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Abstract—Host-compiled simulation has been widely adopted
as a practical approach for fast and high-level evaluation of
complex software-intensive systems at early stages of the design
process. In such approaches, higher speed is achieved by coarse-
grained simulation of the system, which also leads to a loss in
timing accuracy. To eliminate the inherent speed and accuracy
tradeoff, we present an adjustive software simulator, which au-
tomatically controls the timing model of the simulation platform
to provide both fast and accurate results. At its core, we propose
a novel RTOS model that permanently monitors the state of the
system and optimally and automatically adjusts back-annotated
timing granularities to provide an error-free task scheduling. We
evaluated our approach on an industrial-strength example, and
results show that the accuracy of a fine-grain simulation can be
achieved while maintaining a speed of close to 900MIPS.

Index Terms—Real-time systems; host-compiled simulation;
RTOS modeling;

I. INTRODUCTION

In recent years, the complexity of embedded systems has in-

creased dramatically. The challenge is to design such complex

systems with constrains on design goals, especially real-time

performance, at reduced development time and cost. Since

software provides a high degree of flexibility and easy code

reuse, the trend over the last years has been to shift more and

more functionality into software. Hence, effective evaluation

of such complex, software-intensive systems in early stages of

the design process is essential.

Many studies have focused on methods to provide fast

and accurate simulation by abstracting the software execution

environment. For example, virtual platforms provide a high-

level functional prototype of a target architecture, which allows

designers to debug and simulate their software along with the

rest of the system before the actual hardware is available.

Virtual platforms execute the binary code of the software

on the target architecture prototype at close to real-time

speeds. However, such approaches only provide fast functional

simulation, with limited or no timing information.

Recently, host-compiled approaches have been developed

to provide fast simulation coupled with accurate timing exe-

cution. In such approaches, the software is natively compiled

and executed on a host machine while an abstract model of

the target architecture manages the execution order of user

application tasks. For timing accuracy, the application code is

instrumented with back-annotated execution delays. In host-

compiled approaches, higher speed is achieved by coarse-

grained simulation of the system, which inherently comes at a

loss in timing accuracy. In other words, there is a fundamental

tradeoff between simulation speed and timing accuracy.

In this paper, we aim to eliminate this tradeoff in host-

compiled software simulation. We present a platform modeling

approach for fully accurate yet fast simulation of real-time

applications. At its core, this is enabled by a novel RTOS

model, which is capable of permanently monitoring system

state to automatically adjust simulated timing granularities

and eliminate task scheduling errors while maintaining fast

simulation speed. In such an approach, designers need not be

concerned with manually selecting a proper granularity for op-

timizing the speed and accuracy tradeoff. Instead, the platform

simulator automatically, continuously and dynamically adjusts

to changing system conditions in order to achieve an optimal

simulation.

The remainder of this paper is organized as follows: in the

following subsections, we review related work and present an

overview of our simulator. Then, we discuss the details of

our approach in Section II. Results of our experiments are

summarized in Section III. Finally, we conclude this paper

with a summary and outlook on future work in Section IV.

A. Related Work

Recently, so-called host-compiled or source-level simulation

approaches have received widespread attention as a solu-

tion for rapid evaluation of software at early design stages.

Such approaches provide high performance by abstracting the

simulation platform [1], [2], [3], [4]. The high-level source

code of applications is back-annotated with timing estimates,

which are typically obtained by compiling to an intermediate

representation [5], [6]. Application execution is managed by an

abstract model of the software execution environment, which

is usually developed on top of standard system-level design

languages (SLDLs) (e.g. SystemC [7] or SpecC [8]).

Some of the earliest host-compiled approaches were cen-

tered around models of the OS itself [9], [10], [11]. Later, these

approaches were extended into complete processor models that

include timing-accurate descriptions of interrupt chains and

TLM-based bus interfaces [12], [13]. Such processor models

have been shown to simulate at speeds beyond 500 MIPS with

more than 95% timing accuracy.

Several researchers have focused on improving the ac-

curacy of high-level simulators while maintaining similar

performance. Krause et al. [14] present combined ISS and

abstract RTOS model co-simulation. This approach replaces
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Fig. 1. Host-Compiled software simulator.

an actual RTOS binary code with an abstract model running

outside the ISS and performs cycle-accurate thread switches.

