read

Read

Write

Compute out

Shared Cache Accelerator Memory

B[j]

in, in_perm,
in_scale

C = A * B

A

out, out_perm,
out_scale

out

Trigger Start

…... B[n]

C[j]…...C[n]

Write &
Flush

Write

Sync End

Read

Read

Fig. 7: Execution flow on a CASPHAr system.

must be invoked to execute in parallel to the CPU. As such,
triggering of the accelerator must be hoisted to before the start
of CPU pre-processing/data preparation, and synchronizing
with its completion must be delayed until after post-processing
of the results. In the process, the software will also set and
reset the region registers in the LLC to enable and disable fine-
grain tracking and synchronization of shared region accesses.
Furthermore, the software must flag fine-grain production and
consumption of data during pre-/post-processing.

Figure 6 and Figure 7 summarize the software modifications
and resulting execution flow on a CASPHAr system. The host
CPU triggers the accelerator, and the accelerator immediately
begins its execution. The host CPU and the accelerator can then
execute in parallel, with all producer-consumer transactions
tracked and managed seamlessly by the LLC. Once the
software has finished writing the full cacheline required
by the accelerator, it uses a clflush instruction to flush the
data/cacheline and mark it as produced in the LLC. This
requires inserting corresponding primitives into the application
code. Once the CPU finishes reading any data produced by
the accelerator, clflush instructions are inserted to mark data
as consumed and invalidate it in its local L1 and L2 caches.

D. Discussions and Possible Variations

In CASPHAr, the software has to explicitly mark if a
cacheline is produced/consumed using clflush instructions.
This can be automated using compiler support as demonstrated
in prior work [32], [33], [34]. For accelerators that do not
exhibit single-read/write behavior, an explicit clflush-like
mechanism is needed to mark cache lines. For cases where
producer and consumer data access patterns are irregular and/or
data-dependent and thereby it is difficult for the compiler to
statically determine the last write/read to/from a cacheline,
an explicit synchronization hint from the programmer may

Fig. 8: CASPHAr LLC architecture.

still be required. Alternatively, marking a cacheline produced
or consumed could be associated with an event such as the
end of a kernel, instead of at single read/write granularity.
Finally, for code where using producer-consumer patterns is
particularly unsuitable, user can default to existing software-
based synchronization mechanisms.

V. CASPHAR DESIGN

In this section, we describe the CASPHAr cache architecture
that implements our fine-grained data staging and synchroniza-
tion. We start by describing the microarchitecture of CASPHAr
and its fine-grain staging and synchronization flow. We then
detail techniques to tackle challenges in performing such
synchronization in the LLC, such as a tracking mechanism of
staged data during residence as well as eviction, and CASPHAr-
aware extensions to existing replacement policies.

A. Base Cache Architecture

CASPHAr extends a conventional cache architecture to sup-
port CPU/accelerator synchronization at cacheline granularity.
In order to do so, additional meta-data bits are added to the
cache structure for every cacheline (Figure 8).

The Sh bit indicates a shared cache line between the CPU and
accelerator. As mentioned before, CASPHAr requires that any
data structures shared between the CPU and the accelerator
to be physically mapped to contiguous memory regions as
similarly adopted in related works [30], [31]. CASPHAr
distinguishes between shared regions for data transfers from
CPU to accelerator and for transfers from the accelerator back
to the CPU. CASPHAr is equipped with a set of memory-
mapped configuration registers in the LLC controller to mark
the start and end address of the two shared regions from user
or OS space. The cache controller uses this information to
identify if a cache line access belongs to a shared region and
which component is producer and consumer. If a line is in the
shared region data, its Sh bit is set to 1.

Syn C is a bit for synchronization when the CPU is the
producer and the accelerator is the consumer. It is set to 1 when
the CPU has produced the latest data ready to be consumed by
the accelerator, i.e. when the CPU issues a clflush instruction.
When the accelerator attempts to access the line, CASPHAr

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 7

Fig. 9: CASPHAr synchronization on a synchronization miss but cache hit.

