
Approximate Computing for ML:
State-of-the-art, Challenges and Visions

Georgios Zervakis
Karlsruhe Institute of Technology

Karlsruhe, Gergmany
georgios.zervakis@kit.edu

Hassaan Saadat
University of New South Wales

Sydney, Australia
h.saadat@unsw.edu.au

Hussam Amrouch
University of Stuttgart
Stuttgart, Gergmany

amrouch@iti.uni-stuttgart.de

Andreas Gerstlauer
University of Texas

Austin, U.S.A
gerstl@ece.utexas.edu

Sri Parameswaran
University of New South Wales

Sydney, Australia
sri.parameswaran@unsw.edu.au

Jörg Henkel
Karlsruhe Institute of Technology

Karlsruhe, Gergmany
henkel@kit.edu

ABSTRACT
We present a survey of approximate techniques that cover the main
pillars of approximate computing research. Our analysis considers
both static and reconfigurable approximation techniques as well as
operation-specific approximate components (e.g., multipliers) and
generalized approximate high-level synthesis approaches. As our
main application target, we discuss the improvements that such
techniques bring on machine learning and neural networks. In addi-
tion to the conventionally analyzed performance and energy gains,
we also evaluate the improvements that approximate computing
brings in the operating temperature.

CCS CONCEPTS
•Hardware→Logic circuits;High-level and register-transfer
level synthesis; Hardware accelerators.

KEYWORDS
Approximate Computing, Architecture, Accelerator, High-Level
Synthesis, Inference, Logic, Low-power, Multiplier, Neural Network,
Renconfigurable Accuracy, Temperature
ACM Reference Format:
Georgios Zervakis, Hassaan Saadat, Hussam Amrouch, Andreas Gerstlauer,
Sri Parameswaran, and Jörg Henkel. 2021. Approximate Computing for ML:
State-of-the-art, Challenges and Visions. In ASP-DAC 2021: ACM Asia South
Pacific Design Automation Conference, June 18–21, 2021, Tokyo, Japan. ACM,
New York, NY, USA, 8 pages. https://doi.org/10.1145/1122445.1122456

1 INTRODUCTION
Leveraging the intrinsic error resilience of a vast number of applica-
tion domains, approximate computing has emerged as a promising
design alternative to boost the efficiency of computing systems.
Approximate computing introduces error or quality as a new de-
sign metric to be traded off for energy/power reduction and/or
better performance. Typical paradigms of approximate computing

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ASP-DAC 2021, June 18–21, 2021, Tokyo, Japan
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00
https://doi.org/10.1145/1122445.1122456

applications are image processing and machine learning domains.
Specifically, recent breakthroughs in Neural Networks (NNs) have
brought significant advancements in machine learning [1]. These
rapid advancements, however, came at the cost of an immense
demand for computational power. Hence, to bring the inference
speed to an acceptable level, custom ASIC Neural Processing Units
(NPUs) are becoming ubiquitous in both embedded and general
purpose computing. NPUs perform several tera operations per sec-
ond in a confined area. Therefore, they become subject to elevated
on-chip power densities that rapidly result in excessive on-chip
temperatures during operation [2]. As a result, radical changes
to conventional computing approaches are required in order to
sustain and/or improve performance while satisfying mandatory
energy and temperature constraints. Hence, approximate comput-
ing transforms from a design alternative to an obligation, especially
when considering emerging domains such as machine learning and
specifically neural networks.

Driven by this high potential for power reduction, designing
approximate circuits has attracted significant research interest. At
the custom hardware level, approximate computing targets mainly
arithmetic units [3–6] (e.g., adders and multipliers) since they form
the core components of all computations and a vast number of
error-tolerant applications. Specifically, in NN inference the ma-
jority of the energy is consumed in the multiplication operations.
Recent research showed that employing approximate multipliers in
NN inference can deliver significant energy savings for a minimal
loss in accuracy [6–8]. However, designing approximate circuits
under quality constraints heavily increases the design time cycle
since the designer has to verify both functionality and optimality
as well as operating within error bounds [9]. This task becomes
even more challenging as the circuit’s complexity increases. To
this end, several research activities, such as approximate high-level
synthesis (AHLS) [10], focus on automating the generation of ap-
proximate circuits. Approximate HLS estimates error propagations
and distributes the available error budget to the different approxi-
mate sub-components of a larger accelerator, such as convolution
operators and generic matrix multiply units. As a result, AHLS
enables generating complex approximate micro-architectures that
satisfy given quality requirements.

Moreover, approximate computing is further subdivided into
static and dynamically reconfigurable approximation techniques.
The latter, leveraging that error-tolerance and the induced errors

https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456

ASP-DAC 2021, June 18–21, 2021, Tokyo, Japan Georgios Zervakis, Hassaan Saadat, Hussam Amrouch, Andreas Gerstlauer, Sri Parameswaran, and Jörg Henkel

are context- and input-dependent, aim to improve accuracy by pro-
viding a fine grain quality control and/or to further boost (power,
energy, and/or delay) gains by applying more aggressive approxima-
tion on less-sensitive inputs. Finally, reconfigurable approximation
was also recently applied to address thermal constraints [2]. Instead
of addressing thermal emergencies by reducing performance, by re-
ducing the accuracy and hence dynamic power in the same area, the
circuit’s power density decreases, resulting in lower temperatures.

In this paper, we study state-of-the art approaches in each of
the aforementioned categories and analyze their application in ma-
chine learning and neural network domains. In Section 2, we first
evaluate approximate multipliers [6] at the component level and
in Section 3, we then focus on AHLS [10] approaches targeting
approximate design automation at the complete processor or ac-
celerator level. Section 4 further examines neural network specific
runtime reconfigurable approximation techniques that target en-
ergy and/or temperature optimization. Finally, in Section 5, we
discuss the challenges, limitations, and open issues of approximate
computing applications in the machine learning domain.

2 APPROXIMATE COMPONENTS
Multiply-and-accumulate (MAC) operations are the fundamental
and dominant computations in neural network algorithms. It has
been reported that the MAC operations consume nearly 99% energy
in DNNs [11]. Within a MAC unit, a multiplier is more complex and
resource-hungry than the adder. Therefore, approximating the hard-
ware multiplier units is one of the promising avenues for achieving
overall system efficiency. In approximation of hardware arithmetic
units, the logic circuit of the arithmetic unit is simplified such
that it becomes faster, smaller, and/or less power/energy-hungry
while producing erroneous outputs. In other words, the accuracy
of the arithmetic unit is considered as another dimension of the
design space, which is compromised for gains in all other design
dimensions. This type of approximation is specifically referred to
as the functional approximation of hardware units. Since the neural
network algorithms are error-resilient, these erroneous outputs at
the component-level have negligible effect on the application level
accuracy [12].