Khaligh et al. [15] present an adaptive TLM simulation kernel,

which changes the level of accuracy during simulation to the

level expected by designers. Schirner et al. [16] introduce a

granularity-independent approach for accurate simulation of

interrupts on host-compiled processor models by applying

optimistic prediction and correction. In all cases, however,

fundamental static speed and accuracy tradeoffs remain. By

contrast, we adjust granularities automatically, optimally and

dynamically to achieve fast and accurate simulation.

B. Host-Compiled Software Simulator
We have developed a high-level, host-compiled software

simulator, details of which can be found in [17]. Figure 1

shows the structure of our simulator, which is designed in a

layered-based fashion. A standard SLDL kernel provides a

basic platform for running simulations on a host machine.

In combination with the underlying SLDL, a TLM layer

interfaces the software simulator with standard TLM back-

planes that provide a fast system-wide co-simulation platform.

A hardware abstraction layer (HAL) includes necessary I/O

drivers and implements an abstract interrupt handling mecha-

nism. When an interrupt is captured by the TLM layer, the

HAL suspends application execution and lets the interrupt

handler trigger the registered interrupt task in the OS. On top

of the HAL, an OS layer replicates a typical OS architecture to

manage the execution order of a multi-tasking application. The

OS model thereby schedules, queues, dispatches and executes

application and interrupt tasks according to a chosen schedul-

ing policy. At the highest level, the application layer consists of

concurrent and sequential high-level SLDL processes, which

communicate with each other using abstract SLDL channels.

The user application is integrated into the simulator and

accesses services of the OS model via a canonical OS API.
At the core of the simulation engine is the OS model,

which dynamically schedules concurrent application tasks to

emulate their sequential execution in software. The structure

of our OS kernel is shown in Figure 2. The key component

of the kernel is a task scheduler, which is invoked by the

OS API methods whenever a context switch is possible or
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Fig. 2. Abstract RTOS model.

required. It decides on the next task to execute and preempts

the currently running task if needed. In the OS model, each

task can be in five states, and tasks move to different states

by calling API methods of the OS kernel. In order to control

the state of the system, the OS model maintains tasks in five

internal queues: a Ready queue holds tasks that are ready

to execute and is sorted based on a user-defined scheduling

policy. An Idle queue holds periodic tasks that have called

the kernel’s TaskEndCycle() method at the end of their

iteration. The Idle queue is ordered based on the release time

of each task’s next iteration. Idle tasks are retrieved from the

head of queue and placed in the Ready queue by the OS kernel

at the start time of their next period. Tasks waiting for an event

are suspended and transfered to a Wait queue upon calling

a PreWait() method. Respectively, a blocked task will be

placed back in the Ready queue when a PostWait() method

is called to release it. To distinguish tasks that are waiting for

an external event, an IntrWait queue holds interrupt tasks until

the interrupt handler in the HAL calls the IntrTrigger()
method to move them to the Ready queue. Finally, a Sleep
queue holds tasks that have been suspended until they are

resumed again.

In addition to basic OS services, the OS kernel simu-

lates task execution delays using underlying SLDL primitives

whenever the running task calls a TimeWait() method.

Basic execution delays of the task code are back-annotated

from estimations or measurements once at compile time. In

traditional models, the granularity of delays is defined by the

application code. The scheduler is only called after advancing

the simulation time to allow for preemption of the current

task by any higher priority task that became available in the

meantime. As such, errors in the preemption model are a direct

function of the back-annotated application-level timing model.

Large granularities result in fast simulation, but may lead to

preemption points being shifted by a large delay. On the other

hand, accurate simulations require a fine granularity at slow

simulation speeds. By contrast, we propose an approach that

automatically adjusts timing granularities to the level needed.

The OS model has complete knowledge of the system state at

any given time. As such, we can develop a kernel that utilizes

this knowledge to automatically control simulation timing such

that an error-free scheduling mechanism is provided at the

fastest possible speed.
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II. TIMING GRANULARITY ADJUSTMENT

In the following, we describe our automatic timing granular-

ity adjustment (ATGA) approach to eliminate task preemption

errors in abstract RTOS models. In this approach, the OS

kernel monitors the state of the system and automatically

controls the timing model of the simulation to invoke the

scheduler whenever a task preemption is required. As a

result, simulation speed and accuracy is independent of the

granularity of back-annotated delays, which frees designers

from having to settle on a particular, difficult to evaluate and

predict tradeoff. Instead, the OS kernel itself breaks delays into

a number of smaller steps as needed, in order to automatically

provide the best timing granularity for fully accurate results.