Fig. 10: CASPHAr synchronization on a cache miss and cache eviction.

first checks if the Syn C bit is set to 1. If so, it means the
cache line is ready to be consumed and the accelerator will
be allowed to access the cache line and proceed accordingly
much like a typical cache hit. Otherwise, the cache line is still
being processed by the CPU and is not ready. In this case,
the accelerator will experience a synchronization miss, and
will be notified by the cache controller once the cache line
becomes ready for consumption, i.e. when the Syn C bit is set
to 1. As with any other miss, the accelerator can issue other
independent operations while waiting for that cache line to
exploit memory-level parallelism. By contrast, Syn A is the
synchronization bit used when the accelerator produces data
that later will be consumed by the CPU. Syn A is set to 1
when the accelerator finishes producing data to be consumed
by the CPU. The CPU will then similarly be synchronized
and allowed to perform operations on that cache line as soon
as the Syn A bit is set to 1. Sync C and Syn A bits are reset
whenever the accelerator or CPU, respectively, marks the data
as consumed. On the CPU side, the clflush instruction thereby
prioritizes resetting of Syn A over setting of Sync C.

Meta-data bits in the cache are initialized every time the
configuration registers are set. On every region register (re-
)configuration, the Sh bits are updated to reflect the tracking
status of every line in the cache. Furthermore, they are updated
every time a line is brought into the cache. By contrast, the Syn

bits of all lines in the cache are reset to zero on configuration
register updates (and otherwise tracked as described above). The
synchronization status of evicted lines is tracked by storing their
meta-data in off-chip memory on eviction and re-initializing Syn
bits when the line is brought back into the cache. We assume
full/empty (F/E) bits to be associated in the main memory with
each shared region at cacheline granularity, either as part of
extended memory arrays or in a separate memory region as in
prior work [9], [10], [11].

In this paper, without loss in generality, we show a CAS-
PHAr system for a one producer and one consumer scenario.
CASPHAr inherently supports multiple producer-consumer
scenarios including fork/join where each pair accesses unique
addresses. Broadcasts can be supported by turning Syn bits
into counters for a configured number of active consumers.

B. Synchronization Flow

In the following, we explain CASPHAr cacheline synchro-
nization using a simple direct-mapped LLC as example.
Synchronization miss: Figure 9 shows the synchronization
flow in CASPHAr for a synchronization miss when the
requested line is in the cache but not yet ready. In this example,
the accelerator is a consumer and the CPU is the producer of
memory address T 2. When the accelerator attempts to read T 2,
the Syn C bit is 0, indicating that the data is not ready and

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 8

is still being processed by a consumer. A moment later, the
CPU finishes processing the data and issues a software flush
to memory address T 2. This will set the Syn C and D bits
to 1, marking the cache line ready and produced. The cache
controller then wakes the accelerator up by signaling miss
completion to let it retry a read for memory address T 2, in the
same way that a cache miss wakes up a CPU instruction once
the targeted cache line is ready. This time, the Syn C bit is 1, i.e.
the line is produced and ready. The accelerator then accesses
the cache line as a hit and the process resumes. Note that
deadlocks can occur if a line is never produced. CASPHAr is
limited to regions with guaranteed producer-consumer relation.

Producer miss: Depending on the data access patterns and
capacity conflicts, some cache lines might get evicted from
the cache before they are produced. Figure 10 summarizes the
synchronization flow in a case of pure cache miss for a case
where the accelerator is the producer and the CPU the consumer.
The accelerator attempts to write to a memory address T 7.
However, cache line T 7 is not in the cache and consequently,
the request is forwarded to the DRAM through the memory
controller. Once the cache line T 7 is finally serviced, it is
inserted into the cache and the synchronization process proceeds
as explained above.

Consumer miss: In the scenario shown in Figure 10, line T 3
has to be evicted in order to make room for line T 7. However,
T 3 itself is unconsumed. As in a conventional cache, such a line
will be evicted and written back to memory. On a subsequent
consumer access to such an evicted line, a miss will normally
be serviced and the line will be brought back into the cache.
However, if an evicted line has not yet been produced, it does
not need to be brought back into the cache. It is sufficient to
let the consumer experience a synchronization miss and be
stalled until the producer updates the line.

