
Implementation of a Real-Time Wireless
Interference Alignment Network

Jackson W. Massey, Jonathan Starr, Seogoo Lee, Dongwook Lee, Andreas Gerstlauer, and Robert W. Heath Jr.
Wireless Networking and Communications Group, Dept. of Elec. and Comp. Engineering

The University of Texas at Austin
Email: {jackson.massey, jonstarr, sglee, dongwook.lee}@utexas.edu, {gerstl, rheath}@ece.utexas.edu

Abstract—Interference alignment (IA) is a cooperative trans-
mission technique for the interference channel.This paper de-
scribes two testbeds that implement real-time Multiple-input
multiple-output (MIMO) IA for a network with three 2-antenna
user pairs using software defined radio techniques: a PC-
based testbed for rapid prototyping of potential IA protocols
and an embedded testbed for evaluating IA under real-world
computational constraints. The IA implementations rely on a
wired backbone to share global channel state information (CSI)
and a shared clock for frequency and timing synchronization.
The testbeds are used to demonstrate the viability of IA, and
to compare its robustness with several alternative transmission
strategies, such as 2 × 2 MIMO TDMA, in terms of sum-rates.
Results show that we are able to successfully achieve over-the-air
IA in our three-user 2× 2 MIMO testbed. The paper highlights
key challenges with the practical realization of IA that are
encountered while developing the testbed and identifies areas
for future research.

I. INTRODUCTION

Multiple-input multiple-output (MIMO) interference align-
ment (IA) is a transmission strategy for interference channels
that scales the network’s sum-rate linearly, at high signal-to-
noise ratio (SNR), with the number of users, under certain
dimensionality requirements [1]. This is achieved by coop-
eratively designing linear precoders that are applied to the
transmitted signals such that the interfering signals at the
receivers can be reduced to a subspace orthogonal to the
desired signal. As a result, the desired signal can be projected
into the interference-free subspace. Most of the work in IA has
been theoretical and validated only with simulations that are
based on several assumptions, which may not hold in reality.
Therefore, for MIMO IA to become practical, real-world, over-
the-air MIMO IA systems must be implemented to validate
theoretical assumptions and demonstrate feasibility.

Previous work on practical IA applications includes the
approach in [2] where channel measurements were performed
in indoor and outdoor environments and subsequently ap-
plied to IA simulations. In their work, however, IA was
not performed over-the-air, ignoring the complications that
can arise from frequency and time synchronization. In [3],
a testbed was created that uses interference alignment and
cancellation. The paper discusses MAC and PHY layer issues,
including how to extend the system to more antennas, but
only implements a 2 × 2 system. More recently, in [4], a 3-
user MIMO IA testbed (6× 6 total number of antennas) was
created that implements IA over-the-air and operates at 5 GHz.

This testbed compares IA and TDMA, but does not examine
the computational costs. IA is known to be computationally
demanding, making it crucial to study fundamental limits
and practically achievable performance on the type of mobile
platforms that will eventually be the target of any real-world
IA deployment.

In this paper, we describe the implementation two 3-user,
2×2 MIMO IA testbeds using a software defined radio (SDR)
platform [5]. The testbeds use the same USRP hardware but
one does the processing using PCs while the other uses an
embedded platform1. We describe the setup of the testbed, the
insights gained and the challenges we encountered in going
from theory to reality. We present results demonstrating that
large-scale over-the-air IA is achievable in a a real testbed.
Furthermore, we optimize the implementation and reduce
computational complexity as a first step toward an embedded
IA implementation.