A. ATGA RTOS Model

Our RTOS model features an adjustable timing mechanism

as shown in Figure 3. In this approach, the OS kernel switches

between predictive and fall-back modes to call the scheduler at

the right preemption points. In the following, we demonstrate

the details of each mode and the mechanism that the OS model

uses to automatically control the underlying timing model.

Generally, timing errors happen when a task is running

and while advancing simulation time a higher priority tasks

becomes ready without the scheduler getting a chance to

immediately preempt the current one. This situation can occur

in the following cases: (a) a periodic reaches its next iteration

time, (b) the interrupt handler triggers an interrupt task, or (c)

a blocked or sleeping task returns to the Ready state when the

running task notifies an event or resumes it. In such cases, the

start of the newly released task is delayed until the expiration

of the current time granule.

In predictive mode, the OS monitors the state of periodic

tasks running on the system and uses this information to

predict the next possible preemption point specifically for

situations in case (a). If the back-annotated granularity is larger

than the predicted interval, the OS kernel adjusts the delay to

invoke the scheduler at the predicted time. Figure 3 (a) shows

the algorithm for predicting the next preemption time. Since

the Idle queue is sorted based on the tasks’ next release times,

the preemption point is defined by the first task with a priority

higher than the currently running task.

Conversely, the exact next preemption point is unknown for

cases (b) and (c), i.e. whenever a task is waiting for an internal

or external event. In these cases, the OS kernel falls back

to a user-defined default timing granularity. In this fallback
mode, the OS divides back-annotated delays into very fine

granules until all events are captured and no task remains in

the Wait queues (Figure 3 (b)). Figure 3 (c) shows the method

that advances the simulation time using the underlying SLDL

wait() statement to advance simulation time. In fallback

mode, only one user-defined fine-grain default granule is

simulated.

For ultimate control of automatic timing granularity adjust-

ment, the TimeWait() method is overloaded to monitor the

OS timing mode and simulate back-annotated delays divided

into proper intervals. Figure 3 (d) shows the pseudo code of

Function PredictNextPreemptionTime (task runningTask):
1 for tasks in Idle Queue do
2 if idleTask::Priority ≥ runningTask::Priority then
3 predictedTime := idleTask::nextPeriod - currentTime
4 return predictedTime
5 endif
6 endfor

(a) Preemption point prediction.

Function FallbackMode (task runningTask):
1 return !Empty(Wait) or !Empty(IntrWait)

(b) Fallback mode check.

Function AdvanceSimTime (long long nsec, bool fallBack):
1 if fallBack and nsec > defaultDelayGranularity then
2 consumedDelay := defaultDelayGranularity
3 else
4 consumedDelay := nsec
5 endif
6 SLDL::wait(consumedDelay)
7 return consumedDelay

(c) Simulation time advancement.

Function TimeWait (long long nsec, task runningTask):
1 remainedDelay := nsec
2 while remainedDelay > ø do
3 adjustedDelay := PredictNextPreemptionTime(runningTask)
4 if adjustedDelay > remainedDelay then
5 adjustedDelay := remainedDelay
6 endif
7 FB := FallbackMode(runningTask)
8 consumedDelay := AdvanceSimTime(adjustedDelay, FB)
9 remainedDelay := remainedDelay - consumedDelay

10 Scheduler()
11 endwhile

(d) Timing model.

Fig. 3. Timing granularity adjustment.

the TimeWait() method in our ATGA RTOS model. It first

computes the adjusted time delay by calling the method to

predict the next preemption point (line 3). Then, it defines the

OS timing mode by checking the fallback mode condition (line

7). After advancing the simulation time by the adjusted delay

and updating the remaining delay with the consumed time

value (line 8 and 9), the OS scheduler is called to perform a

context switch and block the current task until it is scheduled

again (line 10). This loop continues until the user-defined delay

is consumed.