C. Eviction and Replacement Optimizations

Eviction range registers: CASPHAr can be configured to
additionally employ a set of eviction range registers to optimize
unnecessary refetching of evicted lines. Two registers, Min and
Max, can be employed to record the range of the smallest
and largest address of produced but evicted cachelines. For
every eviction of a produced cacheline that belongs to the
shared memory region, Min and Max are updated when the
evicted address is smaller or larger that the current Min or Max,
respectively. When a consumer accesses the cache, CASPHAr
will first check if the cache has the targeted line. On a miss,
CASPHAr will consult the eviction range registers to check if
the targetted cacheline has actually been produced but evicted.
There exists two possible scenarios: 1) The cacheline’s address
is outside the range of Min and Max. This guarantees that the
cacheline has not been previously produced. The cacheline is
not fetched from memory and the consumer is stalled until the
producer updates the line (and as a result, brings it back into
the cache). 2) The targeted cacheline’s address falls into the
range of Min and Max. This in turn indicates two possibilities:
the cacheline has been produced and evicted, or due to false
positives in range tracking, the line has been evicted but not
actually produced. In either case, the line will be brought

from main memory to the LLC. CASPHAr will check the F/E
information as a part of meta-data in main memory. If it finds
the F/E bit is set, the consumer will subsequently be released.
Otherwise, the consumer will be stalled and the synchronization
will proceed normally.

In Figure 10, when the produced but unconsumed line T 3
is evicted, the Max eviction register is updated to match T 3’s
cacheline address 0xE003. As more evictions occur, the Max
eviction register is updated to 0xE080. When the CPU later
accesses T 3, it will experience a miss. CASPHAr sees the
targeted cacheline’s address 0xE003 falling into the range
defined by the Min and Max registers (i.e., the range of 0xE000
- 0xE080), and it assumes that the cache line can be accessed
but has been evicted. Consequently, it will allow the access to
proceed, issue the request to the memory controller and service
the DRAM access. By contrast, if the targeted cacheline’s
address would be outside of the Min and Max range, it indicates
that the evicted data requested by the consumer has not yet been
produced. Thus, CASPHAr will not service the miss but instead
continue and only wake up the corresponding consumer once
the data is brought into the cache and marked by its producer.

As an alternative to eviction registers, evicted cachelines can
be tracked by extending the LLC with an eviction bitvector,
where each bit of the vector will mark whether a cache line that
has been evicted has already been produced. This bitvector can
be indexed relative to the start of the physical address of the
shared region. A bitvector approach avoids any false positives
and does not require backup F/E bits in main memory. However,
it requires extra storage in the LLC with overhead that scales
linearly with the size of the contiguous shared address space.
By contrast, using two 64B eviction registers requires only
constant LLC overhead independent of the shared memory
region size. Eviction registers are optimized for the case of
linear production patterns. Alternative structures like Bloom
filters can be considered to provide different pattern-dependent
false positive vs. overhead tradeoffs.

CASPHAr-aware cache replacement: CASPHAr enables
fine-grain synchronization and data staging. However, if such
capabilities are not managed carefully, they can skew the
replacement policy’s decision in efficiently managing cache
space. A replacement policy can assign higher residence priority
for some cache lines that have been consumed recently even
though their lifetime in the cache has likely already expired.
Similarly, it can unintentionally evict some cache lines that
are ready and staged but not yet consumed. We describe
how CASPHAr addresses these challenges by helping existing
replacement policies make better decisions in the presence of
fine-grain data-staging and synchronization.

CASPHAr allows any existing replacement policy to be
extended to leverage fine-grain synchronization information.
A replacement policy can use feedback from CASPHAr by
prioritizing evictions for lines that have been consumed, i.e.
whose lifetime has likely already ended. In doing so, CASPHAr
can inherently and as quickly as possible make room for
other staged lines that are ready for consumption in the LLC.
CASPHAr achieves such a goal as follows: When the cache
has to evict/replace a line to make room for a new one, it will

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 9

TABLE I: System configuration.
Parameter Core Model
Issue Width 5

Cache Block Size 64 Bytes
L1-I$ Size 32kB, 8-way
L1-D$ Size 32kB, 8-way

L2 Size 256kB, 8-way
LLC Size 4MB, 16-way

LLC Inclusivity Non-inclusive
LLC Repl. Policy LRU, TRRIP [21], Hawkeye [35]

DRAM
DDR Type DDR3-1600

Specification Micron MT41J256M4

first look for replacement candidates that have already been
consumed. Consumed lines are identified using an extra bit
that is set when a ready line is accessed. If such a consumed
line exists, CASPHAr will evict that line. If there is no
such cacheline, it will fall back to applying the conventional
replacement policy. A further extension will thereby prioritize
not-ready over ready lines for eviction, ensuring that ready
lines remain resident as long as possible.