II. INTERFERENCE ALIGNMENT BACKGROUND

Consider a MIMO system with K-users that has Ntx

transmit antennas at transmitter k and Nrx receive antennas
at receiver m. All of the users send Ns streams of data using
orthogonal frequency-division multiplexing (OFDM) with N
subcarriers. Applying a precoder matrix Fk at each of the
transmitters yields the following signal at the kth receiver,
where yk is the Nrx × 1 received signal vector, Hk,m is the
Nrx × Ntx channel matrix from transmitter m to receiver k,
Fk is the precoder applied at transmitter k, sk is the Ns × 1
symbol vector sent by transmitter k, and vk is a complex
vector of i.i.d. circularly symmetric white Gaussian noise with
a covariance matrix E[vkv

∗
k] = σ2

vINk
:

yk[n] = Hk,k[n]Fk[n]sk[n]

+
∑
m 6=k

Hk,m[n]Fm[n]sm[n] + vk[n]. (1)

Applying a receiving filter at the kth receiving node, where
Wk is the receiving filter at receiver k, yields

Wk[n]yk[n] = Wk[n]Hk,k[n]Fk[n]sk[n]

+
∑
m 6=k

Wk[n]Hk,m[n]Fm[n]sm[n] +Wk[n]vk[n]. (2)

1The code for both testbeds is available at: http://www.profheath.org/
research/interference-alignment/mimo-ofdm-interference-alignment-testbed/



TABLE I: OFDM Parameters
FFT Length 128
Cyclic Prefix Length 6
Number of Null Subcarriers 23
Number of Pilot Subcarriers 9
Number of Data Subcarriers 96

The precoders and receiving filters are chosen such that

Wk[n]Hk,m[n]Fm[n]sm[n] ≈ 0 for m 6= n (3)

leaving

Wk[n]yk[n] = Wk[n]Hk,k[n]Fk[n]sk[n]+Wk[n]vk[n] (4)

at the kth receiving node.
In this paper, we utilize an approach that calculates pre-

coders and receiving filters using the alternating minimization
of interference leakage (AMIL) algorithm developed in [6].
AMIL forms two minimization problems and alternates be-
tween them, minimizing one problem while holding the other
constant until a threshold is reached.

It should be noted that the 3-user case with Mk = 2 and
Nm = 2 does have an analytical solution [1]. The AMIL
algorithm, however, was implemented for this paper as a more
general solution allowing the testbed to be reconfigured to a
different user setup later if desired.

In its ideal form as presented so far, IA makes the following
theoretical assumptions that are not always feasible in practice:
(i) the devices are synchronized in frequency or have at most
one carrier frequency offset between all of the transmitters
and all of the receivers; (ii) the devices are synchronized in
time such that all of the packets are sent at the same time; and
(iii) perfect channel state information (CSI) is obtained for the
IA algorithm to calculate the precoders and receiving filters.
Additionally, several practical challenges must be overcome
for IA to become feasible as described: (i) the CSI feedback
must be received within the channel coherence time or the CSI
is no longer valid and (ii) the IA algorithm must be able to
run in real-time on a given hardware.

III. SYSTEM SETUP

Interference alignment is applied to a testbed with 3 user
pairs that each use OFDM and 2× 2 MIMO to communicate.
This setup requires 6 transmitters (working together in pairs)
and 6 receivers (also working in pairs). The system is designed
to operate in the 2.4 GHz frequency range or the 5 GHz
frequency range. The channel bandwidth would ideally be
20 MHz, but is actually lower due to hardware constraints
discussed in Section IV. The OFDM parameters used for the
testbed are listed in Table I.

Each transmission contains a set of training data for signal
detection, carrier frequency offset correction, and channel es-
timation. The first set of training data is comprised of repeated
Zadoff-Chu sequences. For the implementation in Section IV,
a length 17 Zadoff-Chu sequence is repeated 5 times followed
by a length 29 Zadoff-Chu sequence that is repeated 3 times.
This part of the training is the same for all of the antennas at
the transmitter. It is used at the receiver to detect when a signal
is received and to estimate the carrier frequency offset. The

TABLE II: Testbed Hardware
Part Description Part Number
USRP Base Package Ettus USRP N210 / NI USRP-2921
RF Daughterboard Ettus XCVR2450
Antenna Ettus VERT2450

next part of the training is a set of OFDM symbols that are
used to estimate the channels between the antennas. Because
it is important to have sufficient training data to estimate the
CSI correctly, eight training OFDM symbols are used.