2.1 Design Goals for Approximate Multipliers
When designing an approximate arithmetic unit, the primary goal
is to achieve most resource-efficiency with least error (inaccuracy)1.
In addition to this primary goal, it is desirable to follow a few other
design considerations, as explained below.
• Error-configurability: Different applications and their use-cases
may have differing degrees of error resilience and acceptable
levels of output degradation [14]. These two factors demand that
the approximate multiplier design should be error-configurable,
which allows the system designer to tradeoff the degree of ap-
proximation with resource-efficiency gains for the desired output
quality in a given application. The error-configurability can be
design-time or run-time. This section focuses on the approxi-
mate multiplier designs with design-time reconfigurability. The
run-time reconfigurability is discussed in Section 4.

• Low Error Bias: An approximate arithmetic unit produces outputs
which may not be correct for several input combinations. The

1The error is typically characterized using various error metrics [6, 13].

outputs can be greater (positive error), or smaller (negative error)
than the correct value. Preferably, the approximate arithmetic
unit should produce both negative and positive errors in a bal-
anced manner for the various input combinations . This leads
to cancellation of errors in successive computations instead of
accumulation. This capability of an arithmetic unit is referred to
as low error bias.

• Systematic Approaches for the Introduced Approximations: In re-
cent years there is a demand for systematic approaches in ap-
proximate computing [15]. Specifically, the approximation in
arithmetic units should be based on mathematical formulation
instead of ad-hoc based modification/simplification of logic de-
sign [16].

2.2 Design-time Functionally Approximate
Multipliers

As discussed earlier, the error-configurability in the approximate
multipliers can be design-time or run-time. In general, one key
advantage of the functional approximation (both design-time and
run-time) is that it can be incorporated in the system at RTL level
while utilizing the traditional synthesis and HLS tools, standard-cell
CMOS libraries, and/or semiconductor fabrication technologies. In
other words, it can be deployed in computing industry straight-
away to meet the growing computing demands without significant
investment in technology development.

While the design-time approximation implies that the approx-
imate level is fixed once the system is synthesized/fabricated, its
most prominent advantage is that it can offer improvements in
area, latency, and energy/power consumption, i.e., improvement
in all design parameters at the same time. This means that, for a
given area and power budget, more compute power can be packed
resulting in greater throughput when compared to using accurate
multipliers. Alternately, to improve the total power consumption as
well as the power density, the approximate multipliers (with lower
area and delay) can be operated at lower frequency and voltage for
iso-performance with slightly reduced accuracy. Another possible
approach to improve the power density is to use slightly larger
technology nodes, such as 45nm. Because the approximate compo-
nents require fewer logic real-estate, the overall silicon footprint
can be same with lower power density than when compared to
using accurate multipliers on a smaller technology node.

A neural network generally has two phases: training, and infer-
ence. Recent research has shown that the inference phase can be
implemented using low-precision fixed-point data format, which
requires integer arithmetic units at the hardware level. On the other
hand, the training phase demands high dynamic range to represent
the intermediate data (e.g., the gradients), and thus floating-point
format is needed. Therefore, design of resource-efficient approxi-
mate integer as well as approximate floating-point multipliers is
required to boost the resource-efficiency of ML systems.

2.3 Approximate Integer Multipliers
Over the last decade, several designs for functionally approximate
multipliers have been proposed. While a majority of them are error
configurable (design-time), most of them are either based on ad-
hoc mechanisms or do not have low error bias. A summary of
some popular works depicting their features are shown in Table 1.
The table depicts that the Mitchell’s multiplier, MBM, ImpLM, and

Approximate Computing for ML: State-of-the-art, Challenges and Visions ASP-DAC 2021, June 18–21, 2021, Tokyo, Japan

Table 1: Approximate integer multipliers and their features.

Approximate
Multiplier
Design

Error
Configurable

Low
Error Bias

Design involves
Mathematical
Formulation

ETM [17] ✓ ✗ ✗
AWTM [18] ✓ ✗ ✗
UDM [19] ✓ ✗ ✗
DRUM [20] ✓ ✓ ✗
SSM [21] ✓ ✗ ✗
Mitchell [22] ✗ ✗ ✓
MBM [6] ✓ ✓ ✓
ImpLM [23] ✓ ✓ ✓
REALM [16] ✓ ✓ ✓

REALM are based on mathematical formulation. These multipliers
are the approximate log-based multipliers, which are based on the
log multiplication property.

The Mitchell’s multiplier is the most basic approximate log based
multiplier. It approximates log of the input operands by linear ap-
proximation between each power-of-two-interval of the operands,
and then adds and scales them to get the approximate product. How-
ever, it is non-configurable and has high error bias. The ImpLM
design improves the error in Mitchell’s multipliers by modifying the
approximation of the log curve. The MBM and REALM multipliers
were designed by incorporating error reduction mechanisms in the
Mitchell’s approximate log-based multiplier while addressing the
issue of non- configurability and high error bias.

These approximate-log multipliers along with a few other popu-
lar approximate multipliers are compared in Figure 1, where mean
error (also referred to as MRED [13]) is plotted against area and
power reduction percentages (calculated with respect to an accu-
rate integer multiplier). The Figure shows that the REALM and
MBMmultipliers, while supporting the desirable features discussed
above, also provide Pareto Optimal points in the design space.

2.4 Approximate Floating-point Multipliers
A floating-point (FP) multiplier is typically more complex and hence
more resource-hungry than its integer counterpart. The FP multi-
plier consists of various sub-operations: mantissa multiplication,
exponent addition, rounding, normalization, and other logic such as
exception handling. Among these, the mantissa multiplier (which
is an unsigned integer multiplier) is the most resource-hungry
component, as it contributes to nearly 90% of the total area and
power consumption in an IEEE single-precision FPmultiplier [6, 24].

50 60 70 80 90

Power Reduction (%)

0

1

2

3

4

M
e
a
n
 E

rr
o
r

(%
)

50 60 70 80

Area Reduction (%)

0

1

2

3

4

M
e
a
n
 E

rr
o
r

(%
)

(a) Power-reduction vs. Mean Error (b) Area-reduction vs. Mean Error

Figure 1: Comparison of several approx. integermultipliers.

Table 2: Selected approx. FPmultipliers comparedwith IEEE
Single Precision multiplier and AlexNet errors.

FP
Multiplier

Improvement per
Multiplication Error Rate

Power Area Top-1 Top-5
IEEE Sing. Prec. ref. ref. 42.8% 19.6%

AFDM-0 1.3× 1.4× 42.8% 19.6%
AFDM-10 4.1× 4.1× 42.8% 19.6%
AFMB-10 33.4× 18.6× 42.2% 19.8%
AFMB-20 123.3× 32.1× 41.8% 20.2%

Hence, several researchers have targeted approximation of mantissa
multiplier for improving the overall resource-consumption of the
FP multiplier. The traditional method of reducing the complexity
of mantissa multiplication is to truncate the LSBs of the mantissa
(also referred to as precision scaling). In recent year, some research
works have used approximate integer multipliers as mantissa mul-
tipliers and demonstrated that it can yield better trade-offs than
traditional precision scaling method [6, 25].

