
1

Characterizing Machine Learning-based Runtime
Prefetcher Selection

Erika S. Alcorta∗†, Mahesh Madhav†, Richard Afoakwa†, Scott Tetrick†,
Neeraja J. Yadwadkar∗‡, Andreas Gerstlauer∗

∗The University of Texas at Austin. †Ampere Computing. ‡VMWare Research.
Abstract—Modern computer designs support composite

prefetching, where multiple prefetcher components are used
to target different memory access patterns. However, multiple
prefetchers competing for resources can sometimes hurt
performance, especially in many-core systems where cache
and other resources are limited. Recent work has proposed
mitigating this issue by selectively enabling and disabling
prefetcher components at runtime. Formulating the problem
with machine learning (ML) methods is promising, but efficient
and effective solutions in terms of cost and performance
are not well understood. This work studies fundamental
characteristics of the composite prefetcher selection problem
through the lens of ML to inform future prefetcher selection
designs. We show that prefetcher decisions do not have
significant temporal dependencies, that a phase-based rather
than sample-based definition of ground truth yields patterns
that are easier to learn, and that prefetcher selection can be
formulated as a workload-agnostic problem requiring little
to no training at runtime.

I. Introduction
Modern processors combine multiple prefetcher compo-

nents that cover a wider range of memory access patterns than
monolithic prefetchers [2], [7], [8]. This, however, increases
the number of prefetches that compete with each other, which
can lead to contention and pollution of shared resources like
memory bandwidth and cache space [4], [8]. This is especially
critical in multi-core systems, where enabling prefetching can
sometimes hurt performance depending on the workload [5].
Consequently, modern processors offer users the ability to
enable/disable prefetcher components through registers [3],
[8], but determining the optimal prefetcher configuration for
any application is a challenging task.

Previous research has explored various techniques for tun-
ing prefetcher component selection at runtime using system
measurements typically obtained from hardware counters.
Some studies use heuristics to repeatedly iterate over and
rank prefetcher configurations during program execution [6],
[8], [9]. However, exhaustively exploring configurations at
runtime to make decisions misses performance opportunities
and is not scalable [4]. More recently, the use of machine
learning (ML) methods has shown promise [2]–[4]. However,
these studies lack an in-depth analysis to show whether their
formulations are efficient and well-suited for this problem.
Additionally, proposed models, e.g. using deep reinforcement
learning, are expensive to deploy on a real-world platform.
In this work, we investigate fundamental characteristics

of ML-based techniques to manage prefetcher selection on
a state-of-the-art many-core SoC. Our goal is to provide
data-driven insights that help designers find the right ML
formulation for their specific needs. Results of our study can
inform the design of novel prefetcher selection frameworks,

TABLE I: List of workloads.
Benchmark suite Workload names
SPEC CPU 2017
(multi-programmed)

perlbench (S0), gcc (S1), mcf (S2), omnetpp
(S3), xalancbmk (S4), x264 (S5), deepsjeng
(S6), leela (S7), exchange2 (S8), xz (S9)

DaCapo
(multi-threaded)

avrora (D0), biojava (D1), cassandra (D2),
graphchi (D3), h2 (D4), h2o (D5), lusearch
(D6), tomcat (D7), xalan (D8)

Renaissance
(multi-threaded)

als (R0), finagle-http (R1), fj-kmeans (R2),
gauss-mix (R3), naive-bayes (R4), stm-
bench7 (R5), scrabble (R6)

TABLE II: List of hardware counter features.
Instr. per cycle (IPC) Cache miss per 1k instr.
Branch miss per 1k instr. L2I refills to branch miss ratio
Mem. acc. per 1k instr. Pref. refills to reqs. ratio
Cache miss to mem. acc. ratio L2D refills to miss ratio
Pref. refills ratio Pref. refills to cache miss ratio
Pref. reqs. to mem. acc. ratio

e.g., in terms of guiding the formulation of the problem as
either supervised or reinforcement learning.
We study temporal causality, selection decision frequency,

and policy generalization. The characterization of temporal
causality measures the duration of the performance impact
of a prefetcher selection decision. This is important to
study since the complexity of the problem increases with
longer temporal dependencies. We further study the optimal
prefetcher selection decision frequency. We analyze the trade-
off between changing selection decisions rapidly to maximize
performance and finding stable behaviors that are easier to
learn. Lastly, the study of policy generalization investigates
whether the problem is workload-agnostic, i.e., a model’s
expected performance is consistent for any unseen workload
or whether a selection model needs updates during runtime
as workloads change.