VI. EVALUATION

In this section, we present our evaluation of CASPHAr
across different applications and accelerator models.
Baseline: We use a modified version of MARSSx86 [13] as the
cycle-accurate full-system simulator for architecture evaluation.
This simulator has been calibrated to model the performance of
a representative recent x86 CPU baseline architecture targeting
HPC applications. We extend the baseline LLC model to
implement CASPHAr. To show CASPHAr’s compatibility with
modern replacement policies, we integrate three replacement
policies (LRU, TRRIP [21] and Hawkeye [35]) with CASPHAr.
TRRIP extends RRIP [36] to be aware of different memory
access behaviour among heterogeneous cores. Hawkeye was
the winner of the most recent Cache Replacement Champi-
onship [37]. DRAMSim2 [38] is used to model DRAM delay
and energy. Table I shows the detailed system configuration.
Overhead: Using Cacti [39], we estimate CASPHAr to
add 0.5% area and 0.2%/0.5% dynamic power/static energy
overhead for additional tag bits to the LLC while not affecting
access or cycle times. Compared to tag and data arrays, which
generally account for around 99% of cache area [40], the
overhead for 128 eviction register bits and additional control
logic for eviction register and synchronization bit setting and
checking as part of existing hit/miss handling logic is assumed
to be negligible. Overall, CASPHAr overheads are small,
especially considering that LLCs typically contribute only up
to 10% to energy at the full system level, which is dominated
by CPUs and DRAMs [41], [8].
Comparison over prior art: We compare CASPHAr against
a baseline acceleration (Orig) and prior art that employs a
full/empty bit approach in main memory (FE-DRAM) [11].
Full/empty bits use meta-data to help with data exchange and
synchronization. We compare a basic CASPHAr realization
for cache-managed synchronization (CASPHAr-Base) to CAS-
PHAr with eviction register and different replacement policy
extensions (CASPHAr-*). Base and FE-DRAM approaches use
LRU policies by default.

Fig. 11: DRAM accesses.

Accelerators and benchmarks: In addition to the FMM ap-
plication introduced earlier, we use six accelerated applications
from the MachSuite benchmark set [42] that cover a range
of different producer-consumer patterns. Other than spmv,
we included only benchmarks that were not already cache-
contained. We also excluded benchmarks that required special
dependencies not available on our simulator. All applications
consist of data staging and kernel execution, where the CPU
performs the data staging and invokes the accelerator to carry
out the kernel execution. We build a cycle-accurate model for
each accelerated kernel in the MachSuite applications using the
Aladdin tool flow [43]. In all cases, accelerators are integrated
into the full-system model at the shared on-chip LLC.

A. Performance and Energy Results

DRAM accesses: Figure 11 shows the normalized DRAM
accesses across different MachSuite applications. We add a
comparison to oracle execution with infinite LLC size (Orig-
Oracle). Executions under an FE-DRAM approach generate
an extra 10% of DRAM accesses overhead on average over
original baseline acceleration, mainly due to not only the data
exchanges but additional synchronization between CPU and
accelerator having to occur in main memory. Such an overhead
can be reduced with CASPHAr-Base, where a consumer by
default inquires the LLC first for synchronization information
and only accesses DRAM if the targeted cache line is not
resident in the LLC. However, this approach still incurs 2%
more DRAM accesses on average. By contrast, with the help
of eviction range registers, unnecessary and expensive DRAM-
level meta-data checking including associated cache pollution
is avoided. CASPHAr-* reduces DRAM accesses by up to 35%
and 16% on average. False positives in range tracking are less
than 0.01% for all benchmarks. In spmv, the problem size
is small enough to already be cache-contained in baseline
acceleration. Nevertheless, FE-DRAM and CASPHAr-Base
still see an increase in DRAM accesses due to extra traffic
generated by meta-data checking. In case of fft, execution
with CASPHAr does not yield significant DRAM access
savings despite significant saving opportunities existing as
demonstrated by the oracle case. We observe that this is caused
by the opposing order of shared data accesses made by the
data staging and fft kernel execution in the application. As
discussed in Section IV-B, when such a case occurs, producer-
consumer transactions are restricted to a very minimal overlap.
Orig-Oracle achieves the minimal DRAM accesses achievable
among all optimizations. In Orig-Oracle, capacity conflicts are
completely avoided, leaving only cold misses.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 10

Fig. 12: DRAM energy.