To this end, the approximate log-based integer multipliers are
preferable than the other approximate multiplier schemes [6]. Since
the mantissa in FP multiplication is normalized, the leading-one is
always fixed at the MSB position. Therefore the leading-one detec-
tion and barrel shifting logic in the approximate log-based multi-
pliers can be removed without any accuracy degradation resulting
in significant efficiency gains. An example of such approximate
multipliers are the AFMB proposed in [6]. A few of the error config-
urations of these approximate FP designs synthesized at 1GHz using
TSMC 45nm library are compared with the IEEE single-precision
FP multiplier in Table 2.

2.5 Example: CNN Inference
Consider a software implementation of the inference phase of
AlexNet CNN, pre-trained using the ILSVRC-2012 dataset. First, we
performed classification using IEEE single-precision FP arithmetic.
Next, we replaced each FP multiplication in the implemented CNN
with the software-based functional models of a few approximate FP
multipliers (AFMB-𝑡 and AFDR-𝑡 [6]) and performed classification
over the same set of images.

The Top-1 and Top-5 error rate results using each of the selected
FP multipliers are depicted in Table 2, along with the power and
area improvements per FP multiplier. The table shows that the
classification errors, when using the approximate FPmultipliers, are
very close to the classification errors obtained when using the IEEE
single-precision FP arithmetic. Thus, the approximate FPmultipliers
can reduce the power and area contributed by the FP multipliers to
the whole system up to 123× and 32×, respectively, with negligible
degradation in the classification accuracy of AlexNet.

3 APPROXIMATE HIGH-LEVEL SYNTHESIS
Approximate adders and multipliers as described in the previous
section provide the combinational building blocks for approximate
datapath, processor and accelerator designs. Approximations can
in general be achieved by simply reducing the bit precision, by
more intelligent approximating, or by even completely eliminat-
ing individual datapath operations at the expense of accuracy in
final outputs. As described previously, in case of machine learning
and neural network applications specifically, such approaches have
been widely applied to trade off prediction accuracy for energy and

ASP-DAC 2021, June 18–21, 2021, Tokyo, Japan Georgios Zervakis, Hassaan Saadat, Hussam Amrouch, Andreas Gerstlauer, Sri Parameswaran, and Jörg Henkel

complexity savings. Traditionally, however, corresponding accel-
erators have been hand-crafted where approximations are applied
uniformly across all operations and functional units in an applica-
tion or design, e.g. as shown in the example in Section 2.5.

In a sequential design, the impact of approximations applied
to individual operations depends on their interaction with other
approximations in a larger sequence of computations. Errors can
cancel and average each other out, e.g. when using approximations
with a zero-centered and unbiased error distributions in case of
larger accumulations or dot-product operations that are common in
ML applications [3]. Similarly, depending on the application and its
data flow pattern, errors in earlier operations can be either ampli-
fied or dampened by downstream computations. Error-configurable
functional units as described in Section 2 allow designers to select
the amount of approximations applied to each operation. The chal-
lenge is, however, in determining the approximation configuration
of each operation in a larger data and control flow graph (CDFG) in
order to achieve the best overall application-level accuracy-energy
tradeoff while accounting for such interactions. With large design
spaces and non-obvious tradeoffs, systematic approaches and effec-
tive tools are required to automatically derive such quality-energy
optimal implementations.

Selection of optimal precision and approximations for each op-
erator in a larger accelerator design can be naturally folded into
existing high-level synthesis (HLS) tools. Such tools are concerned
with automatically generating a register-transfer level (RTL) design
from a given high-level description written in, e.g. C or SystemC.
Scheduling and binding tasks in HLS when and where, i.e. in which
clock cycle and on which resource to execute each operation in
a CDFG. Within this context, approximate HLS (AHLS) tools ad-
ditionally select approximate units to determine what type and
the amount of approximations to apply in each operation while
accounting for strong interactions with traditional scheduling and
binding tasks [10, 26]. In general, approximations and associated
logic simplifications affect not only switching activity and energy
but also critical path delay of operators. This can be considered dur-
ing scheduling and binding, e.g. to pack more operations into one
clock cycle and reduce total latency or to balance slack and thusmax-
imize clock frequency. Associated performance gains can in turn be
translated into additional energy savings through voltage scaling
under iso-performance assumptions. Compared to switching activ-
ity reductions alone, voltage scaling is particularly attractive and
impactful due to the quadratic relationship between voltage and
power or power density. Such opportunities can only be considered
to a very limited extend by approaches that apply approximations
to an already pre-designed, fixed RTL.

3.1 AHLS Overview
Figure 2 shows an overview of a typical AHLS flow [10, 26]. The
input to the flow is a C description of the accurate design behavior
including testbench and optimization parameters, as well as an
accuracy constraint on the primary design outputs. The output is an
approximate RTL description that maximized energy savings while
meeting accuracy constraints. Approximations are performed as
additional quality-energy optimization passes that tightly integrate
with a traditional HLS flow (on the left).

Synthesis

Code gen.

Front-end
parser

C source codes for
design and testbench

Verilog RTL code for approximate design and testbench

Optimization setup
(approximation points, output requirements, clustering options)

IR

o
p

tim
al

 s
o

lu
tio

n

Scheduling

Optimization solver

Binding

Loop Clustering

Dist. metric com.
Cluster number decision

IR update
Sens. & disp.

index measure

reordering information

IR, data stat.

Data profiling Scheduling

cl
us

te
rin

g
 re

su
lt

Reorder. & hier.
clustering

Optimization

IR

IR

Models Quality

Perfomance Energy

qual./perf./ener. estimates

initial sched.

Preprocessing

Figure 2: Approximate high-level synthesis (AHLS) [26].

Quality effects of approximations strongly depend on input data
applied to operators. In a first pre-processing step, one-time profil-
ing and scheduling of the design is performed to collect operation-
level data statistic and mobility information. At the core of the opti-
mization flow are then error/quality, energy and performance mod-
els that can predict the impact of different approximations applied
to each operation on the final design. These models are in turn used
by an optimization solver to perform a heuristics-based search in the
design space and find Pareto-optimal solutions. The approximation-
optimized solution together with updated delay information is then
fed to the existing HLS flow to perform traditional scheduling and
binding optimizations in the area-performance space.

Supported approximation techniques can be general in terms
of approximated integer or floating-point arithmetic operators, in-
cluding traditional fixed-point truncation or rounding. To this end,
AHLS tools utilize an approximate component library with pre-
characterized error, delay and energy models for different units. In
addition, automatic pruning of operations as is widely employed in
neural network literature can be folded into the AHLS flow as an
extreme form of rounding that removes all data bits and completely
eliminates operations [10]. In contrast to existing approaches that
only consider the accuracy impact or that employ overly simplified
cost models, incorporating pruning optimizations into AHLS tools
again allows for consideration of their complex interactions with
scheduling and binding during synthesis.