B. Enhanced Fall-Back Mode

The adjustive RTOS model lets designers select coarse-grain

back-annotated delays while achieving fast and still accurate

results. However, when the OS switches to fallback mode,

the performance of the simulation decreases dramatically.

As such, we have developed techniques that exercise finer

control over when to invoke fallbacks. Figure 4 illustrates two

inter-task communication examples in which the OS kernel

does not need to switch to fallback mode even though some
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tasks are waiting for an event. In Figure 4 (a), a inter-task

communication chain is shown in which a set of tasks are

blocked waiting for other tasks in the chain. The task at the

end of the chain has a higher priority than the running task,

but is blocked by a lower priority Ready task. Since the Ready
task cannot be scheduled while the current task is running,

remaining in predictive mode will not change the execution

order of tasks. Similarly, in Figure 4 (b) the same chain is

shown where the task at the end of the chain is a low priority

task that is blocked on an external event, i.e. an interrupt. Even

when the interrupt occurs and assuming small interrupt task

delays, unblocking the lower-priority task can never preempt

the running task, i.e. the fallback mode can also be ignored in

this situation.
As illustrated by these examples, only the task at the end of

the Wait chain needs to be examined to determine the fallback

condition. Figure 5 lists all possible situations and required

fallback conditions. Generally, the OS switches to the fallback

mode due to unpredicted events. Therefore, the OS moves to

fallback when a task with a higher priority is in the Wait queue

and is blocked by an unknown task or a task in the IntrWait
queue. In all other situations, granularity of the simulation

will not affect the execution order of the application tasks.

Lower-priority tasks in the Wait queue or tasks waiting for

another task in the Wait queue can never affect execution of

the current task. Likewise, the case of a lower-priority ready

task has already been discussed, and a higher-priority task in

the Ready queue should never exist. Situations in which a high-

priority task is blocked on a periodic task in the Idle queue can

be handled by switching to predictive mode and simulating the

system at the predicted granule level. Similarly, if a higher-

priority task is waiting for the currently running or a sleeping

task, the preemption and context switch can be performed

directly in the event notification or TaskResume() kernel

method, right at the point when it is called by the running

task. Lastly, assuming a low execution delay of interrupt tasks,

we can postpone any such task if it van only trigger a low

priority task in the Wait queue. With a minor interrupt timing

error, we can ignore fallback condition. All the aforementioned

conditions are checked in the enhanced FallBackMode()
function, which is shown in Figure 6. The OS only turns

to fallback mode if a higher priority task is blocked by an

Unknown task (line 4) or is waiting for an external event (line

7 and 8).

C. Accumulative Timing Mode
Using the new timing model, accurate simulation results

with error-free task scheduling are achieved. This model
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Fig. 5. Fallback mode conditions.

Function FallbackMode (task runningTask):
1 for all tasks in WAIT Queue do
2 if waitingTask::Priority ≥ runningTask::Priority then
3 blockingTask := waitingTask::blockingTaskID
4 if blockingTask == Unknown then
5 return true
6 endif
7 if (blockingTask::Priority ≥ runningTask::Priority)
8 and (blockingTask::State == IntrWait) then
9 return true

10 endif
11 endif
12 endfor
13 return false

Fig. 6. Enhanced fallback mode checking.

optimally divides user-defined timing granularity to provide

accurate task preemption. However, simulation speed still is

limited by back-annotated granularities, which usually depend

on various other factors, such as application code modularity.

We introduce an accumulative timing approach to achieve

highest possible speed even with fine-grained back-annotated

delays, while maintaining overall accuracy. In this approach,

temporal accumulation and decoupling is integrated into and

controlled by the OS kernel itself.

In accumulative mode, the OS kernel lets the running task

execute its code and accumulate back-annotated delays without

calling the scheduler and advancing simulation time. Each

task has a local counter to keep track of the amount of the

delay that needs to be simulated. As long as this delay is less

than the next predicted preemption point, the task continues

to accumulate back-annotated delays. It only consumes delays

whenever a task preemption point needs to be reached.