The testbed uses two computers that are each equipped
with dual-core Intel Xeon 2.67 GHz processors and 12 GB
of memory. One computer is used to control the transmitters
while the other is used to control the receivers, as shown
in Figure 1. The two computers are connected to the same
network and use TCP/IP for the feedback channel.

Twelve Ettus Research USRP N210s transceivers are used
[5]. Transmitter or receiver USRP pairs are controlled using
a single gigabit Ethernet connection, which is shared between
the two USRPs using Ettus Research MIMO cables. A function
generator provides a 10 MHz clock and PPS signal (0-5 V, 1 Hz
square-wave) to all of the transceivers in order to synchronize
their frequency and time, respectively. It should be noted that
the MIMO cable can also share clock and PPS signals, but
that this approach is not used because of potential phase delays
due to the signal traveling over different electrical lengths. Our
setup, by contrast, uses a fully balanced tree to distribute the
reference signal. Table II lists the hardware used for the USRP
setup. Figure 1 shows a diagram of the setup and pictures of
the transmitters and receivers.

IV. PC IMPLEMENTATION

Our first testbed implements the system setup in LabVIEW
on the PCs. LabVIEW is a graphical programming language
that is often used to quickly develop systems by controlling
hardware with blocks of LabVIEW code called virtual in-
struments [7]. LabVIEW includes hardware drivers for the
USRPs and has several communication toolkits to aid in the
development of SDR systems. In our testbed, the hardware
control and system was implemented natively in LabVIEW.
Most of the communication algorithms, such as the channel
estimation and the AMIL algorithm, by contrast, were first
written and tested in MATLAB and then ported over to
LabVIEW using embedded MathScript blocks.

A MIMO-only version of the testbed was first implemented
to become familiar with the setup and learn about respective
constraints before adding additional complications, such as
feedback, which are required for an IA implementation. In
the remainder of this section, we describe the challenges
associated with each implementation, and how they were
overcome. Finally, we present some results of measurements
taken on the testbed.

A. MIMO Spatial Multiplexing

A MIMO implementation requires synchronization (both
in time and frequency) between all of the transmitters and
receivers in the system. The MIMO code developed for the



TCP / IP 

PC PC 

Rx 1 

Rx 2 

Rx 3 

Rx 4 

Rx 5 

Rx 6 

Tx 1 

Tx 2 

Tx 3 

Tx 4 

Tx 5 

Tx 6 

(a) Block diagram

(b) Transmitter (c) Receiver

Fig. 1: IA testbed setup using PCs and USRPs. The dashed
line boxes signify the different users. The TCP/IP cable on
the bottom connects the two PCs for the feedback channel.
A function generator is connected to each transmitter and
receiver for synchronization.

testbed initially started with a 2×2 setup to reduce complexity
for debugging. In this setup, the MIMO cable was used to
share the clock and PPS signals across two devices. Extending
to higher order MIMO schemes, such as 3×3 or 6×6, requires
a different approach. We utilized a function generator as the
external source for synchronization.

Another constraint that we encountered in the MIMO
testbed was that the USRPs required a continuous stream
of data for transmission or else an underflow occurs at the
transmitter. Thus, to turn off the transmitter between packets,
zeros need to be continuously fed into the transmitters. This
forces the sampling rate of the USRPs to be much lower than
the sampling rate of a single packet transmission (1 MS/s
versus > 20 MS/s). Ideally, a bursty mode of operation would
be used in which each transmission is scheduled as needed and
the transmitter and receiver are off when not in use (instead
of transmitting/receiving zeros). Work is currently being done
to update the testbed to use this approach.