Finally, as a special form of signal processing, ML applications are
often dominated by loop structures in the source code. Loops have
traditionally been a key optimization target in HLS, but without
consideration of approximations or quality tradeoffs. Data statistics
and thus the impact of approximations can vary across loop itera-
tions. Synthesizing loop bodies to apply the same approximations
to all iterations ignores such variations. By contrast, loops can be
unrolled such that each iteration can be approximated individually,
but this can result in large resource overhead. Instead, dedicated
approximation-aware loop optimizations have been proposed ap-
plied within an AHLS context [27]. In such approaches, loops are
clustered and reordered according to their data statistics and hence
approximation impact such that different approximations can be
applied for each cluster.

3.2 Error and Quality Models
A crucial component to automated approximation optimizations
are fast and accurate quality models that can predict the overall

Approximate Computing for ML: State-of-the-art, Challenges and Visions ASP-DAC 2021, June 18–21, 2021, Tokyo, Japan

branch

join

. . .

pb

y2= x5 + x6 + ER2 ER2 = P(ER0, ER1) + G(D5, D6, s2)

ER0=G(D1,D2,s0) ER1 =G(D3,D4,s1)

s0 s1

s2

Generation Generation

Propagation

Generation

x5 = x1x2 x6 = x3x4

D1 D2 D3 D4x1 x2 x3 x4

D5 D6

Figure 3: Quality/error modeling [26].

accuracy impact of errors in individual operations of a larger appli-
cation. Traditionally, simulation-based or analytical error modeling
approaches have been used dating all the way back to traditional
fixed-point analysis and optimization [28]. However, simulation ap-
proaches are flexible but often too time-consuming for design space
exploration. By contrast, analytical models are fast but have limita-
tions in supported approximation types. To address this challenge,
semi-analytical and statistical quality models have been proposed
instead [29]. In general, as Figure 3 shows, errors (𝐸𝑅) can be mod-
eled as independent and additive to data (𝐷), where the error at the
output of an operation is a superposition of the error generated by
the operation itself (𝐺) and errors at the operand inputs propagated
by through the operation (𝑃). Data statistics 𝐷 can be obtained
from one-time profiling of the accurate code. By contrast, errors𝐺𝑖

generated by an operation 𝑖 as a function of approximation level 𝑠𝑖
depend on the specific approximation technique, where correspond-
ing models for different approximate adders and multipliers have
been proposed. Finally, depending on the desired quality metric,
error propagation 𝑃 requires traversing the CDFG in a breadth-first
manner while accounting for branching and other control flow in a
probabilistic manner (𝑝𝑏). For example, to estimate SNR, a mean
and variance propagation method can be employed [10].

3.3 Synthesis
Quality models are further combined with performance and energy
models that account for both scheduling impact and voltage scaling.
Given such models, quality-energy optimization becomes a gen-
erally non-linear and non-convex problem of minimizing energy
or power density under quality constraints given integer decision
variables for the optimization type and level of each operation. This
optimization problem can be solved using standard meta-heuristics
or specialized heuristic solvers that greedily evaluate solutions by
traversing the graph in a breadth-first, branch-and-bound man-
ner [10]. In the process, the aforementioned loop clustering opti-
mizations can be applied as a pre-processing step [27]. Standard
HLS scheduling and binding passes are then executed for the best
set of solutions obtained from quality-energy optimization, where
a post-synthesis slack balancing optimization selects the final solu-
tion for which synthesized RTL code is generated.

Figure 4 shows results of synthesizing a general matrix-matrix
multiplication (GEMM) design with image input data as the core
operation in image recognition neural network applications us-
ing fixed-point rounding as approximation technique. The figure
on the left shows the quality-energy tradeoff enabled by AHLS

15 20 25 30

0.5

0.6

0.7

0.8

0.9

1

SNR (dB)

N
or

m
al

iz
ed

 E
ne

rg
y

2.3%

24.6%

25%

PS

PS+OP

PS+OP+TR

x

w/o VS

w/ VS

0.5 1 1.5 2 2.5 3 3.5

0.2

0.4

0.6

0.8

1

Norm. area

N
or

m
. la

te
nc

y

Rolled
Unroll by 2
Unroll by 4
ClustSNR=10 dB

SNR=20 dB

SNR=30 dB

Figure 4: AHLS results for matrix multiplication example:
quality-energy tradeoff (left) and loop optimizations (right).

for different SNR constraints, where energy values are normalized
against the accurate baseline. Results are shown with and with-
out voltage scaling (VS) using precision-scaling alone (PS) or in
combination with operation pruning (OE) and/or scheduling opti-
mizations (TR). Results show that without VS and corresponding
opportunities to exploit processing time reductions, savings are
limited. By contrast, VS can unlock significant additional gains,
where pruning and scheduling optimizations can contribute up to
25% additional savings at more aggressive quality goals. Overall,
up to 50% energy savings are achievable while maintaining high
accuracy through joint precision scaling, pruning and scheduling
optimizations. Finally, the graph on the right shows additional ben-
efits of optimizing the main GEMM loop. Loop clustering primarily
targets performance, but latency gains can be translated into energy
savings through voltage scaling. Results show that compared to the
original rolled design, up to 12% additional latency improvements
can be obtained at the expense of larger area, where latency gains
are the same or better than unrolling the loop by a factor of 2 or 4,
which comes with an even larger area overhead.

4 RECONFIGURABLE APPROXIMATION FOR
NEURAL NETWORK INFERENCE

Although fixed approximation circuits, as presented in prior sec-
tions, may deliver significant area, power, and/or delay gains, the
requirement for numerical accuracy is not constant at runtime and
the output quality is highly input dependent [30]. Therefore, fixed
approximation circuits are designed under worst case scenarios,
limiting the potential benefits [31]. The need for runtime adaptabil-
ity becomes even more evident in the case of Neural Network (NN)
accelerators, where the delivered accuracy highly depends on the
NN size and architecture. Given an approximate multiplier, as the
NN becomes deeper, the accuracy loss increases significantly [8].
Similar results are obtained for NNs with similar depth but different
architectures. This issue can be addressed by applying approxima-
tion aware re-training [7]. However, for DNNs, the latter becomes
a very time consuming procedure, if not even infeasible.