Fig. 13: Execution cycles.

DRAM energy: We further compare total (static + dynamic)
DRAM energy consumption under original acceleration and
CASPHAr in Figure 12. Energy savings of up to 65% and 22%
on average can be observed with CASPHAr-*. By contrast, FE-
DRAM and CASPHAr-Base experience fewer savings averaging
16% and 18%, respectively, mainly driven by reductions in
static energy due to shorter runtimes, where CPU energy
savings will follow accordingly. CASPHAr achieves on average
an additional 26% dynamic DRAM energy reduction over FE-
DRAM due to fewer DRAM accesses. Among the applications,
fft has limited energy savings. As discussed above, fft does not
experience DRAM access reductions and this directly translates
into minimal energy savings.

Performance: Figure 13 shows the normalized execution time
across different MachSuite applications. Accelerations under
FE-DRAM can improve performance by up to 52%, averaging
an 18% performance boost. By contrast, CASPHAr reduces
execution time by up to 71% and 23% on average using an
extended LRU replacement policy, outperforming FE-DRAM by
up to 40% and 6.7% on average. Despite a decrease in DRAM
accesses, CASPHAr does not see performance gains for kmp
and nw due to the latency-tolerant nature of these benchmarks.
In spmv, even though the problem size already fits into the
cache, CASPHAr still improves performance by 3% through
fine-grain system-level pipelining and overlapping at cacheline
granularity. By contrast, fft does not benefit from CASPHAr
as the opposing order of data accesses in the applications also
prevents pipelining and overlapping of dependent data.

Replacement policies: To further demonstrate the benefit of
extended replacement policies, we study performance when
varying the consumer access rate relative to the producer rate
on a cache-sensitive stencil application. Figure 14 presents
normalized runtime of CASPHAr using different replacement
policies under varying relative consumer rates for the sten-
cil application. We compare unmodified (CASPHAr-*-Orig)

Fig. 14: Sensitivity to consumer slowdown rate (stencil).

Fig. 15: Fraction of staged lines evicted before consumed.

policies against default CASPHAr policies that prioritize
eviction of consumed lines (CASPHAr-*) and extended policies
(CASPHAr-*-Ext) that further de-prioritize eviction of ready
but unconsumed lines. We slow down the consumer access
rate by decreasing its frequency. As the ratio of consumer
to producer rate becomes smaller, CASPHAr experiences
significant slowdown. A relatively lower consumer rate results
in shared lines accumulating in the cache and at one point
exceeding cache capacity. When such a case occurs, the
replacement policy becomes critical in alleviating system-wide
slowdown. For a medium slowdown of 1:64, CASPHAr-* can
reduce the performance degradation by to 10% for LRU, and
14% for TRRIP and Hawkeye. For a severe slowdown of 1:128
with more cache pressure, CASPHAr-* can reduce performance
degradation by 2%, 4.3% and 10% for LRU, TRRIP and
Hawkeye. Further de-prioritization of ready lines (CASPHAr-
*-Ext) can boost performance by an additional 8%, 5.7% and
3%, respectively. All in all, With extended policies and better
eviction decisions, CASPHAr can moderate the performance
penalty due to cache capacity conflicts as much as possible.

B. Why CASPHAr Works

In the following, we show additional details about CASPHAr
and the fundamental reasons and limitations in improving
performance and energy over a baseline acceleration.