B. Interference Alignment

IA was implemented by modifying the MIMO testbed
to include linear precoding, precoder computation, and CSI
feedback. In our testbed, a training packet is first sent to
determine the CSI. Then, the receivers’ PC performs the AMIL
algorithm to calculate the IA precoders. The receiver PC then
sends the precoders to the transmitter PC via the TCP/IP

Fig. 2: 6× 6 MIMO constellations for each antenna.

feedback channel. Finally, the transmitters apply the precoders
and then send the data packet. Alternatively, the raw CSI could
be sent and the AMIL algorithm could be performed at both
the transmitters and receivers.

The feedback channel requires scheduling within the sys-
tem. Given the continuous transmission constraint mentioned
in the previous subsection, the transmitter PC must con-
tinuously send zeros to the USRP buffers while receiving
the TCP/IP packets and applying the precoders on the data.
To accomplish this, a producer-consumer setup was created,
where the producer loop collects the feedback, applies the
precoders, and then adds the samples to be transmitted to a
queue. The consumer loop then checks the queue for elements
- transmitting the queued elements if they are present or
transmitting zeros if the queue is empty. The producer and
consumer loops are run in parallel in LabVIEW.

C. Results

The received constellations for each antenna of a 6 × 6
MIMO transmission are shown in Figure 2. The constella-
tions indicate that the time and frequency synchronization is
working for the MIMO testbed. Similar constellations were
also received with the IA testbed. The signal-to-interference-
plus-noise ratio (SINR) and SNR for user k, SINRk and
SNRk, are estimated using the distance between the equalized
symbols and the transmitted symbols during an IA and 2× 2
MIMO TDMA transmission, respectively. The system SNR is
calculated using the measured signal energy during the MIMO
TDMA and the noise energy between transmitted packets.
To demonstrate IA’s effectiveness, the network’s sum-rate,
Rsum, IA and Rsum, TDMA, are calculated in a manner similar
to [4]. For example, Rsum, IA =

∑3
k=1 log2 (1 + SINRk). The

network’s sum-rates are plotted in Figure 3 versus SNR for
measured results. The plotted lines show the linear fit for the
data. The measured results for the indoor setup lay in between
the indoor results in [2].

V. EMBEDDED IMPLEMENTATION

The ultimate objective of our project is to implement the
MIMO IA system on embedded platforms. The prototype
implementation using LabVIEW is targeting a PC-type setup



12 14 16 18 20 22 24
0

3

6

9

12

15

18

21

24

SNR
system

 (dB)

S
um

−
R

at
e 

(b
its

/s
/H

z)

 

 
IA
TDMA

Fig. 3: The network sum-rate vs. SNR for the IA testbed.

and is not readily portable to generic embedded targets.
Toward deploying the MIMO IA system in realistic embedded
contexts, we converted all LabVIEW blocks into an embedded
C/C++ implementation that can be ported to a wider variety
of embedded or PC target platforms.

To design a portable, C/C++-based SDR implementation,
we use a GNU Radio environment running on top of a Linux
operating system [8]. GNU Radio is a free and open-source
software development toolkit that provides signal processing
blocks to implement software radios. In the GNU Radio plat-
form, a signal processing system is described as a synchronous
data flow (SDF) graph, where each processing block is a node
of the overall SDF chain. GNU Radio directly supports the
USRP devices as RF front ends, allowing us to use the same
hardware setup as is described in the previous section.

All developed code is setup to support cross-compilation
to other target platforms. We specifically support a setup
with USRPs connected to an ARM-based host system run-
ning Linux. Basic functionality of the GNU Radio setup on
ARM systems is verified by cross-compiling code on a Texas
Instruments (TI) Panda board [9], which is built around TI’s
OMAP4460 mobile applications processor containing a dual-
core ARM Cortex-A9 CPU running Ubuntu Linux 11.10.