4.1 Layer-Wise Approximation
A heuristic framework is proposed in [31] that automates the gen-
eration of approximate reconfigurable combinational circuits. Wire-
by-switch replacement is used as approximation technique and [31]
employs high-level error, power, and delay estimation to avoid any
hardware related evaluations and speedup the optimization proce-
dure. During accurate operation, each switch outputs the wire’s
value, while during approximate operation, the switch output is

ASP-DAC 2021, June 18–21, 2021, Tokyo, Japan Georgios Zervakis, Hassaan Saadat, Hussam Amrouch, Andreas Gerstlauer, Sri Parameswaran, and Jörg Henkel

Figure 5: The accuracy-energy tradeoff of ResNet8 when us-
ing layer-wise approximation and the approximate reconfig-
urable LRERMmultiplier [31].

a constant ‘0’ or ‘1’ limiting the circuit’s switching activity. The
heuristic optimization identifies the wires that will be replaced
by switches so that a given quality function/constraint is satis-
fied and the dynamic power is minimized. The circuits generated
by [31] support several accuracy levels, feature significant power
reduction, and a slightly increased area. The accuracy level is dy-
namically selected at runtime by just setting a control signal. An
8-bit low relative error reconfigurable multiplier, namely LRERM,
was generated in [31]. LRERM supports three accuracy levels, i.e.,
accurate and 0.5%, 1.5% mean relative error. Using LRERM in NN in-
ference enables layer-wise approximation, i.e., dynamically set the
desired accuracy level per convolution layer at runtime. The most
sensitive layers can select more accurate execution while the less
sensitive ones can switch to higher approximation and increase the
energy/power gains. Figure 5 presents the energy-accuracy Pareto
space for ResNet8 when using LRERM in the inference phase. Each
point in Figure 5 corresponds to a different runtime configuration,
i.e., LRERM accuracy level per layer. As shown in Figure 5, layer-
wise approximation with LRERM delivers 15% energy reduction for
only 0.5% accuracy loss. Therefore, using dynamically reconfigurable
approximate multipliers in NN inference, efficiently eliminates the
need for retraining and enables achieving significant energy/power
savings, while still satisfying tight accuracy loss thresholds.

4.2 Weight-Oriented Approximation
However, even for the very small ResNet8, the size of the design
space is significant (i.e., more that 2000 configurations in Figure 5)
and for deeper NNs it will increase exponentially. As a result, al-
though adopting approximate reconfigurable multipliers in NN
inference offers high flexibility in controlling the power-accuracy
tradeoff, a systematic approach is mandatory to enable efficient
mapping of NNs to the supported accuracy levels of the approxi-
mate hardware and thus maximize the gains while still satisfying
tight accuracy thresholds. Unlike the coarse-grain layer-wise ap-
proximation approaches, [8] proposed a fine-grain weight-oriented
NN approximation, using approximate reconfigurable multipliers.
First, [8] proposed an error correction to mitigate the error induced
by the approximate multiplications in the convolution operation.
The proposed error correction is implemented by just modifying
accordingly the filters’ biases. Given the convolution operation:

𝐹 = 𝐵 +
𝑛∑
𝑗=1

𝑊𝑗 ×𝐴𝑗 , (1)

the bias of each filter is modified as follows:

L1 L2 L3 L4

1

8-bit quantized NN

output

Input

images

L1 L2 L4
output

Input

images

L3

Determine layer

significance

L1 L2 L3 L42
Map entire convolution

layers to LVRM2

L1 L2 L4Input

images

L3

3
Map ranges of weights per

convolution layer to LVRM2

L2 L4Input

images

L3

4
Map ranges of weights per

convolution layer to LVRM1

L1

LVRM1 LVRM2LVRM0

output

output

Layer significance

Figure 6: Weight-oriented approximate inference using low-
variance approximate reconfigurable multipliers [8].

𝐵′ = 𝐵 +
𝑛∑
𝑗=1

𝜇 (𝜖𝑊𝑗
), (2)

where 𝜇 (𝜖𝑊𝑗
) is the mean error of the approximate multiplication

𝑊𝑗 ×𝐴, ∀𝐴. As a result, the mean error and variance of the approx-
imate convolution are given by:

𝜇 (𝜖𝑌) = 0

and𝑉𝑎𝑟 (𝜖𝑌) =
𝑘∑
𝑗=1

𝑉𝑎𝑟 (𝜖𝑊𝑗
),

(3)

where 𝑉𝑎𝑟 (𝜖𝑊𝑗
) is the variance of the approximate multiplication

𝑊𝑗 ×𝐴, ∀𝐴. Hence, the proposed bias correction effectively nullifies
the mean convolution error and the accuracy of the convolution
operation is defined only by the error variance of the approximate
multiplier. Based on (1)-(3), low-variance is a more important error
metric when designing approximate multipliers for NN inference.
To this end, a low-variance 8-bit approximate reconfigurable mul-
tiplier (namely LVRM) with three accuracy levels (i.e., LVRM0,
LVRM1, LVRM2) was generated using [31]. To map the weights
of each layer to the accuracy levels of LVRM, a greedy approach
was used (Figure 6). For each layer, three ranges are extracted (i.e.,
one for each accuracy level LVRM0, LVRM1, and LVRM2) and
depending on the range that weight belongs to, the respective accu-
racy level is selected at runtime. In addition, the mapping algorithm
leverages the significance of each layer and assigns more aggressive
approximation to the less significant layers. This range approach
is followed since it requires a very simple control circuitry with a
minimal area overhead. Assuming a 64 × 64 systolic MAC array,
only 256 8-bit comparators are required to implement the proposed
mapping. The total area overhead is only 3% [8]. Table 3 presents the
energy reduction with respect to the multiplication operations and
the corresponding accuracy loss, when applying weight oriented
approximation. Seven NNs trained on Cifar100 are considered. As

Approximate Computing for ML: State-of-the-art, Challenges and Visions ASP-DAC 2021, June 18–21, 2021, Tokyo, Japan

Table 3: Accuracy Loss and Energy Reduction of Multiplica-
tions for Varying NNs Trained on Cifar100 [8]

Neural Network Accuracy loss (%) Energy Reduction (%)
ResNet32 0.5 17.44
ResNet56 0.2 16.26
VGG11 0.5 18.62
VGG13 0.5 18.56
MobilNetv2 0.4 18.72

shown, the delivered energy reduction is 17.9% on average, while
the accuracy loss is up to 0.5%.

Runtime reconfigurable approximation approaches deliver high
power reduction without decreasing the area. Hence, a significant
reduction in power density is achieved that translates to a temper-
ature decrease. For example, considering a 64 × 64 systolic MAC
array, the approximate architecture of [8] features the same operat-
ing frequency, 1.03x higher area, 11% lower power, and thus 14%
lower power density. Therefore, reconfigurable approximation can
be employed to efficiently address thermal constraints.