II. Experimental Setup
1) System: Our baseline system is AmpereOne™, a state-of-

the-art cloud-scale many-core platform that is representative
of the high-end server SoCs available in the market in 2023.
All modern server CPUs are built with multiple prefetchers,
along with controls that allow them to be enabled and disabled.
Our platform has 160 cores, and runs Fedora Linux 36 for
aarch64. Each core has an L2 prefetcher subsystem that consist
of four distinct prefetchers: a Best Offset Prefetcher (BOP), a
Second-Best Offset Prefetcher (SBOP), a Next Line Prefetcher
(NLP), and a Spatial or Adjacent-Sector Prefetcher (SP). All
prefetchers can be enabled independently except SBOP, which
can only be enabled if BOP is enabled. As such, there are 12
valid prefetcher configurations. The default configuration on
the platform is to only enable BOP.
2) Data Collection: We collected data from various multi-

programmed and multi-threaded benchmark suites used in



2

0.8

0.9

1.0
medium short

c1
all on
dis. NLP
dis. SP

all offall on
default

dis. NLP
dis. SP

c2

0.0
all offall on

default
dis. NLP

dis. SP

c2

No
rm

al
ize

d 
IP

C

Fig. 1: Impact of the choice of prefetcher configuration c1 in the first region
of 500.perlbench on the first 10 samples (left) and first sample (right) of the
second region for different values of c2.

cloud-scale performance evaluations to exercise multiple cores
(see Table I). For each benchmark we collected one trace per
prefetcher configuration. Each trace consists of 9 hardware
counters sampled every 100ms with Linux’s perf tool. The
absolute values of the hardware counters are transformed
into 11 features, listed in Table II.

3) Problem Formulation: The goal of a prefetcher selection
policy is to minimize the execution time of a workload. We
reformulate this goal into smaller sub-goals that maximize
the IPC of each sample, since IPC is easily available for
offline explorations and correlates with execution time for
single-threaded benchmarks. Note that for multi-threaded
results, however, IPC is not necessarily indicative of observable
performance differences. We use ρt to represent the IPC of a
sample at time t. At each time step t, a prefetcher selection
model should select an output that will be set in the next
step, yt+1, with the goal of maximizing the IPC of future
samples ρt+k, k ≥ 1. The output is a one-hot encoded vector,
yt+1 ∈ {0, 1}N , where N is the number of prefetchers, and
each element in the vector indicates whether the prefetcher
should be on or off.

III. Characterization of Temporal Causality
We study the impact of prefetcher selection decisions on

the performance of future samples. Formally, we consider that
the selection yt+1 made at time t might not only influence the
performance of the next sample, ρt+1, but also the performance
in future samples, ρt+k, k > 1. This may be true if, for instance,
the prefetched lines brought to the cache are used in more
than one future sample. Therefore, it is important to design
an ML formulation that considers the extent of the impact of
prefetcher selection decisions across time.
Methodology: We partition a workload into two regions and
assign a different prefetcher configuration to each region. We
refer to the configuration used in the first and second regions
as c1 and c2, respectively. We then explore whether the choice
of c1 impacts the short-, medium-, or long-term performance
in the second region and how this impact varies with different
values of c2. Each combination is executed 10 times to reduce
noise in our results. We analyze the short-, medium-, and
long-term impact in the second region by measuring the
performance of the first sample, the first 10 samples, or the
full second region, respectively.
We show representative results using one benchmark,