DRAM spills: Figure 15 shows the normalized breakdown
of evicted shared data across applications. We measure the
fraction of data that was produced but evicted before consumed.
As shown in Figure 15, the fraction of data that is not been
consumed before it gets evicted, i.e. that has to be spilled to
DRAM and eventually be brought back, is more than 50% and
up to 100% in the baseline acceleration. In other words, coarse-
grain data staging and synchronization experience significant
data spills from LLC to DRAM. CASPHAr can avoid such
unnecessary spills when coupled with any replacement policy.
With CASPHAr, the cache inherently lets the consumer access

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 11

Fig. 16: Histograms of produced but unconsumed shared cache
line occupancies.

the staged data in a timely fashion before it gets evicted.
CASPHAr does not show significant benefits in the case of
fft due to opposing order that makes data spills unavoidable.
In spmv, the problem size fits into the LLC capacity, i.e. only
limited data spills are observed even in the baseline case. Note
that while DRAM spills directly influence energy, depending
on latency hiding in the application, savings in spills do not
necessarily translate into performance benefits. At the same
time, fine-grain pipelining and overlapping in CASPHAr can
improve performance even when there are no DRAM gains.

Cache occupancy: CASPHAr avoids data spills by avoiding
unnecessarily long occupancy of shared data in the cache
through its fine-grain producer-consumer transactions. To
demonstrate the actual benefit of such a technique, we profile
the distribution of shared data occupancy in the LLC. We
define shared data occupancy as the number of produced but
unconsumed cache lines that are resident in the cache on every
cache access. Figure 16 shows the shared data occupancy of
kmp and fft applications. Here, 64K-128K is the range where the
number of produced cachelines waiting in the cache exceeds the
LLC capacity. As can be seen from Figure 16, in the kmp case,
more than 30% of the time, Orig execution falls into the range
exceeding LLC capacity. As a result, capacity conflicts can not
be avoided. By contrast, CASPHAr conceptually ”pushes” the
distribution of shared data occupancy to the lower end of the
range. Consequently, CASPHAr maintains a relatively smaller
average and maximum shared data occupancy in the cache that
does not cause capacity conflicts in the first place. By contrast,
in the fft case, due to incompatible access order, CASPHAr
does not significantly alter the occupancy distribution.

Shared data lifetime: We further demonstrate how CASPHAr
unlocks inherent system-level pipelining and overlapping
opportunities. We measure the distribution of the shared cache

Fig. 17: Histograms of produced shared cache line lifetimes
until consumed.

line lifetimes in the LLC. We define lifetime as the number of
execution cycles from the moment a cache line is produced
until it gets consumed. A shorter lifetime implies that fine-grain
staging and synchronization are effectively achieved. Figure 17
illustrates that CASPHAr shortens the lifetime of cache lines
by a significant margin over the baseline acceleration in the
kmp application. CASPHAr effectively achieves a very short
waiting time and delay between producer and consumer. This
enables CASPHAr to free up cache space in a timely manner
to make room for other cache lines. While CASPHAr is able
to shift the lifetime distribution in kmp, in fft, average lifetime
is reduced by less than 1%. Again, this is due to the nature of
regular but opposing streaming order between data staging and
kernel acceleration in fft. Both kmp and md have regular and
matching producer and consumer patterns, where CASPHAr
can reduce lifetime by 99% down to less than 500 cycles.
Other benchmarks (spmv, stencil, nw) have regular producer
but irregular consumer patterns with average lifetimes of 1,800-
80,000 cycles and reductions of 30%-52% using CASPHAr.

Comparison to manual software optimizations: Finally, we
discuss how CASPHAr compares against manually applied
software blocking and pipelining optimizations. Figure 18
shows normalized execution cycles and DRAM accesses of
CASPHAr compared to other software-centric approaches for
the FMM and spmv applications. As mentioned before, FMM
has a large data footprint while spmv has a relatively small
footprint that natively fits into the cache. As can be seen
from the figure, CASPHAr can unlock performance and off-
chip access benefits similar to the manually tuned FMM. In
case of the already cache-contained spmv, there is performance
improvement from manual software optimizations. With a small
data footprint and a coarse-grain accelerator, manual software
optimizations are limited to only allowing accelerator execution

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 12

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Original Blocking Blocking + Overlapping CASPHAr

N
or

m
al

ize
d

Ac
ce

ss
es

N
or

m
al

ize
d

Cy
cl

es
FMM Execution Cycles spmv Execution Cycles
FMM DRAM Accesses spmv DRAM Accesses