4.3 Temperature-Aware Approximation
Leveraging the impact of runtime reconfigurable approximation
on the temperature, [2] proposed PFS-TE, the first hybrid thermal
management for Neural Processing Units (NPUs). PFS-TE uses three
knobs to control the temperature at runtime: frequency scaling,
advanced on-chip cooling (superlattice thin-film Thermoelectric
(TE) [32]), and dynamic approximation through precision scaling.
Frequency scaling trades-off throughput to decrease temperature.
Decreasing the operating frequency results to lower dynamic power
and thus lower power density. Nevertheless, since the throughput
of the NPU is linearly correlated to frequency, frequency scaling
decreases significantly the NPU performance. Active Cooling trades-
off power with temperature. As the input current of superlattice TE
increases, the on-chip temperature decreases significantly. How-
ever, increasing the TE input current, increases the chip’s power
consumption. Finally, Precision Scaling trades accuracy for temper-
ature decrease. Dynamically decreasing the precision of weights
and activations, results in reduced switching activity and thus lower
power and power density. On the other hand, using lower precision
leads to an accuracy loss. In [2], precision scaling is applied though
post-trainning min/max quantization to compensate some of the
accuracy loss. Dynamic approximation through precision scaling is
a vital component of PFS-TE since its role is twofold. For the same
cooling cost (current in TE), precision scaling can be used to reduce
the power and thus the temperature. In addition, for the same total
chip power consumption, precision scaling can used to increase
both the frequency as well as the input current of TE and boost
the performance of the NPU under the same temperature thresh-
old. As a result, for given total power and temperature constraints,
approximation becomes inevitable in order to boost performance.

Figure 7 presents the efficiency improvement achieved by PFS-
TE compared with the baseline. To reduce the temperature, the
baseline applies frequency scaling and maximum forced convec-
tion air-cooling. Efficiency is defined as performance per Joule
(TOPS/Joule). As shown in Figure 7, when no precision scaling
is applied, PFE-TE can deliver 1.6x higher efficiency for the same
accuracy (i.e., 8bit in Figure 7). However, when precision scaling is
applied, PFS-TE can deliver 2.4x higher efficiency than the baseline.
Hence, as Figure 7 shows, dynamic approximation significantly

some accuracy loss is acceptable by the executed NN.

B. NN Accuracy and Efficiency Evaluation

In Fig. 6, we demonstrated that for the same throughput as
in the baseline, PFS-TE significantly reduces the temperature.
Similarly, Fig. 7 showed that for the same temperature, PFS-
TE delivers a much higher throughput. However, in both
scenarios, these improvements typically come with high power
overheads. For this reason and to have fair comparisons, we
investigate the efficiency of the MAC array and summarize
the results in Fig. 8. The efficiency is defined as:

Efficiency (TOPS/Joule) = Frequency× Throughput
Watt

(4)

In addition to PFS-TE, we also consider PFS, i.e., without
on-chip TE cooling, in order to elucidate the impact of
superlattice TE (cooling cost contributor) within the efficiency.
The efficiency in Fig. 8 is reported as a normalized value
w.r.t the efficiency of the baseline. On average, compared to
the baseline, PFS-TE provides 1.40x, 1.99x, and 2.26x higher
efficiency when considering Tcrit = 105°C, 85°C, and 70°C,
respectively. The corresponding efficiency gains due to PFS
are 1.23x, 1.27x, and 1.24x, respectively. The efficiency gain
of PFS increases for 105°C to 85°C but then drops again for
70°C. The constraint of 70°C is very low and thus, unlike PFS-
TE, PFS has to significantly decrease the frequency, impacting
the delivered efficiency, in order to satisfy it. As a result,
Fig. 8 demonstrates that PFS-TE delivers very high efficiency
improvement and shows that the induced cooling cost does
not affect the efficiency of the MAC array. Compared to
only PFS (i.e., no TE cooling) PFS-TE achieves on average
1.15x, 1.58x, and 1.82x higher efficiency. As discussed in
Fig. 7, as Tcrit becomes tighter, the cooling cost of PFS-
TE becomes more noticeable and highly impacts the total
power of the MAC array. On the other hand, as shown in
Fig. 8, for lower Tcrit, the efficiency provided by PFS-TE
(compared to both baseline and PFS) is considerably higher.
Therefore, not only the cooling cost due to on-chip TE does
not have a negative impact on the efficiency of the MAC
array, but TE is a primary contributor to the overall efficiency
gain. For example, considering the 8-bit PFS-TE (i.e., without
scaling the precision), compared to the baseline, the efficiency
increases from 1.26x at Tcrit = 105°C to 1.78x at 70°C.

As shown in Fig. (6-8), the 8-bit PFS-TE delivers high im-
provements in temperature, throughput, and efficiency. These
improvements become even higher when lowering the pre-
cision (7-bit to 5-bit PFS-TE). Therefore, in Fig. 8 we
additionally include NN inference accuracy analysis to put
the presented results into perspective. To achieve this, we
use PyTorch and we train 20 state-of-the-art NNs listed in
Table I for the ImageNet dataset [11]. Then, we employ the
quantization procedure described in Section II-B and quantize
the NNs at different precision. Table I summarizes the Top-
5 accuracy of the examined NNs for 8-bit to 5-bit precision
as well as for the reference 32-bit float point. The last row
of Table I presents the average accuracy (w.r.t the examined
NNs) attained at each precision level. As shown in Table I,
different NNs exhibit different tolerance to PS. For example,

0.8

1.2

1.6

2

2.4

2.8

8-bit 7-bit 6-bit 5-bit
0

20

40

60

80

100

N
or

m
.E

ffi
ci

en
cy

N
N

A
cc

ur
ac

y
[%

]

Inference Precision

PFS-TE
ResNet-34

VGG-11
Wide ResNet-101-2

MobileNet v2

Tcrit = 85°C

Fig. 8: Efficiency (TOPS/Joule) analysis of our hybrid thermal
management of NPUs, at three different thermal constraints.
The lower the precision level, the higher the efficiency.

ResNet-34 and ResNet-18 still feature > 80% accuracy even
when performing inference at 5-bit. MobileNet-v2, on the
other hand, is very sensitive to compression and its accuracy
drops from 83.87% at 8-bit to merely 66.67% at 7-bit.

In Fig. 8, we consider four representative NNs from Table I
w.r.t how their accuracy is affected by precision scaling.
ResNet-34 achieves 82.87% accuracy at 5-bit precision while
at 6-bit its accuracy loss is less than 1%. Hence, 6-bit PFS-
TE can be used out-of-the-box for ResNet-34 and 5-bit PFS-
TE can be used when 82.87% accuracy is satisfactory at
run-time. Compared to the baseline and considering 105°C
temperature constraint, this translates to an efficiency im-
provement of 1.43x for almost no accuracy loss and 1.57x
for 82.87% accuracy. These improvements go up to 2.33x
and 2.92x, respectively, when the temperature constraint is
70°C. Similarly, for a small accuracy loss (4%) VGG-11 can
be executed with 6-bit PFS-TE and benefit of 1.43x up to
2.33x efficiency improvement. On the other hand, only 7-bit
and 8-bit PFS-TE can be selected for the WideResNet-101-2
and MobileNet v2, respectively. This results to an efficiency
improvement of WideResNet-101-2 that ranges from 1.33x for

Figure 7: Efficiency (TOPS/Joule) improvement delivered by
PFS-TE[2]. An 85°C temperature constraint is considered.

boosts the efficiency (from 1.6x to 2.4x, i.e., 1.5x). In addition, Fig-
ure 7 presents the accuracy variation w.r.t. precision scaling for four
NNs trained on the ImageNet dataset. The latter highlights the need
for dynamic approximation, since different NNs feature significantly
different accuracy loss under the same approximation.