Figure 7 shows the pseudo code of the TimeWait()
method in accumulative mode. This method is called from

the application code with a user-defined timing granularity. At

first, the OS increments the internal delay counter associated

with the running task (line 1). Then, it predicts the next

possible preemption point and determines the OS timing mode
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Function TimeWaitAcc (long long nsec, task runningTask):
1 runningTask::accDelay + = nsec
2 predictedDelay := PredictNextPreemptionTime(runningTask)
3 FB := FallbackMode(runningTask)
4 while runningTask::accDelay > predictedDelay or FB do
5 consumedDelay := AdvanceSimTime(predictedDelay, FB)
6 runningTask::accDelay − = consumedDelay
7 Scheduler()
8 predictedDelay := PredictNextPreemptionTime(runningTask)
9 FB := FallbackMode(runningTask)

10 endwhile

Fig. 7. Accumulative timing mode.

Function AdvanceSimTime (long long nsec, bool fallBack):
1 consumedDelay := nsec
2 if fallBack then
3 startTime := currentTime
4 SLDL::wait(consumedDelay, OS::schedulerEvent)
5 consumedDelay := currentTime - startTime
6 else
7 SLDL::wait(consumedDelay)
8 endif
9 return consumedDelay

Fig. 8. Event-driven time model.

(lines 2 and 3). If the accumulated delay is larger than the

predicted time or the OS is in fallback mode, simulation

time is advanced until the predicted time is reached, call-

ing the scheduler for possible task preemption (lines 4 to

9). In addition to preemption points, the OS kernel needs

to consume accumulated delays at any task synchronization

point. This is achieve by calling the original, non-accumulative

TimeWait() method whenever a task accesses the bus,

notifies an internal event, or switches to another state by

calling TaskEndCycle() or TaskSleep() methods.

Timing accumulation and adjustment is only effective in

predictive mode. Designers still need to decide on a timing

granularity for fallback mode, which can affect speed and

accuracy tradeoffs. Similarly to accumulation during predictive

execution, we integrate an event-driven timing method into

the fallback mode. In this setup, accumulated delays are

executed even under fallback conditions, but an OS-internal

event is introduced to be able to asynchronously interrupt

long time consumption periods. Figure 8 depicts the event-

driven time advancement method in the OS model. It uses

underlying SLDL mechanisms to realize an interruptible time

wait statement. Due to the high simulation overhead of such

SLDL primitives, they are only utilized when in fallback mode.

An OS-internal schedulerEvent is defined and triggered by the

interrupt handler in the HAL whenever an interrupt occurs.

This in turn will abort the wait() statement in the SLDL

kernel, at which point control is returned to the OS model.

The OS model computes the remaining unconsumed time and

returns control to the scheduler, which then switches context

away from the running to the high-priority interrupt task.

TH
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Fig. 9. Task execution example.

D. Model Execution

Figure 9 shows an example to illustrate the simulation of

a system using our ATGA-RTOS model. The system contains

four tasks. A high-priority interrupt task TINT is located in

the IntrWait queue and will be moved to the Ready queue

whenever an interrupt is detected. Task TH is a periodic task

that has the highest priority among the application tasks. Tasks

TM and TL have medium and low priorities respectively. At t0,

TM starts execution of its functional code followed by a call to

the TimeWait() method. Since TH is in Idle state, the OS

moves to the predictive mode, advances the simulation time

to t1, and calls the scheduler to start TH . At time t2, task TH

finishes its execution and task TM resumes. At t3, TM moves

to the Wait state and TL gets a chance to run. At this point,

TM is blocked by TH , which itself is in the Idle state. As such,

the OS stays in the predictive mode and sets the scheduler to

be called at t4 when TH is released again. TH finishes its next

iteration and TM is resumed at time t5. At t6, TM once more

goes to the Wait state, blocking to receive an interrupt. Since

TH is in its Idle state, task TL starts to execute. During this

time, TM is blocked by an interrupt task and the OS falls back

to a very fine timing granularity. After receiving the interrupt

(at time t9), the OS switches to the interrupt task and exits

the fallback mode.