Fig. 18: Execution cycles and DRAM accesses of CASPHAr-
LRU vs. manual optimizations (FMM and spmv).

once the CPU finishes preparing a minimum amount of
data. A too fine-grained software blocking reduces accelerator
efficiency and increase synchronization overhead. This forces
the application to run sequentially even though a fraction of
staged data may be ready earlier. CASPHAr, by contrast, is
free from such restrictions. Since staged data synchronization
is taken care of by the hardware, the accelerator can be
allowed to start executing and to consume data as soon as
it is ready without necessarily waiting for the host CPU
to fully finish staging all data. As such, CASPHAr is able
to improve spmv performance by 3%. Overall, CASPHAr
can transparently achieve the same and in some cases better
performance improvements than what is possible with complex
manual software optimizations.

VII. SUMMARY AND CONCLUSIONS

In this paper, we presented CASPHAr, a novel last-level
cache architecture that supports efficient accelerator staging
and transparent fine-grain data movement orchestration by
synchronizing producer and consumer accesses at cacheline
granularity. CASPHAr tracks the synchronization status of in-
dividual cachelines across both resident and evicted cachelines,
and it extends existing replacement policies to intelligently
managing producer-consumer locality and data residency. In
doing so, CASPHAr effectively reduces expensive spills and
refetching to/from DRAM. Moreover, CASPHAr inherently
realizes system-level pipelining between interdependent kernels
that unlock additional performance gains. CASPHAr can
achieve similar or better results than manual system-level data
movement optimizations in software, improving performance by
up to 23% and reducing energy consumption by 22% compared
to baseline acceleration.

REFERENCES

[1] J. Choi and R. W. Vuduc, “Analyzing the energy efficiency of the fast
multipole method using a DVFS-aware energy model,” in IPDPSW, 2016.

[2] N. Brookwood, “AMD Fusion Family of APUs: Enabling a Superior
Immersive PC experience,” 2012. AMD White Paper.

[3] J. Sermulins et al., “Cache aware optimization of stream programs,”
SIGPLAN Not., vol. 40, no. 7, 2005.

[4] K. Goto and R. Van De Geijn, “High-performance implementation of
the level-3 BLAS,” ACM TOMS, vol. 35, no. 1, 2008.

[5] K. Fatahalian et al., “Understanding the efficiency of GPU algorithms for
matrix-matrix multiplication,” SIGGRAPH/EUROGRAPHICS Conference
on Graphics Hardware, 2004.

[6] D. Lee et al., “A distributed kernel summation framework for general-
dimension machine learning,” Statistical Analysis and Data Mining,
vol. 7, no. 1, 2014.

[7] D. Malhotra and G. Biros, “A distributed-memory fast multipole method
for volume potentials,” ACM TOMS, vol. 43, no. 2, 2016.

[8] M. Asri et al., “Hardware accelerator integration tradeoffs for high-
performance computing: A case study of GEMM acceleration in N-body
methods,” IEEE TPDS, vol. 32, no. 8, p. 2035–2048, 2021.

[9] G. Alverson et al., “Tera hardware software cooperation,” in SC, 1997.
[10] A. Agarwal et al., “The MIT Alewife machine: Architecture and

performance,” in ISCA, 1995.
[11] D. Lustig and M. Martonosi, “Reducing GPU offload latency via fine-

grained CPU-GPU synchronization,” in HPCA, 2013.
[12] Y. S. Shao et al., “Co-designing accelerators and SoC interfaces using

gem5-Aladdin,” in MICRO, 2016.
[13] M. Asri et al., “Simulator calibration for accelerator-rich architecture

studies,” in SAMOS, 2016.
[14] J. Dongarra and F. Sullivan, “The top 10 algorithms,” CiSE, vol. 2, no. 1,

pp. 22–79, 2000.
[15] J. Board and K. Schulten, “The fast multipole algorithm,” CiSE, vol. 2,

no. 1, pp. 76–79, 2000.
[16] A. Gray and A. Moore, “N-body Problems in Statistical Learning,” in