5 CHALLENGES, VISION, AND PERSPECTIVE
Approximate units such as multipliers form the basic building
blocks for approximate hardware processors and accelerators. Ap-
proximate design of higher-level building blocks such as MAC and
dot-product units, considered as a whole, further promises gains
in resource-efficiency. Synergizing the state-of-the-art research in
approximate multipliers and adders is important in this regard.

AHLS tools utilize libraries of such components to explore energy-
accuracy tradeoffs at the whole RTL design level. Novel types of
components can thereby open up whole new regions of the design
space. Utilizing such components in AHLS and automated design
space exploration tools will, however, require appropriate analytical
or semi-analytical error (as well as delay and energy) models to be
developed. Components that inherently provide predictable behav-
ior based on well-defined mathematical foundations, e.g., log-based
multipliers, may provide specific advantages in that regard.

At the same time, reconfigurability has to be supported by AHLS
tools that allow for automatic synthesis of sequential, multi-stage
circuits that can provide a set of configurable accuracy levels at
their primary outputs while minimizing average energy including
reconfiguration overhead. Given that a finer reconfiguration gran-
ularity at the individual stage level will come with larger overhead,
the challenge is in finding the optimal combination of configura-
tions in each stage to achieve the desired accuracy levels at primary
outputs [33]. This further expands the design space and creates
additional interactions with scheduling and binding tasks.

In addition to input variations, reconfigurability can also be
used to compensate for other dynamic effects within the hardware
itself. Specifically, several degradation mechanisms such as temper-
ature and/or aging effects manifest themselves as delay increases
in the critical paths of circuits that vary over time. Such delay in-
creases result in timing violations and hence timing errors, due to
unsustainable clock frequencies. To avoid that, circuits’ designers
traditionally need to include sufficient timing guardbands to keep
degradation-induced timing errors at bay. However, timing guard-
bands directly lead to large efficiency losses. It has been recently

ASP-DAC 2021, June 18–21, 2021, Tokyo, Japan Georgios Zervakis, Hassaan Saadat, Hussam Amrouch, Andreas Gerstlauer, Sri Parameswaran, and Jörg Henkel

shown that employing principles from approximate computing en-
ables designers to translate stochastic degradation-induced errors
(which typically result in catastrophic failures and unacceptable loss
in quality of circuits unless carefully controlled [34]) into determin-
istic and well-controlled approximations. This enables designers
to trade-off efficiency with approximation while still overcoming
degradation effects such as temperature [35] and/or aging [36, 37].

As discussed in Sections 2-4, there is a vast number of works
that focus on improving the efficiency of neural network inference
accelerators through approximate computing. However, research
activities on approximate circuits for neural network training are
still very limited. Using approximate accelerators in training might
raise several issues/challenges that have to be addressed. For ex-
ample, training might not converge or the trained model could
be tightly coupled to this specific accelerator. Hence, running the
obtained model on another platform (even an accurate one) might
result in high accuracy loss.

In the ML application space, we are also seeing increasing trends
towards customization and specialization of ML models and neural
network architectures. This has led to the emergence of irregular
ML architectures and automated machine learning (auto-ML) tools
that explore corresponding design spaces to synthesize application-
specific ML models for a given deployment. However, existing
auto-ML approaches tend to either focus purely on accuracy op-
timization or use overly simplified complexity and cost models.
In practice, auto-ML tools should be implementation-aware and
closely coupled with ML-specific approaches and tools for hard-
ware/software synthesis. This conversely necessitates the develop-
ment of domain-specific, ML-aware AHLS and other approximate
hardware design tools. Existing techniques for approximate com-
puting have in general been largely applied in isolation at different
levels of the abstraction stack, and there is a broader need for end-to-
end cross-layer and co-design approaches that can jointly consider
algorithm, system architecture and circuit optimizations [38].

REFERENCES
[1] N. P. Jouppi et al. 2017. In-datacenter performance analysis of a tensor process-

ing unit. In International Symposium on Computer Architecture, 1–12.
[2] H. Amrouch, G. Zervakis, S. Salamin, H. Kattan, I. Anagnostopoulos, and J.

Henkel. 2020. Npu thermal management. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems.

[3] J. Miao, K. He, A. Gerstlauer, and M. Orshansky. 2012. Modeling and synthe-
sis of quality-energy optimal approximate adders. In IEEE/ACM International
Conference on Computer-Aided Design (ICCAD).

[4] M. Shafique, W. Ahmad, R. Hafiz, and J. Henkel. 2015. A low latency generic
accuracy configurable adder. In Design Automation Conference.

[5] G. Zervakis, K. Koliogeorgi, D. Anagnostos, N. Zompakis, and K. Siozios. 2019.
Vader: voltage-driven netlist pruning for cross-layer approximate arithmetic
circuits. IEEE Trans. on Very Large Scale Integration Systems, 27, 6, 1460–1464.

[6] H. Saadat, H. Bokhari, and S. Parameswaran. 2018. Minimally biased multipliers
for approximate integer and floating-point multiplication. IEEE Trans. Comput.
Aided Des. Integr. Circuits Syst., 37, 11, 2623–2635.

[7] S. S. Sarwar, S. Venkataramani, A. Ankit, A. Raghunathan, and K. Roy. 2018.
Energy-efficient neural computing with approximate multipliers. ACM Journal
on Emerging Technologies in Computing Systems (JETC), 14, 2, 1–23.

[8] Z. Tasoulas, G. Zervakis, I. Anagnostopoulos, H. Amrouch, and J. Henkel. 2020.
Weight-oriented approximation for energy-efficient neural network inference
accelerators. IEEE Trans. Circuits Syst. I: Regular Papers, 1–14.

[9] G. Zervakis, S. Xydis, D. Soudris, and K. Pekmestzi. 2019. Multi-level approxi-
mate accelerator synthesis under voltage island constraints. IEEE Transactions
on Circuits and Systems II: Express Briefs, 66, 4, 607–611.

[10] S. Lee, L. K. John, and A. Gerstlauer. 2017. High-level synthesis of approximate
hardware under joint precision and voltage scaling. In Design, Automation and
Test in Europe (DATE) Conference.