Widely used, low-cost mobile development platforms, such
as Panda boards, emulate a typical embedded environment
as used, for example, in many modern smart phones. With
built-in floating-point hardware and two cores running at
1.2GHz, implementation of software-defined radio solutions
on such platforms is becoming feasible. Raw computational
power, however, is still not comparable to PCs or workstations.
General embedded platforms, moreover, do not readily support
high-level, library-based development environments, such as
LabVIEW, requiring us to reimplement the complete system
in a more efficient and reduced form directly in C/C++.

A. System Specification

To realize a MIMO IA system in tightly constrained em-
bedded contexts, careful attention has to be paid to the
computational complexity of the implementation. To reduce
the complexity, several changes were made to the LabVIEW
implementation. In this paper, we thereby restrict the scope

 

Short Preamble Long Preamble Preamble without 

Precoding

Preamble with 

Precoding

One OFDM Symbol

Frame 

Synchronization

Frequency 

Synchronization

Channnel estimation for 

feedback only

Channel estimation for 

data equalization

TX User0 Ant0

TX User0 Ant1

TX User1 Ant0

TX User1 Ant1

TX User2 Ant0

TX User2 Ant1

Fig. 4: Preamble structure for embedded IA.

to a pure software solution, where FPGA-based hardware
acceleration is part of future work.

1) Frame Structure: Some of the most computationally
intensive blocks in any OFDM system are the internal fast
Fourier transforms (FFTs). The computational complexity of
these FFTs is directly proportional to the number of subcarriers
in each OFDM symbol, and hence the number of FFT points.
In the LabVIEW implementation, the FFT point was 128. In
the embedded setup, however, it was reduced to 64 in order
to save both computation and bandwidth.

Perfect synchronization in time and frequency is one of the
most important aspects and requirements of an IA system.
In addition to the modification in FFT size, we design our
preamble structure to satisfy these tight requirements while
reducing synchronization complexity. Figure 4 shows our
modified preamble structure. The synchronization methods
are modified and implemented in C++ to support this new
preamble. There are four types of preambles in our system:

Short Preamble We achieve time synchronization and
coarse frequency synchronization using correlation-based al-
gorithms with this preamble.

Long Preamble We use the frequency domain pilot subcar-
riers of a long preamble to find the integer frequency offset.

Uncoded CSI Preamble This preamble is only for channel
feedback. Each transmitter and each Tx antenna send their
preambles at different time-orthogonal moments. The pream-
ble does not experience precoding or decoding. Hence, the
receiver can estimate the uncoded wireless channel.

Coded CSI Preamble This preamble experiences precoding
at transmitters. With the preamble, we estimate the coded
wireless channel, which is needed to decode data at receivers.

B. Block Implementation

Figure 5 shows the overall block diagram of our embedded
IA system. For the embedded implementation, we fully con-
verted all signal processing blocks of the MIMO/IA OFDM
LabVIEW system into C++ code for use within the overall
GNU Radio environment. The functionality of most of the
blocks is the same as described in the previous sections. The
IA precoding/decoding matrix calculation, which is the block



Random 
source

TX MIMO Encoder RX MIMO Decoder
Channel 
model

Simulator

Map
Insert 

preamble.
FFT

Insert 
CP

Packet 
gen.

x 3

MIMO
encode

Insert 
preamble.

x 3 x 3 x 6 x 6 x 6

Map
Insert 

preamble.
IFFT

Insert 
CP

Packet 
gen.

Insert 
preamble.

Sync. FFT
Channel 

est.
EQ

De-
map

MIMO
decode

Sync. FFT
Channel 

est.
EQ

De-
map

x 6 x 6 x 6 x 3 x 3

Calc IA Filters
(need SVD)

channel feedback

rx_filter

tx_filter

tx_filter

rx_filterchannel feedback

Fig. 5: Block diagram of embedded IA implementation.

0 5 10 15 20 25 30 35 40
0

5

10

15

20

25

30

35

40

SNR(dB)

S
um

 R
at

e

 

 

[2]
GNU Radio
Without IA

Fig. 6: Simulated sum-rate vs. SNR.

with the highest computational complexity, was redesigned
in C++. This includes optimized C++ implementations of
complex mathematical functions, such as the singular value
decomposition (SVD). We use a well-known method for com-
puting the SVD in two stages [10]. The first stage decomposes
the target matrix into a real upper triangular matrix, and the
second stage then finds the SVD of this converted matrix.