500.perlbench. We performed the same experiment on other
benchmarks and observed overall similar results. The best
static prefetcher configuration for 500.perlbench is all on,
followed by enable all except SP (dis. SP) and enable all

except NLP (dis. NLP). We selected these three configurations
for c1, as it is likely that they will be selected by a good model.
We also explored these three configurations in addition to all
off and the platform’s default configuration for c2.
Results: Fig. 1 shows the medium- and short-term IPC results
for each combination of c1 and c2 normalized to c1 = all on
and c2 = all on. Results for long-term effects were very similar
to medium-term effects; thus, we only show medium-term
results in our plot. Each group of bars shows how the choice
of configuration c1 in the first region affects medium- or short-
term performance in the second region for different choices of
c2. Higher IPC variations within bar groups indicate a stronger
dependency of second region performance on the choice of
c1, indicating a temporal impact of decisions. Medium-term
results do not show any significant variations across c1 values,
while short-term measurements do. This suggests that there
is only a short-term impact of the selection for the current
sample on the performance of the immediately following
sample. However, even this relationship is weak, and the best
selection of c2 is the same regardless of which configuration
was selected for c1.
Takeaway: Given the current sample, the selection of a
prefetcher does not depend on past history, suggesting that
models can disregard temporal dependencies and make decisions
looking at samples in isolation.

IV. Characterization of Decision Freqency
We next study how often to adjust the prefetcher selec-

tion. Optimally selecting prefetcher configurations requires
adapting to changes in workloads, which represent dynamic
behaviors at different frequencies. Short-term effects result
in changes on a sample-by-sample basis, whereas long-term
effects occur due to phase changes and may last multiple
samples [1]. This section explores trade-offs between per-
sample and per-phase decision frequencies.
Selecting the prefetcher that achieves the highest perfor-

mance in each sample yields the highest expected performance.
However, if the model can only react to changes, its decisions
will lag by at least one sample, and per-sample selections
may lead to sub-optimal decisions when a workload exhibits
high short-term variations. In the worst case, a model will
always make wrong decisions when presented with a rapid
change rate. Additionally, per-sample decisions may display
complex relationships between inputs and outputs that are
harder to discern for models.

By contrast, a model can only adjust the prefetcher config-
uration when a phase change occurs, where the configuration
that yields the highest average performance throughout each
phase is selected. Since phases are typically stable and last
multiple samples, the change rate is lower and per-phase
labels may present better separability (in terms of mapping
inputs to outputs), making it easier for ML models to learn
patterns. However, a per-phase selection frequency may miss
short-term performance optimization opportunities.
Methodology: We characterize selection frequency by com-
paring the expected performance of phase- and sample-based
decisions. To obtain estimations of such expected performance,
we align the samples of the collected traces, compare the IPC



3

S0 S1 S2 S3 S4 S5 S6 S7 S8 S9 D0 D1 D2 D3 D4 D5 D6 D7 D8 R0 R1 R2 R3 R4 R5 R60%

5%

10%

15%

20%

25%

30%

IP
C 

Im
pr

ov
em

en
t

sample, proactive
sample, reactive

phase, proactive
phase, reactive

static

Geomean
Fig. 2: Comparison of average IPC improvement of sample-based and phase-based proactive and reactive predictions.

of each sample to obtain the per-sample labels, and generate
workload phases to obtain per-phase labels as follows:

1) Trace Alignment: The selection of prefetchers directly
affects the workload’s runtime and, hence, the length of
different traces collected for the same workload. We align the
samples of all traces from the same workload to be able
to compare each sample’s performance across prefetcher
configurations. We align traces based on the number of
executed instructions, such that all traces will have the same
number of samples T ′, where all aligned samples with the
same index t′, Xn

t′ ∀n ∈ 1, .., N, can be compared to each other.
We use superscript, n, to index a trace of the same workload
but with different prefetcher configurations.

2) IPC Estimation: Once the traces are aligned, we compute
the IPC of each sample in each aligned trace, ρi

t′ . We can then
generate an oracle prefetcher selection sequence by selecting
the prefetcher configuration with the highest IPC for each
sample, ϕ∗t′ = maxi ρ

i
t′ . Aligned traces also provide a rapid

way to estimate the expected performance of a prefetcher
selection policy. Given a sequence of prefetcher selections
for a workload, ϕt′ , we can estimate the average IPC of that
sequence as ρ̄ = 1

T′
∑T′

t′=1 ρ
ϕt′
t′ .

3) Phase Generation: We aim to find stable phases that
maximize the average IPC. Recent work proposed filtering
and clustering-based methods to identify stable workload
phases [1]. This requires tuning multiple hyperparameters
for: (1) selecting a clustering method between k-means or
gaussian mixture models, (2) selecting the method’s input
features, (3) determining the filter size, and (4) determining
the number of clusters. We formulated the tuning process as
an optimization problem that selects the hyperparameters that
maximize the average phase-based IPC, and used Monte-Carlo
tree search to find these parameters.