[11] S. Jain, S. Venkataramani, V. Srinivasan, J. Choi, P. Chuang, and L. Chang.
2018. Compensated-dnn: energy efficient low-precision deep neural networks

by compensating quantization errors. In 2018 55th ACM/ESDA/IEEE Design
Automation Conference (DAC).

[12] E. Wang, J. J. Davis, R. Zhao, H.-C. Ng, X. Niu, W. Luk, P. Y. Cheung, and G. A.
Constantinides. 2019. Deep neural network approximation for custom hard-
ware: where we’ve been, where we’re going. arXiv preprint arXiv:1901.06955.

[13] H. Jiang, C. Liu, L. Liu, F. Lombardi, and J. Han. 2017. A review, classification,
and comparative evaluation of approximate arithmetic circuits. 13, 4.

[14] S. Venkataramani, S. T. Chakradhar, K. Roy, and A. Raghunathan. 2015. Approx-
imate computing and the quest for computing efficiency. In Design Automation
Conference (DAC), 1–6.

[15] S. Rehman,W. El-Harouni, M. Shafique, A. Kumar, J. Henkel, and J. Henkel. 2016.
Architectural-space exploration of approximate multipliers. In International
Conference on Computer-Aided Design (ICCAD).

[16] H. Saadat, H. Javaid, A. Ignjatovic, and S. Parameswaran. 2020. Realm: reduced-
error approximate log-based integer multiplier. In Proceedings of the 23rd Con-
ference on Design, Automation and Test in Europe (DATE ’20). EDA Consortium,
Grenoble, France, 1366–1371.

[17] K. Y. Kyaw, W. L. Goh, and K. S. Yeo. 2010. Low-power high-speed multiplier
for error-tolerant application. In Proc. EDSSC, 1–4.

[18] K. Bhardwaj, P. S. Mane, and J. Henkel. 2014. Power- and area-efficient approx-
imate wallace tree multiplier for error-resilient systems. In Fifteenth Interna-
tional Symposium on Quality Electronic Design, 263–269.

[19] P. Kulkarni, P. Gupta, and M. Ercegovac. 2011. Trading accuracy for power
with an underdesigned multiplier architecture. In Internatioal Conference on
VLSI Design, 346–351.

[20] S. Hashemi, R. I. Bahar, and S. Reda. 2015. DRUM: a dynamic range unbi-
ased multiplier for approximate applications. In International Conference on
Computer-Aided Design.

[21] S. Narayanamoorthy, H. A. Moghaddam, Z. Liu, T. Park, and N. S. Kim. 2015.
Energy-efficient approximate multiplication for digital signal processing and
classification applications. IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, 23, 6, 1180–1184.

[22] J. N. Mitchell. 1962. Computer multiplication and division using binary loga-
rithms. IRE Trans. on Electronic Computers, EC-11, 4, 512–517.

[23] M. S. Ansari, B. F. Cockburn, and J. Han. 2019. A hardware-efficient logarith-
mic multiplier with improved accuracy. In Design, Automation Test in Europe
Conference Exhibition.

[24] J. Y. F. Tong et al. 2000. Reducing power by optimizing the necessary preci-
sion/range of floating-point arithmetic. IEEE Trans. on Very Large Scale Integra-
tion (VLSI) Systems, 8, 3, 273–286.

[25] H. Zhang, W. Zhang, and J. Lach. 2014. A low-power accuracy-configurable
floating point multiplier. In International Conference on Computer Design).

[26] S. Lee and A. Gerstlauer. 2019. Approximate high-level synthesis of custom
hardware. In Approximate Circuits: Methodologies and CAD. S. Reda and M.
Shafique, editors. Springer.

[27] S. Lee and A. Gerstlauer. 2018. Data-dependent loop approximations for perfor-
mance-quality driven high-level synthesis. IEEE Embedded Systems Letters
(ESL), 10, 1, 18–21.

[28] S. Lee and A. Gerstlauer. 2013. Fine grain word length optimization for dynamic
precision scaling in DSP systems. In IFIP/IEEE International Conference on Very
Large Scale Integration (VLSI-SoC).

[29] S. Lee, D. Lee, K. Han, T. Kim, E. Shriver, L. K. John, and A. Gerstlauer. 2016.
Statistical quality modeling of approximate hardware. In IEEE International
Symposium on Quality Electronic Design (ISQED).

[30] A. Raha and V. Raghunathan. 2017. Towards full-system energy-accuracy
tradeoffs: a case study of an approximate smart camera system. In Design
Automation Conference, 1–6.

[31] G. Zervakis, H. Amrouch, and J. Henkel. 2020. Design automation of approx-
imate circuits with runtime reconfigurable accuracy. IEEE Access, 8, 53522–
53538.

[32] G. Bulman, P. Barletta, J. Lewis, N. Baldasaro, M. Manno, A. Bar-Cohen, and
B. Yang. 2016. Superlattice-based thin-film thermoelectric modules with high
cooling fluxes. Nature Communications, 7, (2016), 10302.

[33] T. Alan, A. Gerstlauer, and J. Henkel. 2020. Runtime accuracy-configurable
approximate hardware synthesis using logic gating and relaxation. In Design,
Automation & Test in Europe Conference & Exhibition (DATE).

[34] K. He, A. Gerstlauer, and M. Orshansky. 2011. Controlled timing-error accep-
tance for low energy IDCT design. In Design, Automation and Test in Europe
(DATE) Conference.

[35] B. Boroujerdian, H. Amrouch, J. Henkel, and A. Gerstlauer. 2018. Trading off
temperature guardbands via adaptive approximations. In IEEE International
Conference on Computer Design (ICCD).

[36] H. Kim, J. Kim, H. Amrouch, J. Henkel, A. Gerstlauer, K. Choi, and H. Park.
2020. Aging compensation with dynamic computation approximation. IEEE
Transactions on Circuits and Systems I: Regular Papers, 67, 4, 1319–1332.

[37] H. Amrouch, B. Khaleghi, A. Gerstlauer, and J. Henkel. 2017. Towards aging-
induced approximations. In ACM/IEEE Design Automation Conference (DAC).

[38] P. Stanley-Marbell et al. 2020. Exploiting errors for efficiency: a survey from
circuits to applications. ACM Computing Surveys (CSUR), 53, 3, 51:1–51:39.

	Abstract
	1 Introduction
	2 Approximate Components
	2.1 Design Goals for Approximate Multipliers
	2.2 Design-time Functionally Approximate Multipliers
	2.3 Approximate Integer Multipliers
	2.4 Approximate Floating-point Multipliers
	2.5 Example: CNN Inference

	3 Approximate High-Level Synthesis
	3.1 AHLS Overview
	3.2 Error and Quality Models
	3.3 Synthesis

	4 Reconfigurable Approximation for Neural Network Inference
	4.1 Layer-Wise Approximation
	4.2 Weight-Oriented Approximation
	4.3 Temperature-Aware Approximation

	5 Challenges, Vision, and Perspective