III. EXPERIMENTAL RESULTS

To demonstrate the benefits of the ATGA approach, we

applied our RTOS models to an industrial-strength, ARM7-

based cellphone example running concurrent MP3 decoding,

JPEG encoding and control tasks. The MP3 decoder runs as a

periodic task with the highest priority in the system. It uses a

hardware accelerator to perform real-time audio decoding. The

JPEG encoder runs as an interrupt-driven task with medium

priority. The control task performs user-interface actions and

runs at the lowest priority. Tasks communicate with external

hardware and the rest of the system via an AHB bus and

14 interrupts. In this setup, the ATGA RTOS model can

utilize predictive mode whenever the JPEG or control task

are running and the MP3 is idle. On the other hand, fallback

mode is triggered whenever MP3 or JPEG tasks are waiting

for an external hardware interrupt while a lower-priority task

is running. The application model and our simulator were

developed in SpecC, but we are in the process of transferring

results to other SLDLs, such as SystemC.
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TABLE I
ACCURACY AND SPEED MEASUREMENTS FOR CELLPHONE EXAMPLE.

RTOS RTOS RTOS RTOS ATGA ATGA/Acc ATGA ATGA/Acc ISS
1μs 10μs 100μs 1000μs Fallback 1μs Fallback 1μs Event-driven Event-driven

Avg. Err. (MP3) 0.73% 0.79% 1.40% 9.65% 0.73% 0.74% 0.73% 0.74% 0%
Avg. Err. (JPEG) 7.33% 7.33% 7.33% 7.35% 7.33% 7.32% 7.33% 7.32% 0%
Avg. Err. (MP3+JPEG) 4.18% 4.20% 4.49% 8.45% 4.18% 4.18% 4.18% 4.18% 0%

Simulation Speed 340MIPS 790MIPS 930MIPS 1080MIPS 554MIPS 684MIPS 621MIPS 892MIPS 0.13MIPS
Simulation Time 0.61s 0.26s 0.22s 0.19s 0.37s 0.30s 0.33s 0.23s 1580s

For accuracy analysis, we compared the execution of our

host-compiled simulator using the proposed RTOS models to a

cycle-accurate ISS [18]. Task delays were back-annotated from

measurements obtained from the ISS. Our testbench performs

encoding of 55 MP3 frames and JPEG decoding of a 680×480

picture divided into 60 stripes. This translates into a total of

200 million simulated instructions. Model error was measured

as the average absolute difference in individual frame and

stripe delays over all iterations.

Table I compares the accuracy and performance of our

proposed RTOS models with that of a conventional one at four

different back-annotated granularities. ATGA and ATGA plus

accumulation models are simulated with both 1μs and event-

driven (ED) fallback mode. We can observe that, regardless

of the granularity of the back-annotated delays, the highest

possible accuracy is achieved using our ATGA approach. This

accuracy is equivalent to a conventional model at 1μs, which

looses accuracy at coarser granularities. Although one would

expect close to 100% accuracy in ATGA models, remaining

errors are due to back-annotation inaccuracies and missing of

model of OS effects like timer interrupts and task context-

switch overhead. As a long-running low-priority task, the

JPEG encoder is adversely affected by such basic errors. On

the other hand, unlike high-priority tasks such as the MP3,

it is not subject to preemption errors. As such, its errors are

independent of the timing granularity.

Our measurements show that the highest speed of 890 MIPS

is achieved using the accumulative ATGA/Acc with an event-

driven fallback mode. This model is 2.6x faster than but

as accurate as the conventional one at 1μs granularity. A

conventional model achieves this speed with significantly

reduced accuracy at a granularity of 100μs. Results clearly

show the benefits of our ATGA approach. Furthermore, both

timing accumulation and event-driven fallback help to increase

simulation speed without adversely affecting accuracy.

Figure 10 plots the average error and accuracy for different

RTOS configurations. As can be seen, there is a fundamental

tradeoff using conventional RTOS models. By contrast, our

ATGA RTOS models provide both accurate and fast simulation

regardless of the granularity of back-annotated delays.

IV. SUMMARY AND CONCLUSIONS

In this paper, we presented an automatic timing gran-

ularity adjustment (ATGA) approach for accurate yet fast

host-compiled software simulation. In this approach, the ab-

stract RTOS model automatically and dynamically accumu-

lates and adjusts back-annotated timing to provide an error-

free scheduling. Our experiments show that high accuracy is
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Fig. 10. Accuracy and speed tradeoffs.

achieved while maintaining fastest possible simulation speed.

This makes host-compiled simulators suitable for rapid, early

evaluation of the real-time performance of software-intensive

embedded systems. In future work, we plan to extend the

approach into a complete processor and system simulator

integrated into a standard TLM framework.
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