4) Predictions: We study proactive and reactive predictors
for both sample-based and phase-based selection frequencies.
The proactive predictor assumes oracle knowledge about
future workload behaviors, while the reactive predictor makes
a future decision with only the information available at any
given time. Specifically, at time t, the proactive predictor
has information about Xt+1 and can therefore select the best
configuration for the next period, yt+1. By contrast, a reactive
predictor at time t only has information about Xt and assumes
that the best selection for yt is also the best for yt+1.
Results: Fig. 2 illustrates the results of phase-based and
sample-based selections compared to a static oracle that selects
the best fixed prefetcher for each program, with all results
normalized to the platform’s default configuration. Results
show that depending on diversity of workload behavior,

dynamic prefetcher selection can improve IPC over the best
static selection by up to 2x on average. Sample-based models
generally perform better than phase-based ones since they
can select the best configuration for each individual sample.
The best-performing model is a proactive sample-based model
with an average IPC improvement of 8%. However, this drops
to 5.8% for a reactive sample-based model in which predictions
lag behind the ground truth in every sample. By contrast,
phase-based models achieve similar average IPC improvements
of 4.3-4.4% in both their reactive and proactive configurations.
Takeaway: A sample-by-sample selection approach yields
higher performance, but to maximize its performance, an
accurate prediction of future hardware counter values is needed.
A phase-based approach can achieve comparable performance
without the need for a model to predict future behavior.

V. Characterization of Policy Generalization
When designing and deploying the prefetcher selection

model on a real-world platform, it is important to measure
its capability to generalize its policy (the action it takes given
a set of inputs) to unseen samples and workloads. Studying
generalizability helps to determine whether the model requires
updates and training at runtime.
Methodology: We characterize policy generalization by
designing workload-specific and workload-agnostic data sets
and training various reactive ML models with each data
set. To generate the data sets, we use a 70/30 split that
partitions the data of each benchmark into train and test sets.
Workload-specific models are trained with the training set of
one workload and evaluated with the test set of that workload.
Workload-agnostic models are trained with the training set
from all but one workload and evaluated with the test set
from the workload that was not used for training.
We chose to train decision trees (DT) for their simplicity

and support vector machine classifiers (SVC) with a radial
basis function kernel for their powerful input space separation
abilities. We evaluated simple models with low overhead
to meet the resource and latency constraints of runtime
prefetcher selection deployments. Note that the specific
models we used were chosen with the purpose of evaluating
prefetcher selection generalizability and should not necessarily
be taken as a final solution for this problem. We used three-
fold cross-validation of the training sets for hyperparameter
tuning. We explore decision tree depths between 1 and 30,
and the SVC’s regularization parameter with values between
10–5 and 105 increased in powers of 10.
Results: Fig. 3 shows the results normalized to the default
prefetcher. On average, DT models perform better than



4

S0 S1 S2 S3 S4 S5 S6 S7 S8 S9 D0 D1 D2 D3 D4 D5 D6 D7 D8 R0 R1 R2 R3 R4 R5 R65%
0%
5%

10%
15%
20%
25%
30%

IP
C 

im
pr

ov
em

en
t

specific, sample, SVC
specific, sample, DT
specific, phase, SVC
specific, phase, DT

agnostic, sample, SVC
agnostic, sample, DT
agnostic, phase, SVC
agnostic, phase, DT

Geomean
Fig. 3: Average IPC improvement of workload-specfic and workload-agnostic experiments with different models and selection frequencies.

D0 D1 D2 D3 D4 D5 D6 D7 D8 R0 R1 R2 R3 R4 R5 R615%
10%

5%
0%
5%

10%
15%
20%
25%
30%

IP
C 

im
pr

ov
em

en
t sample, SVC

sample, DT
phase, SVC
phase, DT

Geomean
Fig. 4: Average IPC improvement of ML models trained with SPEC CPU
workloads and tested on other suites.

S0 S1 S2 S3 S4 S5 S6 S7 S8 S9 D0 D1 D2 D3 D4 D5 D6 D7 D8

0%

5%

10%

15%

IP
C 

im
pr

ov
em

en
t sample, SVC

sample, DT
phase, SVC
phase, DT

Geomean
Fig. 5: Average IPC improvement of ML models trained with Renaissance
workloads and tested on other suites.