We implemented both a 6x6 MIMO and an IA system in
the GNU Radio setup. The over-the-air 6×6 MIMO system is
implemented with USRPs. The IA system is currently only for
simulation, and will be extended to over-the-air operation in
the future. With the exception of the FFT blocks taken from
the GNU Radio library, our final embedded implementation
consists of a total of 11,500 lines of custom C++ code.

C. Results

Figure 6 shows the network sum-rate from IA simulation in
the GNU Radio environment. Results show that our embedded
IA implementation is verified to have the same sum-rate as
the simulated IA from [2], where both systems are simulated
under Raleigh flat fading channel conditions. Furthermore, in
Figure 7, the relationship between the number of iterations
of alternating minimization and the achievable sum-rate is
presented. The figure shows that the number of iterations
needed to achieve a peak sum-rate depends on the SNR, which
is also consistent with the results from [2].

0 20 40 60 80 100 120 140 160 180 200
5

10

15

20

25

30

35

40

Iteration

S
um

 R
at

e

 

 

SNR=10dB
SNR=20dB
SNR=30dB
SNR=40dB

Fig. 7: Simulated sum-rate vs. iteration.

VI. CONCLUSION AND FUTURE WORK

We were able to successfully achieve over-the-air 2 × 2
MIMO IA with 3 users on the popular USRP SDR prototyp-
ing hardware. Two new testbeds are created to explore the
potential of IA in real-world settings, an important factor that
is often overlooked in theoretical papers. The first testbed,
implemented on two PCs, shows that IA achieves higher
network sum-rates in practice as well as theory. Additional
insights were gained during implementation, particularly with
respect to synchronization requirements. The second testbed
addresses the feasibility of IA for embedded systems. Various
modifications to the system are proposed to reduce the com-
putational complexity. Results from both testbeds demonstrate
the achievable performance gains and the effectiveness of IA.

Future work involves implementing over-the-air feedback,
using distributed time and frequency synchronization, and
further optimizing the code for both platforms to achieve
higher performance.

ACKNOWLEDGMENTS

This work was funded in part by the Army Research
Laboratory W911NF-10-1-0420 and the DARPA IT-MANET
Program W911NF-07-1-0028. The authors would like to thank
Erik Luther from National Instruments for his assistance.

REFERENCES

[1] V. R.Cadambe et al., “Interference alignment and degrees of freedom of
the k-user interference channel,” IEEE Trans. Inf. Theory, vol. 54, pp.
3425–3441, Aug. 2008.

[2] O. E.Ayach et al., “The feasibility of interference alignment over
measured MIMO-OFDM channels,” IEEE Trans. Veh. Technol., vol. 59,
pp. 4309–4321, Nov. 2010.

[3] S.Gollakota et al., “Interference alignment and cancellation,” in SIG-
COMM, 2009.

[4] O.Gonzalez et al., “Experimental validation of interference alignment
techniques using a multiuser MIMO testbed,” in Int. ITG Workshop on
Smart Antennas, 2011.

[5] Ettus Research. https://www.ettus.com/product/details/UN210-KIT.
[6] S. W.Peters et al., “Interference alignment via alternating minimization,”

in Acoust., Speech, and Signal Process. IEEE Int. Conf. on, 2009.
[7] National Instruments. http://www.ni.com/labview/.
[8] E.Blossom et al. GNU radio. http://gnuradio.org/.
[9] Texas Instruments. Pandaboard References. http://pandaboard.org/.

[10] S.Qiao et al., “Computing the singular values of 2-by-2 complex
matrices,” 2002. [Online]. Available: http://www.cas.mcmaster.ca/∼qiao/
publications/zsvd2.pdf