NeurIPS, 2000.
[17] J. Hestness, Synchronization and Coordination in Heterogeneous Proces-

sors. PhD thesis, University of Wisconsin, 2016.
[18] J. Alsop et al., “Spandex: A flexible interface for efficient heterogeneous

coherence,” in ISCA, 2018.
[19] K. Bhardwaj et al., “A comprehensive methodology to determine optimal

coherence interfaces for many-accelerator SoCs,” in ISLPED, 2020.
[20] J. Zuckerman et al., “Cohmeleon: Learning-based orchestration of

accelerator coherence in heterogeneous SoCs,” in MICRO, 2021.
[21] J. Lee and H. Kim, “TAP: A TLP-aware cache management policy for

a CPU-GPU heterogeneous architecture,” in HPCA, 2012.
[22] Z. Li et al., “Set variation-aware shared LLC management for CPU-GPU

heterogeneous architecture,” in DATE, 2018.
[23] D. Giri et al., “Accelerators and coherence: An SoC perspective,” IEEE

Micro, vol. 38, no. 6, 2018.
[24] E. G. Cota et al., “An Analysis of Accelerator Coupling in Heterogeneous

Architectures,” in DAC, 2015.
[25] A. Boroumand et al., “LazyPIM: An efficient cache coherence mechanism

for processing-in-memory,” IEEE CAL, 2017.
[26] S. Xu et al., “CuckooPIM: An efficient and less-blocking coherence

mechanism for processing-in-memory systems,” in ASPDAC, 2019.
[27] K. Hsieh et al., “Accelerating pointer chasing in 3D-stacked memory:

Challenges, mechanisms, evaluation,” in ICCD, 2016.
[28] M. Gao et al., “Practical near-data processing for in-memory analytics

frameworks,” in PACT, 2015.
[29] S. Xu et al., “PIMCH: Cooperative memory prefetching in processing-

in-memory architecture,” in ASPDAC, 2018.
[30] S. Haria et al., “Devirtualizing Memory in Heterogeneous Systems,” in

ASPLOS, 2018.
[31] J. Gandhi et al., “Range translations for fast virtual memory,” IEEE

Micro, vol. 36, no. 3, 2016.
[32] L. Choi and P.-C. Yew, “Hardware and compiler-directed cache coherence

in large-scale multiprocessors: Design considerations and performance
study,” IEEE TPDS, vol. 11, no. 4, pp. 375–394, 2000.

[33] A. Yarkhan et al., “Porting the PLASMA numerical library to the
OpenMP standard,” Int. J. Parallel Program., vol. 45, no. 3, 2017.

[34] D. E. Maydan et al., “Array-data flow analysis and its use in array
privatization,” in POPL, 1993.

[35] A. Jain and C. Lin, “Back to the future: Leveraging Belady’s algorithm
for improved cache replacement,” in ISCA, 2016.

[36] A. Jaleel et al., “High performance cache replacement using re-reference
interval prediction (RRIP),” in ISCA, 2010.

[37] A. Jain and C. Lin, “Hawkeye: Leveraging Belady’s Algorithm for
Improved Cache Replacement,” in The 2nd Cache Replacement Champi-
onship, 2017.

[38] P. Rosenfeld et al., “DRAMSim2: A cycle accurate memory system
simulator,” IEEE CAL, vol. 10, no. 1, 2011.

[39] R. Balasubramonian et al., “CACTI 7: New tools for interconnect
exploration in innovative off-chip memories,” vol. 14, no. 2, 2017.

[40] A. Butko et al., “Open2C: Open-source generator for exploration of
coherent cache memory subsystems,” in MEMSYS, 2018.

[41] A. Boroumand et al., “Google workloads for consumer devices: Mitigat-
ing data movement bottlenecks,” in ASPLOS, 2018.

[42] B. Reagen et al., “MachSuite: Benchmarks for accelerator design and
customized architectures,” in IISWC, 2014.

[43] Y. S. Shao et al., “Aladdin: A pre-RTL, power-performance acceler-
ator simulator enabling large design space exploration of customized
architectures,” in ISCA, 2014.

	Introduction
	Motivation
	Related Work
	CASPHAr Overview
	Base System Architecture
	CASPHAr System Architecture
	Software Interface
	Discussions and Possible Variations

	CASPHAr Design
	Base Cache Architecture
	Synchronization Flow
	Eviction and Replacement Optimizations

	Evaluation
	Performance and Energy Results
	Why CASPHAr Works

	Summary and Conclusions
	References