SVC models. Comparing workload-specific and workload-
agnostic DT models, only two out of the 26 benchmarks
exhibited a performance loss of more than 1%. We observe
that workload-agnostic models exhibit similar performance
gains to workload-specific ones, suggesting that they can
generalize what they learned to new workloads.
Contrary to the results shown in Sec. IV, models trained

with phase-based labels generally yielded higher performance
than those trained with sample-based labels. The average
accuracy of sample-based and phase-based models is 45% and
85%, respectively. This suggests that sample-based models
struggled to learn the per-sample patterns. Future work can
investigate whether more complex ML models can achieve
closer to expected sample-based performance.
We further evaluate the performance of a model trained

with one benchmark suite and tested with workloads from
other benchmark suites. This evaluates the ability of ML
models to generalize what they learned across different
application domains, where we consider each benchmark
suite as a different domain. Similar to workload-agnostic
models before, these models are also presented with unseen
workloads during testing; the difference is that the models are
now trained with less data. Fig. 4 and Fig. 5 show the results
after training models with either the SPEC CPU or Renaissance
suite and evaluating them on the DaCapo and Renaissance or
SPEC CPU and DaCapo suites, respectively. When comparing
phase-based to sample-based in each figure, we observe that
there is no clear winner for all workloads. However, the best-
performing models on average use a phase-based definition.
This is consistent with earlier results. When comparing these

suite-agnostic results to the workload-agnostic results in
Fig. 3, we observe that their performance is very similar,
with a few exceptions. In particular, R5 had the largest drop
in performance from more than 10% to less than 5%. This
highlights the importance of training coverage when designing
runtime prefetcher selection models.
Takeaway: Given a statistically representative dataset,
prefetcher selection models can generalize well to new workloads,
allowing them to be trained offline without runtime adaptations.

VI. Summary and Conclusions
We studied three fundamental characteristics of ML-based

runtime prefetcher selection for many-core systems to help
designers find the right ML formulation for their needs. We
assessed the temporal causality of prefetcher selection and
found no evidence to suggest that selections significantly
impact future samples’ performance. We further showed that
a sample-based decision frequency has the most potential
to improve performance if it has accurate information about
future workload behavior, but that a phased-based formulation
is easier to learn and can achieve better performance with
simple reactive models, a trade-off that may be consid-
ered in future designs. Finally, our experiments comparing
workload/suite-specific and -agnostic models showed that
a prefetcher selection model may not need online updates
when trained with a statistically representative dataset, and
if updates are needed, they may be infrequent. Overall,
our results suggest that prefetcher selection can be feasibly
implemented at runtime with simple offline-trained supervised
learning models, without the need for complex formulations.
Future work includes deploying a corresponding prefetcher
selection approach, and exploring more complex prefetchers.

References
[1] E. S. Alcorta and A. Gerstlauer. Learning-based Phase-aware Multi-core

CPU Workload Forecasting. ACM TODAES, 28(2):23:1–23:27, 2022.
[2] F. Eris et al. Puppeteer: A random forest based manager for hardware

prefetchers across the memory hierarchy. ACM TACO, 20(1), 2022.
[3] J. Hiebel et al. Machine Learning for Fine-Grained Hardware Prefetcher

Control. In ICPP, 2019.
[4] M. Jalili and M. Erez. Managing Prefetchers With Deep Reinforcement

Learning. IEEE CAL, 21(2):105–108, 2022.
[5] H. Kang and J. Wong. To hardware prefetch or not to prefetch? A

virtualized environment study and core binding approach. In ASPLOS,
2013.

[6] M. Khan et al. AREP: Adaptive Resource Efficient Prefetching for
Maximizing Multicore Performance. In PAC, 2015.

[7] S. Kondguli and M. Huang. Division of Labor: A More Effective Approach
to Prefetching. In ISCA, 2018.

[8] C. Navarro et al. Bandwidth-Aware Dynamic Prefetch Configuration for
IBM POWER8. IEEE TPDS, 31(8):1970–1982, 2020.

[9] C. Ortega et al. Intelligent Adaptation of Hardware Knobs for Improving
Performance and Power Consumption. IEEE TC, 70(1):1–16, 2021.


